
a S c i T e c h n o l j o u r n a lResearch Article

Peters et al., J Appl Bioinform Comput Biol 2012, 1:1
http://dx.doi.org/10.4172/jabcb.1000101 Journal of Applied

Bioinformatics &
Computational Biology

All articles published in Journal of Applied Bioinformatics & Computational Biology are the property of SciTechnol, and is
protected by copyright laws. Copyright © 2012, SciTechnol, All Rights Reserved.International Publisher of Science,

Technology and Medicine

Speeding Up Large-Scale Next
Generation Sequencing Data
Analysis with pBWA
Darren Peters1, Xuemei Luo2, Ke Qiu1 and Ping Liang2*

Abstract
Newly available DNA sequencing technologies can generate billions
of DNA sequences in a single machine run, making it feasible to
obtain an individual’s entire genome sequences very quickly and at
a very affordable cost. These personal genome sequences can be
used to identify genetic variations associated with variable traits,
but they must first be aligned to a reference genome sequence
using computer algorithms that make use of approximate string
matching methods. The process of aligning a very large number
of short sequence reads is computationally expensive and has led
to the development of many sequence mapping programs. While
new software, such as BWA, SOAP2, and Bowtie, efficiently align
large numbers of short DNA sequences, we proposed that parallel
computing would provide additional speedup in data processing
to accommodate the rapidly increasing sequencing throughput.
For this purpose, we developed pBWA, an efficient parallel
version of BWA, based on the Open MPI library. pBWA retains
the multi-threading capability provided by BWA while adding
efficient parallelization for its core alignment functions. We have
shown that pBWA’s wall-time speedup is bounded only by the size
of the parallel system. pBWA can run in both parallel and multi
threaded environments simultaneously, allowing it to be tailored to
run on parallel systems of all configurations and sizes. By taking
the advantage of high performance computing cluster, the use of
pBWA can cut down the computing wall-time for the reference
alignment step from weeks to hours for extremely large DNA
sequence data. We expect that the availability of pBWA should
facilitate the analysis of large-scale genome sequencing data
generated by the new generations of sequencing technologies.
The source code and detailed user manual of pBWA are freely
available at http://sourceforge.net/projects/pbwa.

Keywords: Next-Generation sequencing; Burrows-Wheeler
Transform (BWT); Parallel computing; Cluster computing; Short
sequence alignment

Abbreviations
BWT: Burrows-Wheeler Transform; SNP: Single Nucleotide

Polymorphism; SV: Structure Variants; NGS: Next Generation
Sequencing; SHARCNET: Shared Hierarchical Academic Research
Computing Network

Introduction
Genetic variations in forms of single nucleotide polymorphisms

(SNPs) and structural variants (SVs) are known to exist very

*Corresponding author: Dr. Ping Liang, PhD, Department of Biological
Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada, Tel:
905-688-5550; Fax: 905-658-1855; E-mail: pliang@brocku.ca

Received: October 10, 2012 Accepted: November 23, 2012 Published:
November 28, 2012

commonly among individuals and populations [1]. These variations
influence how individuals differ not only in their physical appearance,
but also in their risk of disease and their response to therapeutic
treatments [2-4]. The advent of next generation sequencing (NGS)
technologies has made the survey of genetic variations at the genome
level feasible by permitting sequencing of the genomes to be very fast
and cheap [5-8]. Determination of genetic variants from personal
genome data represents a challenging task due to the short length and
the lack of order for the generated sequences. In the first step of the
data analysis, computer algorithms performing sequence alignment
are used to determine the locations of these short sequences within
the reference genome. These algorithms must balance speed and
accuracy, as improvements to one almost always comes at the cost
of the other. Until recently, most sequence alignment software has
been inadequate to address the massive amount of data generated
by NGS and there has been great need for better software that can
effectively handle this increase in production. Newer generations of
software, such as MAQ [9], BWA [10], SOAP [11], Bowtie [12],and
mrFast [13,14] were developed to efficiently align large amounts
of short DNA sequences generated by the earlier generation of
NGS platforms that are short in length with the number of reads in
millions [15,16]. However, NGS platforms have been evolving very
rapidly, pushing the sequencing capacity at a dramatic speed. For
example, newer platforms, such as Ion Proton [17], Helicos [18],
and PacBio [19], as well as the newer version of Illumina HiSeq
platform, are now able to offer a throughput of billions of sequence
reads daily. Such new levels of sequencing capacity call for further
speedup in the sequence alignment step. To address this challenge,
we have to inevitably go with high performance computing since
speedup via algorithmic improvement may be limited. The speedup
on HPC (High Performance Computing) can be achieved via either
input data splitting or parallel computing. In comparison with the
input data splitting, in which extremely large datasets are first split
into a large number of smaller sets, with each processed individually
by distributing them over large computer clusters followed by
concatenating their results via shell scripts, we reason that parallel
computing should offer more efficient workflow and more convenient
use of HPC. This motivated us to design and implement pBWA, a
parallel version of the short sequence alignment tool, BWA.

While parallel computing should in theory provide speedup
to any of the above-mentioned NGS aligners, and all aligners have
their own advantages and disadvantages [20], we had to inevitably
decide on one aligner for a parallel implementation. The most
important criterion we required was that the software needed to be
open source, as we would be modifying the source code to create
a parallel implementation. This led to the immediate dismissal of
SOAP2 as a candidate, as the source code for SOAP2 is not publicly
available. Another important criteria we considered was that the
NGS aligner we chose should align input reads to an indexed genome
sequence, since in this case, genome indexing only needs to be done
once per genome, while input read indexing needs to be done for
each dataset and the size of the reference genome is usually much
smaller than the sequences to be aligned. This led us to exclude MAQ
and mrFast as candidates for parallelization as they index the input

http://sourceforge.net/projects/pbwa
8

Citation: Peters D, Luo X, Qiu K, Liang P (2012) Speeding Up Large-Scale Next Generation Sequencing Data Analysis with pBWA. J Appl Bioinform Comput
Biol 1:1.

• Page 2 of 6 •

doi:http://dx.doi.org/10.4172/jabcb.1000101

Volume 1 • Issue 1 • 1000101

reads instead of aligning to an indexed reference sequence. Between
the two remaining candidates (Bowtie and BWA) we chose BWA for
parallelization for its excellent overall performance and compatibility
with different NGS platforms and downstream analysis, as well as its
popularity in the NGS community [20,21]. Another large factor in
choosing BWA over Bowtie was that BWA only multi-threads one
of the two alignment steps, meaning it would be better served by a
parallel implementation than Bowtie, which multi-threads its entire
process. BWA is the successor to MAQ [9], developed by Li et al. [10].
Its aim was to improve MAQ by allowing gapped alignment while
also giving a significant speed increase for large genomes such as the
human genome. It was written in the C programming language, and is
available as a command-line tool that can be run on a standard desktop
computer due to its moderate memory requirement (approximately
3GB for the human genome). While having multiple functions, BWA
is mainly used for short read alignment using a reference sequence
indexed by the Burrows-Wheeler transform (BWT) [22].

Parallel applications are programs that can run on any number of
processors simultaneously. To facilitate this, they must make use of
a message-passing interface (MPI) library, which provides functions
facilitating the passing of data (or “messages”) from one processor
to another [23,24]. We developed pBWA, a parallel version of BWA,
using the MPI library. Like any other parallel applications built on an
MPI library, pBWA differs from BWA running under multi-threading
in that parallel processes do not share variables or memory, thus each
parallel process must go through the same variable initialization and
file I/O. This is the weakness and strength of pBWA or any other
parallelized applications. It is a weakness in that the amount of RAM
required to run pBWA is linearly scalable to the number of processors
running pBWA. It is a strength in that unlike BWA, which can only be
run on one processor with a multi-threading option available only for
the aln command (+ t-1 threads, where BWA is running on a t-core
processor), pBWA can be run on as many processors as available for
both aln and samse/sampe commands. pBWA can also make use of
multi-threading, making more efficient use of RAM while providing
the parallel functionality. This is where pBWA can achieve great
reductions in elapsed wall-time when aligning massive sequencing
datasets.

Materials and Methods
BWA

 Short read alignment using BWA is broken down into three
main components, each with its own BWA command. The first
component is executed with the index command. This component
takes the reference genome and indexes it by applying the Burrows-
Wheeler transform and additionally generating a few other auxiliary
data structures. This step needs to be done only once for a given
reference genome and it can be used for all later mapping tasks for
the same genome and shared among different computers by simply
copying the files. Therefore, there is essentially no need to parallelize
this step. The second component is executed with the aln command,
which takes a set of short DNA reads and calculates their suffix array
intervals based on their relation to the BWT. The last component,
executed by commands samse/sampe (for either single or paired-
end reads), takes each short read and generates its chromosomal
coordinates based on the previously calculated suffix array intervals.

These coordinates are output in the SAM file format [25]. The last
two steps consume most of the time required for aligning the
sequences to a reference genome by BWA, thus they are the targets
for parallelization.

Parallel programming

We explain in the following sections the issues and strategies we
used to parallelize BWA. It should be noted here that each stage (aln,
and samse/sampe) of pBWA must be executed with the same number
of processors for each run of the program, however the number of
threads per processor can vary. This is to keep the output files matched
up with the input sequences across different stages of the analysis.

Index distribution

Due to the fact that parallel processes do not share variables and
RAM, much of the initialization process performed by BWA had
to be modified to facilitate a parallel implementation. Before BWA
can begin to perform sequence alignment, it must read in index files
generated by running the index command. For large genomes, such
as the human genome, these index files are extremely large, and this
process can lag considerably when p processors are simultaneously
trying to read from the same large file. pBWA handles this process by
designating one processor as the master processor. Only the master
processor reads the index files into RAM. After this is complete,
the master processor performs a broadcast of the index to all other
processors using an MPI function. This broadcast is facilitated in
a binary tree structure, resulting in an execution time of O (log p),
where p is equal to the number of processors executing pBWA. This
data distribution approach is known as the master-slave paradigm
[26].

Sequence distribution

After the index has been read, BWA typically begins the alignment
by reading DNA sequences from the beginning of a FASTQ file.
pBWA achieves most of its speedup by distributing sequences across
processors, such that each processor only performs alignment for N/p
sequences, where N is the number of reads in the FASTQ file. In order
for this sequence distribution to take place, the master processor must
first scan the FASTQ file, creating an index of the input sequences on
the fly and sending processor i its current file position after (i*N/p)
reads have been scanned. Processor i then jumps to its designated
file location and performs alignment for N/p sequences. An alternate
strategy of sequence distribution would be to have all p processors
reading from the FASTQ file in rounds. This prevents the time wasted
while the master processor is indexing the sequence input file, but
can lead to uneven sequence distribution as processors that are ready
earlier may snatch up all of the sequences for alignment before other
processors get a chance to claim any. For this reason, we decided
to take the first option. Since the sequence distribution process
requires random file access, pBWA unfortunately does not support
compressed FASTQ files as input files. At this step, for paired reads
(paired end or paired mate reads), pBWA provides an option, which
is not available in BWA, to allow two FASTQ input files to be supplied
on the same aln command execution. In this case, the program
automatically generates index files by adding “_1” and “_2” to the
sai index files for the first and second input FASTQ files, respectively.
This option provides additional speedup by saving the time of reading
and distributing the index files for the 2nd input file.

Citation: Peters D, Luo X, Qiu K, Liang P (2012) Speeding Up Large-Scale Next Generation Sequencing Data Analysis with pBWA. J Appl Bioinform Comput
Biol 1:1.

• Page 3 of 6 •

doi:http://dx.doi.org/10.4172/jabcb.1000101

Volume 1 • Issue 1 • 1000101

Improved threading

While implementing pBWA, we made an improvement to the
use of multi-threading for its aln command. Multi-threading in
BWA version 0.5.9 is facilitated by a sequence of variable locking and
sequence assignments, both of which adversely affect the efficiency of
the multi-threading. When executed with 24 threads, BWA showed
only a 12-fold speedup in wall-time execution. In pBWA multi-
threading is based only on a loop counter. When executed with 24
threads, pBWA shows a 16-fold speedup in wall-time execution,
representing a 33% increase in efficiency over the original BWA. This
improvement has now been incorporated in the newer version of
BWA.

Final alignment output files and samse/sampe

Since parallel applications do not share file pointers, variables, and
RAM, each process executing pBWA receives its own output file for all
alignment functions within BWA. After the final alignment files have
been output, they can easily been concatenated back together using a
simple shell command (cat). The auxiliary files generated by pBWA
can then be removed to clean up the execution folder. A run-time
option [-M] is provided for samse/sampe to output a single output
file for all processors at a small penalty to performance on certain
systems. This single output file is generated using parallel file I/O,
which is facilitated via non-blocking write operations. If processor i
has completed its alignments prior to processor i-1, processor i will
make the non-blocking write call and move forward to continue its
next batch of alignments. Once processor i receives the correct file
position from processor i-1, the non-blocking write will complete.

We provide at pBWA project for Source Forge (http://pbwa.
sf.net) the detailed user instructions and examples of running
pBWA for systems on the Shared Hierarchical Academic Research
Computing Network (SHARCNET). We recommend users to read
the information before adopting pBWA for a different HPC system,
which may use a different job submission system than SHARCNET.

Results and Discussions
pBWA was tested for assessing its speedup and efficiency on a

variety of datasets and computing clusters of varying sizes with
varying running parameters, including different combinations of
parallelism and multi-threading. The first computing cluster used to
test pBWA was the requin cluster on SHARCNET. This cluster has
768 computation nodes running at 2.6 GHz, each with 8 GB memory
and 2 cores. Since requin lacks a large number of cores per node, we
used another cluster which has a larger number of cores to compare
between pure multi-threading and parallelization and test the optimal

combination of parallelization and multi-threading. In this case, we
tested pBWA on the orca cluster on the SHARCNET, which has 320
computation nodes running at 2.2 GHz, each with 32 GB memory
and 24 cores. Tests were run with datasets of 5, 25, 50, and 100
million 36 bp Illumina paired end reads, allowing two mismatches.
An additional test was run on orca with a dataset of mouse deep
whole genome sequence with approximately 350 million 50 bp
SOLiD paired mate reads allowing three mismatches. Each test was
repeated three times and the average time was used for comparison.
This is to avoid occasional unusual behavior of parallelization we
experienced on one cluster due to cluster instability, in which the
failure of one processor could hold up the completion of the entire
process. The Illumina reads are human sequences using UCSC hg19/
NCBI GRCh37 as the reference genome, while the ABI SOLiD reads
are mouse sequences using the UCSC mm9/NCBI build 37 as the
reference genome. Both sets of sequences were paired reads, meaning
that the aln command is run with each pair of files, followed by the
sampe command to pair the resulting suffix array intervals. Because
there is no multi-threading support for samse/sampe, this step in each
parallel instance was run as single-threaded as in BWA. The time used
in each of the two steps and the two steps combined (running aln
and sampe) were recorded for each test option. The speedup for each
step was calculated in relation to running the processes as a single
thread on a single core and was calculated for each step individually
and for all steps combined. Tests were also performed to combine
multi-threading and parallelization. For these tests, the number of
processors, alongside the number of threads each processor spawns,
was indicated. The total number of executed threads is equal to
the number of processors multiplied by the number of threads per
processor. The results of a few representative test runs are provided in
Tables 1-4 and Figure 1.

Comparison between multi-threading and parallelization

As a way of measuring the efficiency of pBWA, we compared the
wall-time used between one process with 24 threads and 24 processors
each with one thread, thus the same of number of total threads. The
jobs were run on the orca cluster, which allows a maximal 24 threads
per node. As we can see from Table 1 and Figure 1, at all data sizes
examined, running pBWA in pure parallelization provides speedup
close to multi-threading for the aln step. However, when the sampe
step is included, parallelization achieves 5-6 times more speedup
than multi-threading. This is expected, since no multi-threading is
available for sampe. This is where pBWA offers a significant advantage
over BWA when running parallelization.

For paired-end reads, the use of option to supply two FASTQ

1 T1 24 T @ 1 P2

/speedup
24 P @ 1 T
/speedup

48 P @ 1 T
/speedup

96 P @ 1 T
/speedup

240 P @ 1 T
/speedup

aln 13 420 m 26 m/16.2 33.5 m/12.5 17.5 m/24 9.3 m/45.2 5.3 m/79.2

aln 2 533 m 28 m/19.0 34 m/15.7 16.8 m/31.7 9.3 m/57.3 5.8 m/91.2

sampe 688 m 688 m/1 53.3 m/12.9 32 m/21.5 22.5 m/30.6 17.5 m/39.3

Totals 1641 m 742 m/2.2 120 m/13.7 66 m/24.7 40.8 m/40.2 28.8 m/57.0

Efficiency4 1 0.09 0.57 0.52 0.42 0.24
1number of threads; 2number of processors; 3time used for running aln for each of the pair read file; 4efficiency calculated based on the combined time in minutes (m)
or seconds (s) of aln and sampe commands, and is calculated as speedup divided by the number of threads or processors or the combined total threads.

Table 1: Wall-time and speedup for pBWA with 100 million paired 36 bp reads on orca.

http://pbwa.sf.net
http://pbwa.sf.net

Citation: Peters D, Luo X, Qiu K, Liang P (2012) Speeding Up Large-Scale Next Generation Sequencing Data Analysis with pBWA. J Appl Bioinform Comput
Biol 1:1.

• Page 4 of 6 •

doi:http://dx.doi.org/10.4172/jabcb.1000101

Volume 1 • Issue 1 • 1000101

1 T 2 T/speedup 50 P/speedup 100 P /speedup

aln 1 1294 s 703 s/1.8 133 s/9.7 121 s/10.7

aln 2 1253 s 713 s/1.8 130 s/9.6 114 s/11.0

sampe 2513 s 2513 s/1 337 s/7.5 226 s/11.1

Totals 84.5 m 65.5 m/1.3 10 m/8.5 7.5 m/11.3

Efficiency 1 0.6 0.17 0.11

Table 2: pBWA executed with 5 million paired 36bp reads on requin.

1 T 24 P/speedup 48 P/speedup 96 P/speedup 240 P/speedup

aln 1 1675 s 99 s/16.9 63 s/25.9 50 s/33.5 78 s/21.5

aln 2 1542 s 93 s/16.6 66 s/23.4 44 s/35.0 69 s/22.3

sampe 2128 s 307 s/6.9 199 s/10.7 145 s/14.7 123 s/17.3

Totals 89 m 8.5 m/10.5 5.5 m/16.2 4 m/22.3 4.5 m/19.8

Efficiency 1 0.44 0.34 0.23 0.08

Table 3: pBWA executed with 5 million paired 36bp reads on orca.

1 T 24 P/speedup 48 P/speedup 96 P/speedup 240 P/speedup 48 P @ 5 T
(240 T)/speedup

240 P @ 12 T
(2880 T)/
speedup

aln 1 7611 m 606 m, 12.6 294 m, 25.9 140 m, 54.4 62 m, 122.8 66 m; 115.3 13 m, 585.4

aln 2 6950 m 495 m, 14.0 253 m, 27.5 124 m, 56.0 55 m, 126.4 59 m, 117.8 12 m, 579.2

sampe 520 m 67 m, 7.7 34 m, 15.3 24 m, 21.7 16 m, 32.5 34 m, 15.3 16 m, 32.5

Totals 15081 m 1168 m/12.9 581m/26.0 288 m/52.4 132 m/114.3 159m/94.8 41 m/367.8

Efficiency 1 0.53 0.54 0.55 0.47 0.40 0.13

Table 4: pBWA executed with ~350 million paired 50 bp reads on orca.

input files at once achieves approximately another 10% wall-time
reduction (based on a test with ~150 million 100 bp paired end
reads) by eliminating the reading and distribution of index files for
the 2nd input file (data not shown). Therefore, the use of this option
is recommended for aligning paired-end reads. For the same reason,
merging multiple FASTQ subsets for the same sample into one set
(e.g. a human whole genome deep sequence data generated using the
Illumina HiSeq 2000 will usually have multiple pairs of FASTQ files,
each from one sequencing channel) before running pBWA would
provide further wall-time reduction. By doing so, it also reduces the
number of files to handle for downstream steps and eliminates the
need of merging the multiple SAM/BAM files for the same sample,
a process that is necessary for most types of sequence analyses and
requires the use of special tools, such as Sam tool’s merge command
[25] or Picard’s Merge Sam Files tool (http://sourceforge.net/projects/
picard/).

Speedup using increasing numbers of processors

Comparisons between tests on different numbers of processors
can be drawn from any of the tables individually. It can be seen that in
general, as the number of processors increases, the speedup increases.
For larger datasets, the speedup shows a close to linear relationship
with the increase of processor after 24 processors (Tables 1, 4 and
Figure 1). For example, for the aln step, the doubling of processors
from 24 to 48 for 350 million reads achieved slightly more than
doubled speedup (speedup is 25.9 and 54.4, respectively), and the
same is true for speedup from 48 processors to 96 processors and

from 96 to 240 processors (Table 4). This is true for the sampe step as
well. In comparison, the speedup using 24 processors only achieved
a speedup between 13 and 14, rather than 24 for the aln step. This
is likely due to the initial significant overhead cost of parallelization,
which does not seem to have a visible increase with the increase of
processors. The speedup from 1 processor to 24 processors for the
sampe step is lower than for the aln step, and is less than linear for
further increase of processors (Tables 1-4), suggesting a larger initial
overhead cost at this step. For smaller datasets, speedup can actually
decrease after an increase in processors over a certain point due to
the miniscule amount of time actually spent performing sequence
alignment in comparison to the amount of time required to initialize
each processor. For example, for the 5 million reads, running with
240 processors ended up taking more time for the aln step than
with 96 processors (Table 3). For this reason, the maximal level of
parallelization to use is determined by the size of dataset to ensure a
minimal number of sequence reads per processor (e.g., 100,000 reads/
processor or more; see more detailed discussion in later sections).

Comparing the speedup and efficiency among the equivalent
columns in Tables 1, 3 and 4 and Figure 1 can draw comparisons
between tests on different data sizes. It is shown in our results
that as the size of the dataset increases, the speedup and efficiency
increases when using the same number of processors. This is due
to the fact that as the dataset size increases, more time is spent on
performing sequence alignment in relation to time spent initializing
each processor and communicating between them. We notice that
efficiency does not seem to plateau across large increases in dataset

http://sourceforge.net/projects/picard/
http://sourceforge.net/projects/picard/

Citation: Peters D, Luo X, Qiu K, Liang P (2012) Speeding Up Large-Scale Next Generation Sequencing Data Analysis with pBWA. J Appl Bioinform Comput
Biol 1:1.

• Page 5 of 6 •

doi:http://dx.doi.org/10.4172/jabcb.1000101

Volume 1 • Issue 1 • 1000101

size (from 5 million to ~350 million), furthering the appeal of pBWA
for extremely large datasets.

Combination of parallelization and multi-threading

We also compared the efficiency of running pure parallelization
with combined use of parallelization and multi-threading. For
example, the 350 million reads dataset was run with 240 processors
in pure parallelization (i.e. 1 threading per processor) and using
48 processors, each running 5 threads, therefore both for a total of
240 threads (the 240P and 48P/5T columns in Table 4). It is a bit
of surprising for us to notice that the pure parallelization actually
showed slightly better speedup than the combined option for the
aln step. With this dataset, we also checked the speedup using the
close to the maximal capacity of the orca cluster by using 240 of its
processors each running 12 threads for a total of 2880 threads (Table
4). In this case, although at cost of lower hardware efficiency, a much
better speedup was still obtained. Specifically, the task of aligning the
350 million paired reads (or 700 million total reads) would take 1
processor running 1 thread 15081 minutes (~10 days), and would
take one processor running at its full capacity for multi-threading (24)
1509 minutes (~1 day), and it can be completed in 41 minutes if using
less than half of the cluster’s capacity, i.e. using 240 processors each
running 12 threads. From 10 days to less than 1 hr represents a very
significant speedup, which makes analysis of extremely large datasets

practically feasible by taking the advantage of high performance
computing hardware.

Comparison of pBWA runs on different clusters

Comparisons between test runs on different clusters can be
made from Tables 2 and 3. Each of these tables is for running pBWA
for the same dataset and command parameters. It can be seen that
while the requin cluster (1 thread data in Table 2) appears to execute
more quickly with sequential BWA than the orca cluster (1 thread
data in Table 3), the orca cluster is more efficient at executing pBWA
based on the speedup and efficiency at equivalent number of threads
or processors (48P on orca vs. 50P on requin and 96P on orca vs.
100P on requin in Tables 2 and 3). This can be attributed to the small
amount of RAM possessed by each requin node. It suggests that each
parallel cluster has its own optimal parameter set for pBWA, i.e.
clusters with less RAM will benefit from combining multi-threading
with parallelism, while clusters with more RAM will benefit from
going purely parallel, as this maximizes the parallelism for the samse/
sampe step.

Combining the results from variable numbers of processors
and variable sequence sizes, there seems to be an optimal use of
parallelization based on the amount of sequences. The speedup seems
to stop and even deteriorate when the amount of sequences is below
50,000 per processor (Table 3). Furthermore, at very large amounts
of sequences, parallelization provides slightly better speedup and
efficiency for the aln step than multi-threading for the same total
number of threads and much better overall speedup and efficiency,
which is due to lack of multi-threading for sampe (240P vs. 48P@5T
in Table 4). Nevertheless, with an extra large amount of sequences
for a cluster with a relatively small number of multi-core nodes that
do not have sufficient RAM for running a number of processors
at a number equal to that of cores on the node, it would certainly
help to achieve a better speedup by combining parallelization with
multi-threading to maximize the use of all available cores. Overall,
significant improvement in speed and efficiency can be obtained
using parallelization once the amount of sequences is over 1 million,
and the larger the sequence amounts, the better the improvement.

Conclusion and Future Development
We have developed pBWA, an efficient parallel implementation

of BWA, based on the Open MPI library. This presents the first fully
BWT-based parallelized open source short sequence alignment tool
as of this writing. pBWA shows excellent results with speedup to be
bounded only by the size of the parallel system, and it can be run on
clusters of all shapes and sizes due to the ability to combine multi-
threading and parallelization. The ability of processing both FASTQ
input files for paired datasets at once at the aln step and the practice
of merging multiple FASTQ files for the same sample provides
further improvement in efficiency. With even just a moderate level of
performance computing cluster, the use of pBWA can cut down the
computing wall-time for the reference alignment step from weeks to
hours for extremely large DNA sequence datasets, which is becoming
a norm due to the ever increasing capacity of the NGS technologies.
Therefore, the availability of pBWA should facilitate the analysis of
large-scale next generation DNA sequencing data, such as personal
genomes. The source code and detailed user manual are freely
available at http://sourceforge.net/projects/pbwa with the intent to
merge with the bwa source forge project in the future for long-term
maintenance.

Walltime for different data sizes with different threads or processors

Overall speedup using different level of parallelization

Number of threads or processors

Number of threads or processors

W
al

lti
m

e
(m

in
, l

og
or

ith
m

ic
 sc

al
e)

O
ve

ra
ll

sp
ee

du
p

(lo
go

rit
hm

ic
 sc

al
e)

1000

100

10

0

1000

100

10

0

1T 24T 24P 48P 96P 240P

24T 24P 48P 96P 240P

A

B

5M
25M
50M
100M

100M
50M
25M
5M

Figure 1: Comparison of wall-time and speedup for different data
sizes. The comparison was for pBWA using different numbers of threads or
processors on the orca system of SHARCNET Panel A: wall-time comparison.
Panel B: speedup comparison. In both above cases, the comparison is based
on the run with 1 processor at 1 thread. “24T” is for runs at 1 processor with
24 threads. All groups with “P” are runs using different number of processors
(indicated by the number before “P”), each running at 1 thread.

http://sourceforge.net/projects/pbwa

Citation: Peters D, Luo X, Qiu K, Liang P (2012) Speeding Up Large-Scale Next Generation Sequencing Data Analysis with pBWA. J Appl Bioinform Comput
Biol 1:1.

• Page 6 of 6 •

doi:http://dx.doi.org/10.4172/jabcb.1000101

Volume 1 • Issue 1 • 1000101

We are aware of the release of newer versions of BWA (latest
version is 0.6.2), which seems to involve significant changes including
how the indexing of the reference genome is done. While the newer
generation of BWA awaits to be fully tested by users for its stability
and performance, we are currently working on a parallel version for
the latest version of BWA, and it will be posted on the same source
forge project site once completed.
Acknowledgements

This work is in part supported by grants from the Canada Research Chair
program and Canadian Foundation of Innovation (to PL), and from Natural
Sciences and Engineering Research Council (NSERC) (to PL and KQ), and was
made possible by the facilities of the Shared Hierarchical Academic Research
Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul
Canada. Special thanks to Robert Egan for modifications made to pBWA that
improve stability and provide the single output file option.

References

1. 1000 Genomes Project Consortium (2010) A map of human genome variation
from population-scale sequencing. Nature 467: 1061-1073.

2. Barøy T, Misceo D, Frengen E (2008) [Structural variation in the human
genome contributes to variation of traits]. Tidsskr Nor Laegeforen 128: 1951-
1955.

3. Abecasis G, Tam PK, Bustamante CD, Ostrander EA, Scherer SW, et al.
(2007) Human genome variation 2006: Emerging views on structural variation
and large-scale SNP analysis. Nat Genet 39: 153-155.

4. Mardis ER (2008) The impact of next-generation sequencing technology on
genetics. Trends Genet 24: 133-141.

5. Yang MQ, Athey BD, Arabnia HR, Sung AH, Liu Q, et al. (2009) High-
throughput next-generation sequencing technologies foster new cutting-edge
computing techniques in bioinformatics. BMC Genomics 10: I1.

6. Pospisilova S, Tichy B, Mayer J (2009) [Human genome sequencing--next
generation technology or will the routine sequencing of human genome be
possible?]. Cas Lek Cesk 148: 296-302.

7. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev
Genet 11: 31-46.

8. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, et al. (2008) The
complete genome of an individual by massively parallel DNA sequencing.
Nature 452: 872-876.

9. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res 18: 1851-1858.

10. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics 25: 1754-1760.

11. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: Short oligonucleotide
alignment program. Bioinformatics 24: 713-714.

12. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome
Biol 10: R25.

13. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, et al. (2009)
Personalized copy number and segmental duplication maps using next-
generation sequencing. Nat Genet 41: 1061-1067.

14. Hach F, Hormozdiari F, Alkan C, Hormozdiari F, Birol I, et al. (2010) mrsFAST:
A cache-oblivious algorithm for short-read mapping. Nat Methods 7: 576-577.

15. Ruffalo M, LaFramboise T, Koyuturk M (2011) Comparative analysis of
algorithms for next-generation sequencing read alignment. Bioinformatics 27:
2790-2796.

16. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-
generation sequencing. Brief Bioinform 11: 473-483.

17. DeFrancesco L (2012) Life technologies promises $1,000 genome. Nat
Biotechnol 30: 126.

18. Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, et al. (2009)
Real-time DNA sequencing from single polymerase molecules. Science 323:
133-138.

19. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, et al. (2008) Single-
molecule DNA sequencing of a viral genome. Science 320: 106-109.

20. Ruffalo M, LaFramboise T, Koyuturk M (2011) Comparative analysis of
algorithms for next-generation sequencing read alignment. Bioinformatics 27:
2790-2796.

21. Lam HY, Pan C, Clark MJ, Lacroute P, Chen R, et al. (2012) Detecting and
annotating genetic variations using the HugeSeq pipeline. Nat Biotechnol 30:
226-229.

22. Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression
algorithm. Digital Equipment Corporation, Palo Alto, CA.

23. Graham RL, Shipman GM, Barrett BW, Castain RH, Bosilca G, et al. (2006)
Open MPI: A High-Performance, Heterogeneous MPI. IEEE International
Conference on Cluster Computing.

24. Wilkinson B, Allen M (2005) Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers.
(2ndedn), Pretence Hall, Upper Saddle River, New Jersey, USA.

25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The sequence
alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.

26. Sahni S, Vairaktarakis G (1996) The master-slave paradigm in parallel
computer and industrial settings. J Glob Optimizat 9: 357-377.

Submit your next manuscript and get advantages of SciTechnol
submissions

 � 50 Journals
 � 21 Day rapid review process
 � 1000 Editorial team
 � 2 Million readers
 � More than 5000
 � Publication immediately after acceptance
 � Quality and quick editorial, review processing

Submit your next manuscript at ● www.scitechnol.com/submission

Author Affiliations Top
1Department of Computer Science, Brock University, St. Catharines, Ontario,
Canada
2Department of Biological Sciences, Brock University, St. Catharines, Ontario,
Canada

http://www.sharcnet.ca
http://www.ncbi.nlm.nih.gov/pubmed?term=1000 Genomes Project Consortium%5BCorporate Author%5D
http://www.ncbi.nlm.nih.gov/pubmed/18787571
http://www.ncbi.nlm.nih.gov/pubmed/18787571
http://www.ncbi.nlm.nih.gov/pubmed/18787571
http://www.ncbi.nlm.nih.gov/pubmed/17262030
http://www.ncbi.nlm.nih.gov/pubmed/17262030
http://www.ncbi.nlm.nih.gov/pubmed/17262030
http://www.ncbi.nlm.nih.gov/pubmed/18262675
http://www.ncbi.nlm.nih.gov/pubmed/18262675
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709251/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709251/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709251/
http://www.ncbi.nlm.nih.gov/pubmed/19642294
http://www.ncbi.nlm.nih.gov/pubmed/19642294
http://www.ncbi.nlm.nih.gov/pubmed/19642294
http://www.ncbi.nlm.nih.gov/pubmed/19997069
http://www.ncbi.nlm.nih.gov/pubmed/19997069
http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html
http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html
http://www.nature.com/nature/journal/v452/n7189/full/nature06884.html
http://www.ncbi.nlm.nih.gov/pubmed/18714091
http://www.ncbi.nlm.nih.gov/pubmed/18714091
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://www.ncbi.nlm.nih.gov/pubmed/18227114
http://www.ncbi.nlm.nih.gov/pubmed/18227114
http://www.ncbi.nlm.nih.gov/pubmed/19261174
http://www.ncbi.nlm.nih.gov/pubmed/19261174
http://www.ncbi.nlm.nih.gov/pubmed/19261174
http://www.ncbi.nlm.nih.gov/pubmed/19718026
http://www.ncbi.nlm.nih.gov/pubmed/19718026
http://www.ncbi.nlm.nih.gov/pubmed/19718026
http://www.ncbi.nlm.nih.gov/pubmed/20676076
http://www.ncbi.nlm.nih.gov/pubmed/20676076
http://www.ncbi.nlm.nih.gov/pubmed/21856737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21856737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21856737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20460430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20460430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22318022
http://www.ncbi.nlm.nih.gov/pubmed/22318022
http://www.sciencemag.org/content/323/5910/133.abstract
http://www.sciencemag.org/content/323/5910/133.abstract
http://www.sciencemag.org/content/323/5910/133.abstract
http://www.ncbi.nlm.nih.gov/pubmed/18388294
http://www.ncbi.nlm.nih.gov/pubmed/18388294
http://www.ncbi.nlm.nih.gov/pubmed/21856737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21856737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21856737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22398614
http://www.ncbi.nlm.nih.gov/pubmed/22398614
http://www.ncbi.nlm.nih.gov/pubmed/22398614
ftp://apotheca.hpl.hp.com/pub/dec/SRC/research-reports/SRC-124.pdf
ftp://apotheca.hpl.hp.com/pub/dec/SRC/research-reports/SRC-124.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4100410&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4100410
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4100410&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4100410
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4100410&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4100410
http://books.google.co.in/books?id=U_LlqRYYtl0C&printsec=frontcover#v=onepage&q&f=false
http://books.google.co.in/books?id=U_LlqRYYtl0C&printsec=frontcover#v=onepage&q&f=false
http://books.google.co.in/books?id=U_LlqRYYtl0C&printsec=frontcover#v=onepage&q&f=false
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://link.springer.com/article/10.1007%2FBF00121679?LI=true
http://link.springer.com/article/10.1007%2FBF00121679?LI=true

	Title
	Corresponding author
	Abstract
	Keywords
	Abbreviations
	Introduction
	Materials and Methods
	BWA
	Parallel programming
	Index distribution
	Sequence distribution
	Improved threading
	Final alignment output files and samse/sampe

	Results and Discussions
	Comparison between multi-threading and parallelization
	Speedup using increasing numbers of processors
	Combination of parallelization and multi-threading
	Comparison of pBWA runs on different clusters

	Conclusion and Future Development
	Acknowledgements
	References
	Table 1
	Table 2
	Table 3
	Table 4
	Figure 1

