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Abstract
We examined the influence of tide stage and depth on the 
abundance of Vibrio vulnificus and Vibrio parahaemolyticus in the 
Chesapeake Bay. Samples were collected every 3 hours following 
predicted tides at a fixed location over 3 separate days and Vibrio 
concentrations analyzed by qPCR. Multi-way Analysis of Variance 
suggest that sampling day explains the vast majority of the variance 
in abundance for both species (p<0.0001) with limited influence 
of tide and depth. The physio-chemical parameters that define a 
sampling day were further explored with environmental gradient 
analysis. Gradients in daily photosynthetic activity and turbidity 
(PC1) and temperature and salinity (PC2) explained 75% of the 
environmental variability, and 50% of Vibrio vulnificus abundance. 
However, these same gradients did not explain a significant 
proportion of variation in the abundance of Vibrio parahaemolyticus 
(P>0.05). These results suggest that within day variability is not 
as important as that associated with environmental changes 
over time, and further highlight the need for species specific and 
mechanistic approaches to the study of Vibrio ecology. 
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Introduction 
Vibrio spp. are gram negative, flagellated, heterotrophic bacteria 

indigenous to the estuarine environment. Several species, including 
V. cholerae, V. vulnificus, and V. parahaemolyticus are capable of 
causing severe and occasionally life threatening infections in humans 
both through water contact and consumption [1,2]. For example, V. 
vulnificus is responsible for 95% of all seafood related mortalities, 
and carries a 50% mortality rate with primary septicemia [3]. Over 
the past three years of data availability (2006-2008), an average of 
over 600 cases have been reported annually through the Center for 
Disease Control’s COVIS system [4]. Further, there is evidence that 
the incidence has increased [5]. Accordingly, significant effort has 
been devoted to monitoring Vibrio abundance, enhancing detection 
and differentiation methods, and developing predictive models [6-
15]. Many studies have examined the relationship between Vibrio 
abundance and environmental factors [7-9,12,13,16-23]. It is clear 
from these efforts that temperature is the major temporal driver, 
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while salinity, chlorophyll, and zooplankton govern spatial variability 
and may differ in importance among species. For example, Vibrio 
vulnificus is strongly governed by preferred salinity in Chesapeake 
Bay [8,23], while Vibrio parahaemolyticus occurs in a wider salinity 
range with attempts to examine correlation equivocal [23-25]. 
However, what is less clear is the influence of short term variability 
perhaps influenced by factors such as tidal stage and depth of sample 
collection. These may be of particular significance to large scale, coastal 
water monitoring efforts which routinely collect surface samples and 
are unable to control for tide. Previous research found tide, depth, 
and day to all significantly influence Vibrio’s in a Florida estuary, 
however no attempt was made to identify individual species [26]. 
Thus the aim of this study was to determine what factors influence 
the concentrations of Vibrio vulnificus and Vibrio parahaemolyticus 
over short time scales.

Materials and Methods
Field sampling was conducted on the Tred Avon River at the 

Cooperative Oxford Lab (Oxford, MD). Water samples were collected 
at the surface, 0.1 meters above the bottom, and the mid depth of the 
water column (3 meter total depth) over two complete tidal cycles 
(Low AM, Flood, High, Ebb, Low PM) and was replicated over the 
course of three days in July and August of 2010 (n=45).  Surface water 
samples were collected by submerging autoclaved Nalgene bottes and 
rinsing 2x times prior to sample collection. Sub-surface samples were 
collected with a Niskin bottle following the same rinsing procedure at 
depth. The samples were thoroughly mixed and 200 ml of water was 
filtered through 0.22um sterivex filters, all water removed, and stored 
at -80°C, and DNA extracted as previously described [27]. Physical 
water quality parameters were measured concurrently at each depth 
in-situ with a YSI datasonde (YSI Incorporated, Yellow Springs, 
Ohio, USA). Parameters measured are listed in Table 1. 

Primers tlh F (5’-ACTCAACACAAGA AGAGATCGACAA-3’) 
and tlh_R (5’-GATGAGCGGTTGATGTCCAA-3’) were used in 
conjunction with the probe tlh_TXRD (5’- /TxRED/CGCTCGC-
GTTCACGAAA CCGT/3BHQ_2/-3’) for the detection of V. para-
haemolyticus. A unique internal control (IC) was incorporated si-
multaneously into the assay to test for the presence and influence of 
inhibitors [28]. Primers vvh_F (5’-TTCCAACTTCA AACCGAAC-
TATGA-3’) and vvh_R (5’-TTCCAGTCGATGCGAATACGTTG-3’) 
were used in conjunction with the probe vvh874 (5’-/56- FAM/ AAC-
TATCGTGCAC GCTTTGGTACCGT /3BHQ_1/-3’) for the detec-
tion of V. vulnificus [29]. A unique internal control was also incorpo-
rated into this assay [28].

Assay performance testing was carried out in a manner similar 
to that as previously described [27]. Primers and probe were 
tested against strains of Vibrio vulnificus, V. parahaemolyticus, 
Enterococcus faecium, Hematodinium spp. and 17 species of the genus 
Mycobacterium. In both cases the primers and probes were specific 
only to the organism of interest and negative results were obtained for 
all other species. Recovery and repeatability estimates as well as the 
effects of freezing are previously published [8]. Standard curves of Ct 
values versus concentration yielded an assay efficiency of 104.66% ± 
0.96 (standard deviation; n=3) and 88.60% ± 5.90 (standard deviation; 
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n=4) for Vp and Vv (respectively). Detection limits of the assays are 
48 and 190 CFU/200ml as determined from spiked water samples. No 
inhibitors were observed in any environmental samples, based on the 
amplification of the internal control.

Three-way Analysis of Variance was used to examine the influence 
of sampling day, tidal stage, sampling depth, and interactions on log 
transformed count data for each of the two pathogens (Proc GLM, Sas 
Inc., Carey NC). For the purpose of this study the term ‘day” is used 
to describe the physio-chemical variables and their measurements 
within a given 24 hour period. Where necessary, least square 
means comparisons were used to determine significance within a 
factor (LSmeans procedure, pdiff option, Tukey’s adjustment). All 
models were examined for normality and homogeneity of variance. 
Spearmans rank correlation analysis was employed to evaluate 
relationships between environmental variables and Vibrio abundance 
as an initial approach to describe variability among sampling 
days. Because of a high degree of collinearity among water quality 
variables, Principal Component Analysis (PCA) was employed to 
describe the environmental gradients present during the study, and 
scores subsequently used as composite variables in multiple linear 
regression. 

Results and Discussion 
The main intent of this effort was to examine the relative 

importance of within-day variability on Vibrio spp. concentration, 
with the particular hypothesis that they may be influence by tide 
and depth. Tide did not significantly influence the abundance of 
V. vulnificus, but accounted for 10% of the total variance for V. 
parahaemolyticus (Table 1). However, this finding is somewhat 
misleading as the interaction of tide and day is most significant 
(Table 1B, 20% of total variance), particularly the August 16th flood 
tide event (Figure 1). Similar results have been previously reported 
for sucrose negative Vibrios with respect to tide [26].   Depth similarly 
accounted for a minority of the variance but was significant for both 
species (Table 1). Concentrations obtained from samples at the 
bottom of the water column were 30% greater on average for V. 
vulnificus than those from the middle and surface (Figure 2) with a 
similar trend noted for V. parahaemolyticus (Figure 1). These results 
are supported by others [26] and may represent re-suspension from 
sediments, which are known to act as a reservoir for several species 
of Vibrios [30]. 

The vast majority of the total variance in both V. vulnificus 
(p, 0.0001, f=54.02, 2df) and V. parahaemolyticus concentrations 
(p<0.0001, f =6.076, 2df) was explained by the physio-chemical 
environment that defines a sampling day (Tables 1 and 2, Figures 1 
and 2). In this study, a variety of water quality measurements were 
obtained simultaneously to offer further explanatory variables for 
use in describing environmental drivers of Vibrio abundance and 

Parameter 19-Jul 3-Aug 16-Aug
Temperature (°C) 29 ± 0.16 27.9 ± 0.61 27.4 ± 0.8
Salinity (ppt) 11.5 ± 0.03 12.2 ± 0.08 12.6 ± 0.05
pH 7.8 ± 0.15 7.9 ± 0.12 8 ± 0.14
Dissolved Oxygen (mg/L) 6.9 ± 0.34 6.4 ± 0.94 7.3 ± 1.42
Turbidity (NTU) 9.7 ± 1 8.7 ± 1.56 8.5 ± 3.9
Chlorophyll (mg/L) 4.3 ± 0.92 7.7 ± 1.69 12.2 ± 6.86

Table 1: Physio-chemical water parameters measured in this study by sampling 
day. Mean and standard deviation are presented.
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Figure 1: Vibrio vulnificus abundance by tide, day and depth.

A.

Source of Variation df SS MS F P
Factor  
Day 2 54.055 27.028 50.77 < 0.0001
Depth 2 4.252 2.126 3.99 0.0392
Tide 4 2.56 0.64 1.2 0.3483
Interactions  
Day x Depth 4 0.764 0.191 0.36 0.8343
Day x Tide 8 9.823 1.228 2.31 0.0737
Depth x Tide 8 11.465 1.433 2.69 0.0437
Error 16 8.518 0.532   
Total 44 91.436    

Table 2: Analysis of variance for fixed effects of day, depth, tide and interactions 
for Vibrio vulnificus (A) and Vibrio parahaemolyticus (B).

B.

Source of Variation df SS MS F P
Factor  
Day 2 12.153 6.076 35.76 < 0.0001
Depth 2 1.528 0.765 4.5 0.0124
Tide 4 3.074 0.769 4.52 0.0282
Interactions  
Day x Depth 4 1.413 0.353 2.08 0.1314
Day x Tide 8 6.642 0.830 4.89 0.0034
Depth x Tide 8 2.163 0.270 1.59 0.2041
Error 16 2.720 0.170   
Total 44 29.692    

discriminating among sampling days. As is typical with measures of 
water quality, however, many of these variables are highly correlated 
with each other. Indeed, multiple regression analysis initially 
attempted with our data proved futile due to variance inflation 
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associated with multicollinearity.  Principal component analysis 
is a particularly valuable data reduction technique in multi-variate 
analysis where many of the explanatory variables are co-correlated. 
The orthogonal transformation results in a series of principal 
components that are linearly uncorrelated and defined in a manner 
where the majority of the variance is explained by the first component, 
and less by each successive component. The resulting variables serve 
as composite explanatory variables for further data exploration.

Ordination clearly demonstrates the difference between sampling 
days in the physio-chemical environment (Figure 3). The majority of 
variance in the environment was explained by the first two principal 
components (75%). PC1 (horizontal gradient, Figure 3) represents 
45% of the total variance and describes a gradient in photosynthesis 
and turbidity as defined by increasing concentration of chlorophyll, 
dissolved oxygen, and pH. These factors, as well as PC1 in general 
are increasing during the course of the day in concert with algal 
production and respiration (PC1 correlation, r=0.49, P=0.001). PC2 
(vertical gradient) represents 30% of the environmental variation 
and represents a gradient in temperature and salinity. As a whole, 
individual sampling days are clearly differentiated on PC2 by 
variation in temperature and salinity, and to a lesser extent PC1. 

By overlaying Vibrio abundance on the environmental 
gradient analysis, we demonstrate that the two species respond 
in a dissimilar fashion. The warmer, less saline, and more turbid 
environments (Figure 3A) nearly always supported Vibrio vulnificus 
at concentrations greater than the median concentration (8 CFU/
ml) with a decreasing proportion associated with cooler, more saline 
days. Regression analysis using PC1 and PC2 as explanatory variables 

explains 49% of the variation (P <0.0001) in Vv abundance as follows: 
LnVv=1.90 – (0.45 x PC1) + (0.52 x PC2). We have previously 
demonstrated that the presence of V. vulnificus declines rapidly with 
distance from optimal salinity (11.5 ppt) in Chesapeake Bay [8], and 
similar results were obtained here even within a relatively narrow 
salinity range (11.4 – 12.8ppt). This is supported by other work noting 
a general preference of 5-15 ppt in Chesapeake Bay and other coastal 
systems [9,23]. Turbidity is also an important component of current 
models used to forecast the distribution and abundance of Vv in the 
Chesapeake system (Authors unpublished data). 

Vibrio parahaemolyticus did not demonstrate the same degree 
of association with environmental gradients described in this study 
(Figure 3B). Regression analysis using PC1 and PC2 demonstrates a 
stronger, negative association with PC1 than PC2, however the model 
is insignificant and explains a paucity of variance (LnVp=1.04 –(0.12 
x PC1) – (0.02 x PC2), P=0.34, R2=0.05). While temperature is clearly 
a driver of Vp abundance seasonally, it is clear that other factors not 
directly measured in this effort are influential [31]. 

While of interest in describing the general ecology of V. 
parahaemolyticus and V. vulnificus, the significance of this effort is 
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Figure 2: Vibrio parahaemolyticus abundance by tide, day, and depth.
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Figure 3: Environmental gradient analysis of the physio-chemical patterns 
associated with each sampling day.  Green = July 19, Blue = August 3, and 
Red = August 16.  Asterisks (*) represent either Vv (panel A) or Vp (panel B) 
samples which exceed the median concentration obtained in this study (8 and 
2 CFU/ml respectively). 
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in understanding site specific variability on short time frames and its 
application to monitoring and forecast efforts. This work confirms that 
changes in physio-chemical variables over time exert a much stronger 
influence on V. vulnificus and V. parahaemolyticus abundance than 
within-day variability associated with tides or sampling depth. This 
is important information for monitoring programs and modeling 
efforts in that a daily sample or prediction, regardless of depth or 
tide taken, is generally representative of overall conditions at that 
location for the given day.  However, the study also points to the 
need for moving towards a more mechanistic understanding of the 
ecology of Vibrio spp and relationships with the ecosystem as a whole. 
While general habitat preferences have been well defined for many 
species and described through empirical relationships, detailed study 
of the interactions with the microbial community, other biota, and 
ecological processes over short time scales may greatly improve our 
understanding of the ecology and dynamics of Vibrio spp.
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