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Abstract
Newly available DNA sequencing technologies can generate billions 
of DNA sequences in a single machine run, making it feasible to 
obtain an individual’s entire genome sequences very quickly and at 
a very affordable cost. These personal genome sequences can be 
used to identify genetic variations associated with variable traits, 
but they must first be aligned to a reference genome sequence 
using computer algorithms that make use of approximate string 
matching methods. The process of aligning a very large number 
of short sequence reads is computationally expensive and has led 
to the development of many sequence mapping programs. While 
new software, such as BWA, SOAP2, and Bowtie, efficiently align 
large numbers of short DNA sequences, we proposed that parallel 
computing would provide additional speedup in data processing 
to accommodate the rapidly increasing sequencing throughput. 
For this purpose, we developed pBWA, an efficient parallel 
version of BWA, based on the Open MPI library. pBWA retains 
the multi-threading capability provided by BWA while adding 
efficient parallelization for its core alignment functions. We have 
shown that pBWA’s wall-time speedup is bounded only by the size 
of the parallel system. pBWA can run in both parallel and multi 
threaded environments simultaneously, allowing it to be tailored to 
run on parallel systems of all configurations and sizes. By taking 
the advantage of high performance computing cluster, the use of 
pBWA can cut down the computing wall-time for the reference 
alignment step from weeks to hours for extremely large DNA 
sequence data. We expect that the availability of pBWA should 
facilitate the analysis of large-scale genome sequencing data 
generated by the new generations of sequencing technologies. 
The source code and detailed user manual of pBWA are freely 
available at http://sourceforge.net/projects/pbwa.
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Introduction
Genetic variations in forms of single nucleotide polymorphisms 

(SNPs) and structural variants (SVs) are known to exist very 
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commonly among individuals and populations [1]. These variations 
influence how individuals differ not only in their physical appearance, 
but also in their risk of disease and their response to therapeutic 
treatments [2-4]. The advent of next generation sequencing (NGS) 
technologies has made the survey of genetic variations at the genome 
level feasible by permitting sequencing of the genomes to be very fast 
and cheap [5-8]. Determination of genetic variants from personal 
genome data represents a challenging task due to the short length and 
the lack of order for the generated sequences. In the first step of the 
data analysis, computer algorithms performing sequence alignment 
are used to determine the locations of these short sequences within 
the reference genome. These algorithms must balance speed and 
accuracy, as improvements to one almost always comes at the cost 
of the other. Until recently, most sequence alignment software has 
been inadequate to address the massive amount of data generated 
by NGS and there has been great need for better software that can 
effectively handle this increase in production. Newer generations of 
software, such as MAQ [9], BWA [10], SOAP [11], Bowtie [12],and 
mrFast [13,14] were developed to efficiently align large amounts 
of short DNA sequences generated by the earlier generation of 
NGS platforms that are short in length with the number of reads in 
millions [15,16]. However, NGS platforms have been evolving very 
rapidly, pushing the sequencing capacity at a dramatic speed. For 
example, newer platforms, such as Ion Proton [17], Helicos [18], 
and PacBio [19], as well as the newer version of Illumina HiSeq 
platform, are now able to offer a throughput of billions of sequence 
reads daily. Such new levels of sequencing capacity call for further 
speedup in the sequence alignment step. To address this challenge, 
we have to inevitably go with high performance computing since 
speedup via algorithmic improvement may be limited. The speedup 
on HPC (High Performance Computing) can be achieved via either 
input data splitting or parallel computing. In comparison with the 
input data splitting, in which extremely large datasets are first split 
into a large number of smaller sets, with each processed individually 
by distributing them over large computer clusters followed by 
concatenating their results via shell scripts, we reason that parallel 
computing should offer more efficient workflow and more convenient 
use of HPC. This motivated us to design and implement pBWA, a 
parallel version of the short sequence alignment tool, BWA.

While parallel computing should in theory provide speedup 
to any of the above-mentioned NGS aligners, and all aligners have 
their own advantages and disadvantages [20], we had to inevitably 
decide on one aligner for a parallel implementation. The most 
important criterion we required was that the software needed to be 
open source, as we would be modifying the source code to create 
a parallel implementation. This led to the immediate dismissal of 
SOAP2 as a candidate, as the source code for SOAP2 is not publicly 
available. Another important criteria we considered was that the 
NGS aligner we chose should align input reads to an indexed genome 
sequence, since in this case, genome indexing only needs to be done 
once per genome, while input read indexing needs to be done for 
each dataset and the size of the reference genome is usually much 
smaller than the sequences to be aligned. This led us to exclude MAQ 
and mrFast as candidates for parallelization as they index the input 
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reads instead of aligning to an indexed reference sequence. Between 
the two remaining candidates (Bowtie and BWA) we chose BWA for 
parallelization for its excellent overall performance and compatibility 
with different NGS platforms and downstream analysis, as well as its 
popularity in the NGS community [20,21]. Another large factor in 
choosing BWA over Bowtie was that BWA only multi-threads one 
of the two alignment steps, meaning it would be better served by a 
parallel implementation than Bowtie, which multi-threads its entire 
process. BWA is the successor to MAQ [9], developed by Li et al. [10]. 
Its aim was to improve MAQ by allowing gapped alignment while 
also giving a significant speed increase for large genomes such as the 
human genome. It was written in the C programming language, and is 
available as a command-line tool that can be run on a standard desktop 
computer due to its moderate memory requirement (approximately 
3GB for the human genome). While having multiple functions, BWA 
is mainly used for short read alignment using a reference sequence 
indexed by the Burrows-Wheeler transform (BWT) [22]. 

Parallel applications are programs that can run on any number of 
processors simultaneously. To facilitate this, they must make use of 
a message-passing interface (MPI) library, which provides functions 
facilitating the passing of data (or “messages”) from one processor 
to another [23,24]. We developed pBWA, a parallel version of BWA, 
using the MPI library. Like any other parallel applications built on an 
MPI library, pBWA differs from BWA running under multi-threading 
in that parallel processes do not share variables or memory, thus each 
parallel process must go through the same variable initialization and 
file I/O. This is the weakness and strength of pBWA or any other 
parallelized applications. It is a weakness in that the amount of RAM 
required to run pBWA is linearly scalable to the number of processors 
running pBWA. It is a strength in that unlike BWA, which can only be 
run on one processor with a multi-threading option available only for 
the aln command (+ t-1 threads, where BWA is running on a t-core 
processor), pBWA can be run on as many processors as available for 
both aln and samse/sampe commands. pBWA can also make use of 
multi-threading, making more efficient use of RAM while providing 
the parallel functionality. This is where pBWA can achieve great 
reductions in elapsed wall-time when aligning massive sequencing 
datasets. 

Materials and Methods
BWA

 Short read alignment using BWA is broken down into three 
main components, each with its own BWA command. The first 
component is executed with the index command. This component 
takes the reference genome and indexes it by applying the Burrows-
Wheeler transform and additionally generating a few other auxiliary 
data structures. This step needs to be done only once for a given 
reference genome and it can be used for all later mapping tasks for 
the same genome and shared among different computers by simply 
copying the files. Therefore, there is essentially no need to parallelize 
this step. The second component is executed with the aln command, 
which takes a set of short DNA reads and calculates their suffix array 
intervals based on their relation to the BWT. The last component, 
executed by commands samse/sampe (for either single or paired-
end reads), takes each short read and generates its chromosomal 
coordinates based on the previously calculated suffix array intervals. 

These coordinates are output in the SAM file format [25]. The last 
two steps consume most of the time required for aligning the 
sequences to a reference genome by BWA, thus they are the targets 
for parallelization.

Parallel programming

We explain in the following sections the issues and strategies we 
used to parallelize BWA. It should be noted here that each stage (aln, 
and samse/sampe) of pBWA must be executed with the same number 
of processors for each run of the program, however the number of 
threads per processor can vary. This is to keep the output files matched 
up with the input sequences across different stages of the analysis.

Index distribution

Due to the fact that parallel processes do not share variables and 
RAM, much of the initialization process performed by BWA had 
to be modified to facilitate a parallel implementation. Before BWA 
can begin to perform sequence alignment, it must read in index files 
generated by running the index command. For large genomes, such 
as the human genome, these index files are extremely large, and this 
process can lag considerably when p processors are simultaneously 
trying to read from the same large file. pBWA handles this process by 
designating one processor as the master processor. Only the master 
processor reads the index files into RAM. After this is complete, 
the master processor performs a broadcast of the index to all other 
processors using an MPI function. This broadcast is facilitated in 
a binary tree structure, resulting in an execution time of O (log p), 
where p is equal to the number of processors executing pBWA. This 
data distribution approach is known as the master-slave paradigm 
[26].

Sequence distribution

After the index has been read, BWA typically begins the alignment 
by reading DNA sequences from the beginning of a FASTQ file. 
pBWA achieves most of its speedup by distributing sequences across 
processors, such that each processor only performs alignment for N/p 
sequences, where N is the number of reads in the FASTQ file. In order 
for this sequence distribution to take place, the master processor must 
first scan the FASTQ file, creating an index of the input sequences on 
the fly and sending processor i its current file position after (i*N/p) 
reads have been scanned. Processor i then jumps to its designated 
file location and performs alignment for N/p sequences. An alternate 
strategy of sequence distribution would be to have all p processors 
reading from the FASTQ file in rounds. This prevents the time wasted 
while the master processor is indexing the sequence input file, but 
can lead to uneven sequence distribution as processors that are ready 
earlier may snatch up all of the sequences for alignment before other 
processors get a chance to claim any. For this reason, we decided 
to take the first option. Since the sequence distribution process 
requires random file access, pBWA unfortunately does not support 
compressed FASTQ files as input files. At this step, for paired reads 
(paired end or paired mate reads), pBWA provides an option, which 
is not available in BWA, to allow two FASTQ input files to be supplied 
on the same aln command execution. In this case, the program 
automatically generates index files by adding “_1” and “_2” to the 
sai index files for the first and second input FASTQ files, respectively. 
This option provides additional speedup by saving the time of reading 
and distributing the index files for the 2nd input file.
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Improved threading

While implementing pBWA, we made an improvement to the 
use of multi-threading for its aln command. Multi-threading in 
BWA version 0.5.9 is facilitated by a sequence of variable locking and 
sequence assignments, both of which adversely affect the efficiency of 
the multi-threading. When executed with 24 threads, BWA showed 
only a 12-fold speedup in wall-time execution. In pBWA multi-
threading is based only on a loop counter. When executed with 24 
threads, pBWA shows a 16-fold speedup in wall-time execution, 
representing a 33% increase in efficiency over the original BWA. This 
improvement has now been incorporated in the newer version of 
BWA.

Final alignment output files and samse/sampe

Since parallel applications do not share file pointers, variables, and 
RAM, each process executing pBWA receives its own output file for all 
alignment functions within BWA. After the final alignment files have 
been output, they can easily been concatenated back together using a 
simple shell command (cat). The auxiliary files generated by pBWA 
can then be removed to clean up the execution folder. A run-time 
option [-M] is provided for samse/sampe to output a single output 
file for all processors at a small penalty to performance on certain 
systems. This single output file is generated using parallel file I/O, 
which is facilitated via non-blocking write operations. If processor i 
has completed its alignments prior to processor i-1, processor i will 
make the non-blocking write call and move forward to continue its 
next batch of alignments. Once processor i receives the correct file 
position from processor i-1, the non-blocking write will complete.

We provide at pBWA project for Source Forge (http://pbwa.
sf.net ) the detailed user instructions and examples of running 
pBWA for systems on the Shared Hierarchical Academic Research 
Computing Network (SHARCNET). We recommend users to read 
the information before adopting pBWA for a different HPC system, 
which may use a different job submission system than SHARCNET.

Results and Discussions
pBWA was tested for assessing its speedup and efficiency on a 

variety of datasets and computing clusters of varying sizes with 
varying running parameters, including different combinations of 
parallelism and multi-threading. The first computing cluster used to 
test pBWA was the requin cluster on SHARCNET. This cluster has 
768 computation nodes running at 2.6 GHz, each with 8 GB memory 
and 2 cores. Since requin lacks a large number of cores per node, we 
used another cluster which has a larger number of cores to compare 
between pure multi-threading and parallelization and test the optimal 

combination of parallelization and multi-threading. In this case, we 
tested pBWA on the orca cluster on the SHARCNET, which has 320 
computation nodes running at 2.2 GHz, each with 32 GB memory 
and 24 cores. Tests were run with datasets of 5, 25, 50, and 100 
million 36 bp Illumina paired end reads, allowing two mismatches. 
An additional test was run on orca with a dataset of mouse deep 
whole genome sequence with approximately 350 million 50 bp 
SOLiD paired mate reads allowing three mismatches. Each test was 
repeated three times and the average time was used for comparison. 
This is to avoid occasional unusual behavior of parallelization we 
experienced on one cluster due to cluster instability, in which the 
failure of one processor could hold up the completion of the entire 
process. The Illumina reads are human sequences using UCSC hg19/
NCBI GRCh37 as the reference genome, while the ABI SOLiD reads 
are mouse sequences using the UCSC mm9/NCBI build 37 as the 
reference genome. Both sets of sequences were paired reads, meaning 
that the aln command is run with each pair of files, followed by the 
sampe command to pair the resulting suffix array intervals. Because 
there is no multi-threading support for samse/sampe, this step in each 
parallel instance was run as single-threaded as in BWA. The time used 
in each of the two steps and the two steps combined (running aln 
and sampe) were recorded for each test option. The speedup for each 
step was calculated in relation to running the processes as a single 
thread on a single core and was calculated for each step individually 
and for all steps combined. Tests were also performed to combine 
multi-threading and parallelization. For these tests, the number of 
processors, alongside the number of threads each processor spawns, 
was indicated. The total number of executed threads is equal to 
the number of processors multiplied by the number of threads per 
processor. The results of a few representative test runs are provided in 
Tables 1-4 and Figure 1.

Comparison between multi-threading and parallelization

As a way of measuring the efficiency of pBWA, we compared the 
wall-time used between one process with 24 threads and 24 processors 
each with one thread, thus the same of number of total threads. The 
jobs were run on the orca cluster, which allows a maximal 24 threads 
per node. As we can see from Table 1 and Figure 1, at all data sizes 
examined, running pBWA in pure parallelization provides speedup 
close to multi-threading for the aln step. However, when the sampe 
step is included, parallelization achieves 5-6 times more speedup 
than multi-threading. This is expected, since no multi-threading is 
available for sampe. This is where pBWA offers a significant advantage 
over BWA when running parallelization. 

For paired-end reads, the use of option to supply two FASTQ 

1 T1 24 T @ 1 P2

/speedup
24 P @ 1 T
/speedup

48 P @ 1 T
/speedup

96 P @ 1 T
/speedup

240 P @ 1 T
/speedup

aln 13 420 m 26 m/16.2 33.5 m/12.5 17.5 m/24 9.3 m/45.2 5.3 m/79.2

aln 2 533 m 28 m/19.0 34 m/15.7 16.8 m/31.7 9.3 m/57.3 5.8 m/91.2

sampe 688 m 688 m/1 53.3 m/12.9 32 m/21.5 22.5 m/30.6 17.5 m/39.3

Totals 1641 m 742 m/2.2 120 m/13.7 66 m/24.7 40.8 m/40.2 28.8 m/57.0

Efficiency4 1 0.09 0.57 0.52 0.42 0.24
1number of threads; 2number of processors; 3time used for running aln for each of the pair read file; 4efficiency calculated based on the combined time in minutes (m) 
or seconds (s) of aln and sampe commands, and is calculated as speedup divided by the number of threads or processors or the combined total threads.

Table 1: Wall-time and speedup for pBWA with 100 million paired 36 bp reads on orca.

http://pbwa.sf.net
http://pbwa.sf.net
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1 T 2 T/speedup 50 P/speedup 100 P /speedup

aln 1 1294 s 703 s/1.8 133 s/9.7 121 s/10.7

aln 2 1253 s 713 s/1.8 130 s/9.6 114 s/11.0

sampe 2513 s 2513 s/1 337 s/7.5 226 s/11.1

Totals 84.5 m 65.5 m/1.3 10 m/8.5 7.5 m/11.3

Efficiency 1 0.6 0.17 0.11

Table 2: pBWA executed with 5 million paired 36bp reads on requin.

1 T 24 P/speedup 48 P/speedup 96 P/speedup 240 P/speedup

aln 1 1675 s 99 s/16.9 63 s/25.9 50 s/33.5 78 s/21.5

aln 2 1542 s 93 s/16.6 66 s/23.4 44 s/35.0 69 s/22.3

sampe 2128 s 307 s/6.9 199 s/10.7 145 s/14.7 123 s/17.3

Totals 89 m 8.5 m/10.5 5.5 m/16.2 4 m/22.3 4.5 m/19.8

Efficiency 1 0.44 0.34 0.23 0.08

Table 3: pBWA executed with 5 million paired 36bp reads on orca.

1 T 24 P/speedup 48 P/speedup 96 P/speedup 240 P/speedup 48 P @ 5 T
(240 T)/speedup

240 P @ 12 T
(2880 T)/
speedup

aln 1 7611 m 606 m, 12.6 294 m, 25.9 140 m, 54.4 62 m, 122.8 66 m; 115.3 13 m, 585.4

aln 2 6950 m 495 m, 14.0 253 m, 27.5 124 m, 56.0 55 m, 126.4 59 m, 117.8 12 m, 579.2

sampe 520 m 67 m, 7.7 34 m, 15.3 24 m, 21.7 16 m, 32.5 34 m, 15.3 16 m, 32.5

Totals 15081 m 1168 m/12.9 581m/26.0 288 m/52.4 132 m/114.3 159m/94.8 41 m/367.8

Efficiency 1 0.53 0.54 0.55 0.47 0.40 0.13

Table 4: pBWA executed with ~350 million paired 50 bp reads on orca.

input files at once achieves approximately another 10% wall-time 
reduction (based on a test with ~150 million 100 bp paired end 
reads) by eliminating the reading and distribution of index files for 
the 2nd input file (data not shown). Therefore, the use of this option 
is recommended for aligning paired-end reads. For the same reason, 
merging multiple FASTQ subsets for the same sample into one set 
(e.g. a human whole genome deep sequence data generated using the 
Illumina HiSeq 2000 will usually have multiple pairs of FASTQ files, 
each from one sequencing channel) before running pBWA would 
provide further wall-time reduction. By doing so, it also reduces the 
number of files to handle for downstream steps and eliminates the 
need of merging the multiple SAM/BAM files for the same sample, 
a process that is necessary for most types of sequence analyses and 
requires the use of special tools, such as Sam tool’s merge command 
[25] or Picard’s Merge Sam Files tool (http://sourceforge.net/projects/
picard/).

Speedup using increasing numbers of processors

Comparisons between tests on different numbers of processors 
can be drawn from any of the tables individually. It can be seen that in 
general, as the number of processors increases, the speedup increases. 
For larger datasets, the speedup shows a close to linear relationship 
with the increase of processor after 24 processors (Tables 1, 4 and 
Figure 1). For example, for the aln step, the doubling of processors 
from 24 to 48 for 350 million reads achieved slightly more than 
doubled speedup (speedup is 25.9 and 54.4, respectively), and the 
same is true for speedup from 48 processors to 96 processors and 

from 96 to 240 processors (Table 4). This is true for the sampe step as 
well. In comparison, the speedup using 24 processors only achieved 
a speedup between 13 and 14, rather than 24 for the aln step. This 
is likely due to the initial significant overhead cost of parallelization, 
which does not seem to have a visible increase with the increase of 
processors. The speedup from 1 processor to 24 processors for the 
sampe step is lower than for the aln step, and is less than linear for 
further increase of processors (Tables 1-4), suggesting a larger initial 
overhead cost at this step. For smaller datasets, speedup can actually 
decrease after an increase in processors over a certain point due to 
the miniscule amount of time actually spent performing sequence 
alignment in comparison to the amount of time required to initialize 
each processor. For example, for the 5 million reads, running with 
240 processors ended up taking more time for the aln step than 
with 96 processors (Table 3). For this reason, the maximal level of 
parallelization to use is determined by the size of dataset to ensure a 
minimal number of sequence reads per processor (e.g., 100,000 reads/
processor or more; see more detailed discussion in later sections).

Comparing the speedup and efficiency among the equivalent 
columns in Tables 1, 3 and 4 and Figure 1 can draw comparisons 
between tests on different data sizes. It is shown in our results 
that as the size of the dataset increases, the speedup and efficiency 
increases when using the same number of processors. This is due 
to the fact that as the dataset size increases, more time is spent on 
performing sequence alignment in relation to time spent initializing 
each processor and communicating between them. We notice that 
efficiency does not seem to plateau across large increases in dataset 

http://sourceforge.net/projects/picard/
http://sourceforge.net/projects/picard/
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size (from 5 million to ~350 million), furthering the appeal of pBWA 
for extremely large datasets.

Combination of parallelization and multi-threading

We also compared the efficiency of running pure parallelization 
with combined use of parallelization and multi-threading. For 
example, the 350 million reads dataset was run with 240 processors 
in pure parallelization (i.e. 1 threading per processor) and using 
48 processors, each running 5 threads, therefore both for a total of 
240 threads (the 240P and 48P/5T columns in Table 4). It is a bit 
of surprising for us to notice that the pure parallelization actually 
showed slightly better speedup than the combined option for the 
aln step. With this dataset, we also checked the speedup using the 
close to the maximal capacity of the orca cluster by using 240 of its 
processors each running 12 threads for a total of 2880 threads (Table 
4). In this case, although at cost of lower hardware efficiency, a much 
better speedup was still obtained. Specifically, the task of aligning the 
350 million paired reads (or 700 million total reads) would take 1 
processor running 1 thread 15081 minutes (~10 days), and would 
take one processor running at its full capacity for multi-threading (24) 
1509 minutes (~1 day), and it can be completed in 41 minutes if using 
less than half of the cluster’s capacity, i.e. using 240 processors each 
running 12 threads. From 10 days to less than 1 hr represents a very 
significant speedup, which makes analysis of extremely large datasets 

practically feasible by taking the advantage of high performance 
computing hardware. 

Comparison of pBWA runs on different clusters

Comparisons between test runs on different clusters can be 
made from Tables 2 and 3. Each of these tables is for running pBWA 
for the same dataset and command parameters. It can be seen that 
while the requin cluster (1 thread data in Table 2) appears to execute 
more quickly with sequential BWA than the orca cluster (1 thread 
data in Table 3), the orca cluster is more efficient at executing pBWA 
based on the speedup and efficiency at equivalent number of threads 
or processors (48P on orca vs. 50P on requin and 96P on orca vs. 
100P on requin in Tables 2 and 3). This can be attributed to the small 
amount of RAM possessed by each requin node. It suggests that each 
parallel cluster has its own optimal parameter set for pBWA, i.e. 
clusters with less RAM will benefit from combining multi-threading 
with parallelism, while clusters with more RAM will benefit from 
going purely parallel, as this maximizes the parallelism for the samse/
sampe step.

Combining the results from variable numbers of processors 
and variable sequence sizes, there seems to be an optimal use of 
parallelization based on the amount of sequences. The speedup seems 
to stop and even deteriorate when the amount of sequences is below 
50,000 per processor (Table 3). Furthermore, at very large amounts 
of sequences, parallelization provides slightly better speedup and 
efficiency for the aln step than multi-threading for the same total 
number of threads and much better overall speedup and efficiency, 
which is due to lack of multi-threading for sampe (240P vs. 48P@5T 
in Table 4). Nevertheless, with an extra large amount of sequences 
for a cluster with a relatively small number of multi-core nodes that 
do not have sufficient RAM for running a number of processors 
at a number equal to that of cores on the node, it would certainly 
help to achieve a better speedup by combining parallelization with 
multi-threading to maximize the use of all available cores. Overall, 
significant improvement in speed and efficiency can be obtained 
using parallelization once the amount of sequences is over 1 million, 
and the larger the sequence amounts, the better the improvement.

Conclusion and Future Development
We have developed pBWA, an efficient parallel implementation 

of BWA, based on the Open MPI library. This presents the first fully 
BWT-based parallelized open source short sequence alignment tool 
as of this writing. pBWA shows excellent results with speedup to be 
bounded only by the size of the parallel system, and it can be run on 
clusters of all shapes and sizes due to the ability to combine multi-
threading and parallelization. The ability of processing both FASTQ 
input files for paired datasets at once at the aln step and the practice 
of merging multiple FASTQ files for the same sample provides 
further improvement in efficiency. With even just a moderate level of 
performance computing cluster, the use of pBWA can cut down the 
computing wall-time for the reference alignment step from weeks to 
hours for extremely large DNA sequence datasets, which is becoming 
a norm due to the ever increasing capacity of the NGS technologies. 
Therefore, the availability of pBWA should facilitate the analysis of 
large-scale next generation DNA sequencing data, such as personal 
genomes. The source code and detailed user manual are freely 
available at http://sourceforge.net/projects/pbwa with the intent to 
merge with the bwa source forge project in the future for long-term 
maintenance. 

Walltime for different data sizes with different threads or processors

Overall speedup using different level of parallelization
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Figure 1: Comparison of wall-time and speedup for different data 
sizes. The comparison was for pBWA using different numbers of threads or 
processors on the orca system of SHARCNET Panel A: wall-time comparison. 
Panel B: speedup comparison. In both above cases, the comparison is based 
on the run with 1 processor at 1 thread. “24T” is for runs at 1 processor with 
24 threads. All groups with “P” are runs using different number of processors 
(indicated by the number before “P”), each running at 1 thread.
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We are aware of the release of newer versions of BWA (latest 
version is 0.6.2), which seems to involve significant changes including 
how the indexing of the reference genome is done. While the newer 
generation of BWA awaits to be fully tested by users for its stability 
and performance, we are currently working on a parallel version for 
the latest version of BWA, and it will be posted on the same source 
forge project site once completed.
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