
Appendix 

 

The Berkeley Earth Minimization Process 

 

In this appendix we discuss mathematical aspects of our method for deriving Earth’s land surface temperature 

average         from the thermometer data. 

 

Given a set of temperature measurements at location xi and time t, we can interpolate and extrapolate to find the 

temperature at any other location        by using the method of Gaussian process regression (Krige [1]; Cressie 

[2]; Stein [3]), a method widely used in academia and business.  In the simplest approach the average surface 

land temperature estimate         is then defined by averaging        over the Earth land area A: 

         
 

 
                        (1) 

We define the local climate      by  

                                     (2) 

Here, the subscript t indicates that the average is done over time for a given location. The fundamental 

difference in mean temperature between the North Pole and the Equator will be contained in     . The local 

“weather”        is defined as the remainder, that is, the difference between the actual temperature record at a 

given location and what you would estimate from         and      alone: 

                            (3) 

The term        will include local variations in climate, such as the effects of El Nino.  If every location on the 

Earth had a temperature anomaly (difference from the average) that followed the global record        , then the 

weather term        would be zero.        can be thought of as the residual, that part of the record that is not 

fit by a simple model of global land temperature change        , a function of time alone, and locally stable 

climate     , a function of position alone.  

 

To get the best estimates of        , the values that give the fullest explanation of the worldwide data, we can 

adjust parameters to minimize the square of the residuals; in other words, we minimize 

                                 (4) 

for each time t (i.e. typically for each month) in the record.  Conceptually, want the weather term to include only 

that temperature variation that cannot be accounted for by the temporally constant climate term      and the 

global average          Minimization of F provides the constraint that allows us to calculate          

To minimize F at a given time t we adjust the following parameters:   

1.          There is one parameter for each time t, 12 values per year, and 1200 values per century. 

2. A baseline temperature    for every temperature station i; this baseline temperature is calculated in our 

optimization routine and then subtracted from each station prior to the Gaussian interpolation to 

intermediate points (locations on the surface which have no temperature station). This converts the 

temperature observations to a set of anomaly observations with an expected mean of zero. These parameters 

don’t depend on time, and they represent the average temperature for that station above and beyond the 

climate     .  



3. Constants that define the slowly varying function for the local climate function     .  We use splines and 

polynomials to take into account variations with latitude and altitude, and these contain typically 18 

parameters total (2 for temperature vs. altitude, and 16 to capture temperature vs. latitude). The key point 

here is that the number of parameters for this function is small.  

4. Weights applied to the stations for the Gaussian interpolation. We follow the methods of robust data 

analysis developed by Tukey [4,5]. We begin with equal weights for all stations and calculate the         

that minimizes F. An automated routine then identifies outliers, points that give a particularly poor fit 

compared to the fit of nearby points. A smaller weight is then applied to such stations to reduce their 

contributions to the Gaussian interpolation. Then the solution to minimize F is recalculated; the procedure 

is repeated until the weights applied to each station converge. No station is omitted, but a poor station could 

receive a weight as low as 1/26 that of a trusted station. Note again that although the weights affect the 

interpolated temperature estimate for a given location, all square kilometers of land temperature contribute 

equally to     . 

5. Although the minimization process involves a large number of parameters, it is relatively rapid for a given 

set of weights, since it can be done by the equivalent of matrix inversion. When a solution is calculated, the 

weights are adjusted (to lower the weights of statistical outliers) and the equations are once again inverted. 

If the new weights do not change, the iteration process is complete. The computer program that 

accomplishes this minimization is available for inspection online at www.BerkeleyEarth.org. 
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