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Abstract
Cardiovascular diseases (CVD) represent the major health 

problem in the western world and heavy social and economic 
burden. Under this name an eterogenous group of multifactorial 
conditions is included. There is appreciable inter-individual 
variability in the susceptibility to cardiovascular disease and in the 
response to the associated pharmacological treatments. Genetic 
polymorphism may be, at least in part, responsible for both 
susceptibility to disease and inter-individual variability in response 
to pharmacological treatments. The sympathetic system plays a 
central role in the CVD, and its effects are mediated by means 
of both α- and β-adrenergic receptors (ARs). In CVD, chronic 
activation of the cardiac sympathetic nervous system leads to 
abnormalities at several levels of the βAR signal transduction 
pathway. Given the pivotal role of β2ARs in the regulation of cardiac 
output and peripheral vascular resistance, it has been proposed 
that adrenergic receptors are an appropriate target for investigating 
possible links between receptor polymorphisms, drug responses 
and susceptibility to CVD. Pharmacogenetics can be used as 
a tool for stratified pharmacological therapy in cardiovascular 
medicine. β2AR gene is highly polymorphic with multiple single-
nucleotide polymorphisms (SNPs). Among β2AR variants there are 
3 polymorphisms that cause changes in the amino acid sequence 
and alteration in regulation of signal transduction. In particular, 
Arg16Gly is associated with increased agonist-induced down-
regulation, Gln27Glu leads to resistance to down-regulation, and 
Thr164Ile causes receptor uncoupling from the G protein. These 
polymorphisms have been implicated in various cardiovascular 
and metabolic phenotypes. In this review, we will discuss the role 
of β2AR genetic polymorphisms from the molecular level to the 
clinical findings and the impact of β2ARs genetic variability on drug 
response in the management of CVD.
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burden [1]. Under this name, a heterogenous group of multifactorial 
conditions is included. There is appreciable inter-individual variability 
in the susceptibility to CVD and in the response to the associated 
pharmacological treatments [2]. Th e genomic era and the mapping 
of the human genome deeply changed medicine, introducing new, 
genetically determined factors to define the clinical “picture”. 
Understand the genetics of CVD is of importance for primary and 
secondary prevention and might foster individualized treatment 
strategies for optimal drug response. Genetic polymorphism may be, 
at least in part, responsible for both susceptibility to disease and inter-
individual variability in response to pharmacological treatments [3,4]. 

The sympathetic system plays a central role in the CVD [5,6] and 
its effects are mediated by means of both α- and β-adrenergic receptors 
(ARs). Under experimental conditions, transgenic overexpression of 
α1BAR and β1A and high levels of β2AR in the heart, as well as long-
term stimulation of β1AR or β2AR by means of selective drugs, cause 
enlargement of cardiac size [6-10]. In CVD, chronic activation of 
the cardiac sympathetic nervous system leads to abnormalities at 
several levels of the βAR signal transduction pathway [11]. Reduction 
in the number of receptors (down regulation) and responsiveness 
(uncoupling) cause blunted adrenergic-mediated responses that 
contribute to the progression of congestive heart failure. Given 
the pivotal role of β2ARs in the regulation of cardiac output and 
peripheral vascular resistance, it has been proposed that ARs are an 
appropriate target for investigating possible links between receptor 
polymorphisms, drug responses and susceptibility to CVD [12]. 
Pharmacogenetics can be used as a tool for stratified pharmacological 
therapy in cardiovascular medicine. Identify responders and non-
responders to CVD therapies could lead to improved quality of 
care and better allocation of medical resources. β2AR gene is also 
polymorphic, with 3 variants that cause changes in the amino acid 
sequence and alteration in regulation of signal transduction [13]. In 
particular, Arg16Gly is associated with increased agonist-induced 
down-regulation [14], Gln27Glu leads to resistance to down-
regulation, and Thr164Ile causes receptor uncoupling from the G 
protein [15]. These polymorphisms have been implicated in various 
cardiovascular and metabolic phenotypes [16,17]. 

In this review, we will discuss the role of β2AR genetic 
polymorphisms from the molecular level to the clinical findings 
and the impact of β2AR genetic variability on drug response in the 
management of CVD.

Beta Adrenergic Receptors
The sympathetic nervous system plays an important role in the 

pathogenesis of hypertension, and its effects are mediated by means 
of both α- and β-ARs [18]. βARs are the targets for the endogenous 
catecholamine noradrenaline and adrenaline. They are expressed 
in many cell types throughout the body and play a pivotal role in 
regulation of cardiac, pulmonary, vascular, endocrine and central 
nervous system [19]. 

There are three different βARs subtypes identified 
pharmacologically. These receptors are encoded by three separate 
genes: β1-, β2- and β3-ARs [20]. β1ARs are the predominant 
subtype expressed in the heart and the kidney. In the heart β1ARs 

Introduction 
Cardiovascular diseases (CVD) represent the major health 

problem in the western world and heavy social and economic 



Citation: Cipolletta E, Luca GD, Carillo AL, Annunziata R, Trimarco B, et al. (2013) b2 Adrenergic Receptor Polymorphisms and Treatment-Outcomes in 
Cardiovascular Diseases. Int J Cardiovasc Res 2:1.

doi:http://dx.doi.org/10.4172/2324-8602.1000119

• Page 2 of 10 •Volume 2 • Issue 1 • 1000119

activation mediate the increase in chronotropy, inotropy and AV- 
node conduction [21]. In Kidney, β1ARs are present mainly on 
iuxtaglomerular cells, where cause renin release [13].

β2ARs are abundantly expressed in many cell types; promoting 
vasodilation in vascular smooth muscle cells, inotropism in cardiac 
myocytes, and bronchodilation in bronchial smooth muscle [13]. 
Moreover β2ARs activate glucose metabolism potentiating the 
gluconeogenesis and glycogenolysis [19].

β3ARs are located mainly in adipose tissue and are linked to 
the regulation of body weight and metabolism [19]. β3ARs are not 
consistently expressed in the human heart and the importance of its 
role on cardiovascular disease is not clearly understood.

The βARs are members of G-protein-coupled receptor family 
[21]. βARs share a common structure with seven transmembrane-
spanning segments, an extracellular amino terminus and a 
cytoplasmic carboxy terminus [22].

The binding of agonist to the receptor leads to the interaction 
with the stimulatory guanine nucleotide–binding protein, Gs. Gs 
is a heterotrimer protein, consisting of an α, β and γ subunits [23]. 
Each subunit exists in multiple isotypes with differential specificity 
for effector signaling. The Gαs subunits activate adenylatecyclase that 
causes the conversion of adenosine 5’triphosphate to cyclicadenosine 
3ꞌ, 5ꞌ monophosphate (cAMP). Consequently βARs typically elevate 
the level of cAMP an important mediator of cell signaling [24]. cAMP 
binds to the regulatory unit of protein kinase A, promoting the release 
of its catalytic unit, which phosphorylates a number of downstream 
target proteins [25].

βARs like other G-protein-coupled receptors, have developed 
elaborate autoregulatory processes of receptor desensitization [26]. The 
heterologous desensitization or ‘non-agonist-specific’ desensitization 
is a rapid process in which Protein Kinase A phosphorylates agonist 
activated βARs at serine in the third intracellular loop and the 
proximal cytoplasmic tail, leading to the uncoupling of the receptor 
from its signal-transducing G protein Gαs. On the other hand, the 
‘agonist-specific’ or homologous desensitization of βARs is mediated 
by members of the family of serine/threonine kinases termed G 
protein–coupled receptor kinases (GRKs) [27]. GRK phosphorylates 
the β2AR at multiple serines and threonines in the cytoplasmic 
tail, and enhances the affinity of the receptor for interaction with 
cytosolic proteins known as the β-arrestins [27]. The binding 
between β-arrestin and βAR serves to uncouple the receptor from Gs 
[26,27] promote receptor internalization [28], and by virtue of the 
scaffolding action of β-arrestins [29], bring other proteins into the 
receptor’s microdomain. β-arrestin binding subsequently directs the 
internalization of desensitized βARs that can lead to one of several 
outcomes, including receptor degradation or receptor recycling 
back to the sarcolemmal membrane [26,30]. Prolonged agonist 
exposure cause a net loss of cellular receptors (down-regulation) 
with the activation of degradation mechanisms (Ubiquitination) that 
are independent of receptor phosphorylation [22]. To restore the 
membrane complement of βAR is now required the transcription 
at the βAR gene level and post-translation conversion of mRNA to 
protein [26,30]. Recent evidence suggests that also PI3Kγ partecipates 
to the regulation of βAR signaling, interacting with GRK2 at the 
membrane level, and phosphorylating the adaptative protein AP1 
[31]. Activation of PI3K results in βAR upregulation [32].

β2AR Polymorphisms
The β2ARs gene is located on chromosome 5q31-33 and contains 

only one exon that encodes for 413-amino acid [33]. This gene is 
highly polymorphic with multiple single-nucleotide polymorphisms 
(SNPs) [34]. In 2000, Drysdale  et al. have been reported 13 single 
base substitutions  in the β2AR coding region [35]. Actually, a total 
of 49 single nucleotide SNPs have been identified [36]. However, 
the relevance, both in vitro and  in vivo, of some of these additional 
variants and their haplotypes has not been studied in detail [36].

Five of β2AR non-synonymous SNPs code for amino acid 
changes [36,37]. In NH2 terminus region there is the substitution 
of an arginine with a glycine at position 16 (Arg16Gly), while at 
position 27 glutamine replaces glutamic acid (Gln27Glu); in first 
transmembrane spanning region at position 34 with Valine become 
Methionine (Val34Met); in the fourth transmembrane spanning 
region at position 164 there is the substitution of a Threonine with 
Isoleucine (Thr164Ile) and in fifth transmembrane spanning region 
the serine in position 220 changes in cysteine (Ser220Cys) [38]. 
The analysis of βARs gene also showed that the 3ꞌ-UTR contained a 
poly-C repeat of variable length (11, 12, 13 or very rarely 14C), which 
is interrupted by polymorphisms at two different positions, giving 
rise to additional genetic variation. 

Many studies have demonstrated the presence of eight additional 
SNPs within the 1.5 kb 5ꞌ-untranslated region (UTR) upstream from 
the ATG start codon [36,39]. This region contains a short open 
reading frame for a 19 amino acid leader peptide, called the Beta 
Upstream Peptide (BUP) or the 5ꞌ-leader cistron (LC), that control the 
β2AR gene expression at translational level [39]. The SNP at position 
-47 from the start codon within the BUP region which substitutes 
an Arginine for a Cysteine (Cys-19Arg) seems to reduce β2AR 
expression level [40]. Moreover, two of the eight 5’-UTR SNPs create 
and ablate restriction enzyme sites (Mspa 1 and BSu36 I, respectively 
[39] and were therefore intensively investigated. Another 5ꞌ-UTR 
SNP, which appears potentially to be important, results from a base 
change (T/C) at –367bp from the start codon [39,40]. It interrupts a 
consensus AP-2 site 7bp downstream of an overlapping Sp-1/AP-2 
site, a region also containing strong positive promoter activity that 
can alter gene expression through differences in transcription factor 
transactivation [40]. 

Gly16Arg and Gln27Glu are two common β2AR SNPs in the 
general population and their allele frequencies vary with ethnicity 
[41]. The allele frequency for Arg16 among Caucasians was 0.39, 0.5 
in African Americans and 0.40 in Asians; while the allele frequency for 
Gln27 was 0.40, 0.23 and 0.14, respectively for Caucasian, in African 
American and Asian population [41]. The allele frequency for Cys-
19Arg in the Caucasian was 0.35, in African American 0.21 and Asian 
0.1037. The Thr164Ile SNP is rare and exists only in the heterozygous 
state; the frequency of heterozygosity was 3–5% in all populations 
studied [42]. Also the Val34Met polymorphism is exceedingly rare 
and its allele frequency is <0.001% [42]. The Val34Met polymorphism 
seems not to alter receptor function, and its functional consequence 
has not been studied [16,43].

There is tight-linkage disequilibrium within the β2AR gene [35]. 
As a result we have common haplotypes: Arg-19 is always associated 
with Gly16, while Cys19 is associated with either Arg16 or Gly16 
[35,37]. Glu27 is almost always associated with Gly16, whereas Gln27 
is associated with either Arg16 or Gly16. Finally, Ile164 is closely 
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associated with Gly16 and Gln27. Accordingly, the WT-β2-AR 
consists of Cys-19Cys–Arg16Arg–Gln27Gln–Thr164Thr [38,44-46].

Functional Effects of β2AR Gene Polymorphisms
To characterize the functional role of β2AR polymorphisms on 

agonist induced responses, β2AR constructs expressing the SNP at 
position 16,27 and 164 were assessed in specialized cell lines [43,47,48]. 
In vitro studies have demonstrated that the Gly16 and Gln27 variants 
do not alter basal or agonist-induced ligand binding and adenyl 
cyclase activity [48]. However, the Arg16Gly and Gln27Glu variants 
affect agonist-stimulated receptor down-regulation [16,48]. Gly16 
genotype enhanced agonist induced down-regulation of the β2AR 
compared with the wild type16; moreover, the Arg16Gly genotype 
has similar patterns of agonist-induced down-regulation, implying 
that Arg16 seems to be a recessive allele [11]. On the other hand, 
the Gln27 genotype showed attenuation of β2AR agonist-promoted 
desensitization in comparison with those with the Gln27 genotype 
[11].

The Gly16 variant has a dominant effect on Glu27 allele since 
theGly16/Glu27receptors underwent even greater agonist-promoted 
down-regulation than did the wild type Gln27 β2AR [48]. Conversely, 
the Arg16/Glu27 double mutant β2AR variant was found to be 
completely resistant to down-regulation [48].

In HLM cells both Gly16 and Glu27 polymorphism were resistant 
to isoprenaline-induced desensitization compared to the wild type 
(Arg16 and Gln27) [49], however, in the same cells β2AR homozygous 
or heterozygous for Glu27 showed greater short- and long-term 
desensitization than those homozygous for Gln27, whereby in this 
population sample the presence of Glu27 was always associated with 
the presence of Gly1648. 

The Glu27 β2AR has been reported to mediate cardiac 
hypertrophy [16,50]. To test the ability of the Gln27Glu variant to 
interfere with hypertrophic responses, Iaccarino et al. [51] used 
HEK293 lines overexpressing Glu27 and Gln27 variants of the 
human β2AR and assessed their ability to mitogen activated protein 
kinases (extracellular signal-regulated kinase (ERK) and p38) [52,53]. 
In this study was found that the Glu27 β2AR variant magnifies the 
catecholamine induced activation of ERK and p38, compared with 
wild type. Indeed, a measure of cardiac cell hypertrophy indicator, the 
activity of the ANF promoter, showed that β2AR causes hypertrophy 
responses in a fashion that is dependent on not only the density of the 
β2AR, but also the presence of the Glu27 mutation [51]. In COS-7 
cells transfected with Arg19Cys genotypes McGraw et al. showed that 
Cys19 (BUP) allele leads to a consistently greater β2AR expression 
as compared with the Arg19 variant [47]. Interestingly, levels of the 
mRNA transcripts between genotypes were similar indicating that 
Arg19Cys regulates receptor translation, but not the transcription 
[41]. Since one function of the β2AR leader peptide is to modulate 
β2AR expression, the Arg19Cys polymorphism could represent a 
genetic basis for variable β2AR expression, responsiveness or by this 
a predictive for phenotype variations [34,38].

The Gln27Glu polymorphism’s association with β2AR agonist-
induced receptor desensitization may be explained, at least in part, 
by its association through linkage disequilibrium with Arg19 (BUP) 
Cys since Gln27 is co-inherited with Arg19 (BUP) and Glu27 is co-
inherited with Cys19 (BUP) [34,35].

Also 3ꞌ-UTR poly-C repeats polymorphisms alter β2AR expression 

levels. Caucasians with the Arg16 genotype present three different 
haplotypes defined by the length of the poly-C repeats, with haplotype 
frequencies ranging from 14% to 43% [36]. An in vitro study showed 
that cells transfected with the Arg16-11C haplotype presented lower 
mRNA and receptor expression, more extensive mRNA degradation 
and a greater tendency for β2AR down-regulation as compared with 
the other two haplotypes [54]. Such differences in Arg16 genotype 
may result in important phenotypic variation in the in vivo responses 
to β2AR agonists, and may in part, explain the discrepancies in clinical 
studies investigating the relationship between treatment responses 
and Arg16-Gly polymorphism alone [37]. To date, variations of the 
poly-C repeat have yet to be investigated in clinical studies, and it is 
highly likely that assessment of the effects of poly-C polymorphism 
in conjunction with other β2AR polymorphisms or haplotypes 
would better predict therapeutic responses to β2AR agonists. Further 
studies, preferably clinical trials, are required to determine the 
functional significance of poly-C polymorphism and its interactions 
with other known SNPs [37]. 

The effect of the Thr164Ile polymorphism on β2AR binding 
affinity and coupling to Gs has been studied in CHW-1102 cells. In 
these cells, Thr164Ile polymorphism exhibited decreased receptor 
binding affinity with epinephrine, isoproterenol, and norepinephrine 
[55]. Furthermore, Ile164-β2AR showed diminished reduced basal 
and agonist-induced activation of the adenylyl cyclase, implying a 
diminished β2AR-G protein interaction [48].

The impact of the β2AR 16Gly and Glu27 variants on agonist-
induced desensitization, have been investigated in studies in vivo, 
and data were quite controversial [42]. In healthy subjects, some 
studies have found that the increase of heart rate, contractility and 
blood pressure are not significantly affected by the Arg16 and Gln27 
variants genotypes [38,56-58]. On the other hand, in normotensive 
Austrian Caucasians was found that basal mean blood pressure was 
higher in volunteers homozygous for Gly16Gly than in volunteers 
homozygous for Arg16Arg [14].

Various studies have investigated the impact of the Arg16Gly and/
or Gln27Glu polymorphisms of the β2AR on vascular responsiveness. 
Some studies showed that beta agonist-infusion-induced the decrease 
in total peripheral resistance is larger in volunteers homozygous 
for Arg16 than in homozygous Gly16 [14,38,56]. Conversely, 
other investigations have demonstrated that Isoprenaline induced 
increases in forearm blood flow or dilation of hand vein and found 
that volunteers homozygous Gly16 exhibited larger vasodilatory 
responses than did volunteers homozygous Arg16 [57,59].

Because the Glu27 variant of β2AR causes resistance to down-
regulation and therefore attenuation of agonist promoted functional 
desensitization [50,60] it can be considered a gain-of-function 
mutation because of the longer duration of stimulation. Indeed, 
subjects who are homozygous for Glu27 have a significantly higher 
maximal forearm vasodilation to intra-arterial Isoproterenol than 
those who are homozygous for Gln27, regardless of the amino acid 
present at position 16 [57]. It is therefore conceivable to speculate that 
cardiac Glu27 β2AR drives an exaggerated hypertrophic response to 
catecholamines [57]. Some other reports in the literature contradict 
these findings, showing that other β2AR-dependent physiologic 
responses are depressed in the presence of the Glu27 polymorphism 
in vivo. Interestingly, Bruck et al. found that volunteers homozygous 
for Glu27 β2AR exhibited a slowed onset in desensitization of cardiac 
responses or in down-regulation of lymphocyte β2AR density, and this 
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occurred although volunteers carried two or one allele Gly16 [58,60]. 
There is not a consensus on the reasons for the discrepancies between 
in vitro and in vivo. One possible explanation is the antagonizing 
effect on desensitization of the Gly16 polymorphism, which is in 
linkage disequilibrium with Glu27; although this viewpoint is also 
challenged by recent evidence showing that the Gly16 allele may lead 
to enhanced physiologic responses in vivo [15]. 

The Thr164Ile variant of the β2AR occurs only rarely and is found 
only in the heterozygous form [11] , the majority of subjects carrying 
the Thr164Ile polymorphisms are also carriers of Gly16 variant in 
combination with the Gln27 variant [35,60].

Thr164Ile variant does alter ligand binding and G protein 
coupling. In cells transfected with cDNA that mimics this SNP, the 
Ile164 receptor displays a lower binding affinity for β2AR agonists, 
a 50% reduction in agonist-induced adenylyl cyclase activity, and 
uncoupling of the receptor from the G protein compared with the 
wild-type receptor [43,55]. The impact of the Thr164Ile mutation on 
β2AR function in vivo was first studied in transgenic mice, expressing 
the Ile164 receptor specifically only in cardiomyocytes. This study 
confirmed in the myocardium a lower basal and isoprenaline 
stimulated adenylyl cyclase activity, resulting in lower resting heart 
rates and inotropic and lusitropic indices [61]. The Ile164 variant 
of the β2AR gene in endothelial cells loses the ability to mediate cell 
specific responses to catecholamine [62,63]. To gain better insight 
on the role of Ile164 on atherosclerosis, Piscione et al. explored the 
effect of this polymorphism on VSMC proliferation in culture [64]. 
VSMCs were infected with either adenoviral (Ad) β2AR Thr164 
or the Ad β2AR -Ile164 and then stimulated with isoproterenol 
to evaluate β2AR induced cell proliferation [64]. This reduced 
responsiveness is not explained by altered expression levels but rather 
is due to an intrinsically impaired signaling capacity of the receptor 
variant. In humans, the 164 polymorphism associated with blunted 
increases in heart rate and contractility evoked by cardiac β2AR 
agonist stimulation compared with volunteers carrying the wild-type 
isoforme [44,65,66]. Similarly, vascular responses and vasodilation in 
humans carrying the Ile164 variant of the β2AR gene is also impaired 
[63]. The presence of Ile164 allele has been shown to be associated 
with blunted β2AR-mediated venodilatation in phenylephrine 
preconstricted hand veins [63,67]. Another study found decreased 
heart rate and inotropic response to systemic terbutaline in healthy 
Thr164/Ile heterozygotes [44].

The analysis of effects of β2AR polymorphisms is therefore 
inevitably complicated by the strong LD among SNPs which results 
in the occurrence of several common haplotypes resulting in 
multilocus effects [35]. The different distribution of some haplotypes 
in different ethnic groups may produce inconsistent claims for an 
association [44]. These limitations make most unlikely that genetic-
epidemiological data alone give details in relevant functional 
alterations of polymorphic β2AR [42,44,45]. Taken together, the 
available data demonstrate that the β2AR polymorphism might affect 
functional responsiveness in vitro, ex vivo and in vivo and appear to 
be associated with cardiovascular disease states in which β2AR are 
considered to be important.

β2AR Gene Polymorphisms in Coronary Artery 
Disease and Heart Failure

Chronic exposure of the heart to elevated levels of catecholamines 
lead to pathologic changes in the heart, resulting in continued 

elevation of sympathetic tone and a progressive deterioration in 
cardiac function [68]. In particular, dysfunctional myocardium is 
characterized by a down-regulation of β1AR, whereas the number 
of β2AR remains relatively stable [68]. β2ARs play a pivotal role in 
the control of myocardial contractility of the failing heart [69]. The 
central role played by sympathetic nervous system and its receptors in 
cardiovascular conditions makes polymorphisms in receptors genes 
attractive candidates for risk factor and/or predictors of response to 
treatment [4,38,44].

For instance, the impact of β2AR polymorphisms on coronary 
atherosclerosis and cardiovascular clinical events is highly 
controversial. In the study of Yamada et al., none of the β2AR 
polymorphisms was associated with increased risk form of myocardial 
infarction in a Japanese population [70]. On the other hand, a large 
series of studies support the association with atherosclerosis. In 
an observational cohort study in the elderly the Glu27 allele of the 
β2AR was associated with a lower risk of incident coronary events 
in this elderly population [71]. Analysis of the patient cohort from 
the Physicians’ Health Study demonstrated that only specific 
haplotype combinations ([non-Gly16-Gln27]-Thr164 and Gly16-
Gln27-Ile164) increased the risk for myocardial infarction but this 
association disappeared after adjustment for other polymorphisms 
[72]. Furthermore, Barbato et al. demonstrated that that prevalence 
of Glu27 variant is higher among CAD patients in central European 
population and the presence of this allele should be considered an 
independent disease risk factor for coronary artery disease [73]. Zak 
et al. observed a significantly higher prevalence of the Arg allele of 
Arg16Gly polymorphism in coronary artery disease (CAD) patients 
than healthy controls [74]. A significant correlation between 27Glu 
allele carrier state and CAD was noted in patient population in 
Saudi Arabia [75]. Although the rare incidence, individuals with 
the Ile164 allele and normal left ventricular (LV) function show 
blunted haemodynamic responses to adrenergic stimulation [42]. 
Barbato et al. showed that Thr164Ile polymorphism negatively 
modulates β2-agonist-mediated myocardial contractile performance 
in patients with normal and failing myocardium and this β2AR 
variant is associated with adverse long-term prognosis of patients 
with congestive heart failure (HF) due to idiopathic cardiomyopathy 
[65]. Moreover, Piscione et al. found a relationship between β2AR 
Ile164 polymorphism and coronary and peripheral artery disease in 
a prospective study in which were enrolled 330 patients undergoing 
elective or urgent percutaneous coronary intervention (PCI) for CAD 
documented [64]. Interestingly, this study evidenced that Ile164 
polymorphism frequency was higher in CAD (12.1% vs. 3%, p> 0.008) 
than the control population; β2AR Ile164 mutant is associated with an 
earlier and more aggressive CAD, and it adversely affects prognosis in 
patients with severe CAD undergoing PCI. This evidence also showed 
that a group of patients with peripheral artery disease exhibited a 
higher prevalence of the Ile164 genotype (7%) with a more severe 
clinical phenotype than those with Thr164 [64]. These data support 
the concept that β2AR polymorphism may predict prognosis in CAD.

Nevertheless studies that address the association of β2AR 
polymorphisms and outcomes in patients with ischemic heart 
disease present conflicting results. First of all, McLean showed that 
specific genetic variations present in the β2AR genes would predict 
left ventricular (LV) remodeling in patients chronically treated with 
a β1 selective antagonist following a first ST elevation myocardial 
infarction (STEMI) [76]. Specifically, the Glu27Glu variant was 
associated with an approximately seven-fold increased risk of LV 
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end systolic dilatation and a four-fold risk of end diastolic volume 
enlargement and LV ejection fraction decline at 6  months when 
compared to the full cohort [76]. 

One complication of myocardial infarction is the development 
of adverse LV remodeling and progression to HF. Increased cardiac 
adrenergic activity is one of the major determinants of the progression 
of LV dysfunction and the poor outcomes of the patients with HF. 
Acute and long-term therapy with βAR antagonists (β-blockers) has 
become a standard following acute myocardial infarction and heart 
failure [77]. Therapy with β-blockers reduce infarct size and mortality 
among myocardial infarction and HF patients, most likely by 
decreasing cardiac energy requirements and modifying arrhythmic 
risk. Some studies suggested that genetic polymorphisms may 
mediate differential therapeutic end points of β-blocker treatment, 
including left ventricular ejection fraction improvement, survival, 
and hospitalization due to HF exacerbation. However, the association 
of genetic β2AR polymorphisms and therapeutic end points of 
β-blocker treatment is objected of controvery. Pacanowski et al. 
investigated the influence of β1AR and β2AR haplotype variation on 
the incidence of death, non-fatal myocardial infarction, and nonfatal 
stroke as well as the pharmacogenetics of β-blocker (atenolol) and 
calcium channel blocker (verapamil) based antihypertensive therapy 
in the INternational VErapamil SR/Trandolapril STudy— GENEtic 
Substudy (INVEST-GENES) [78]. Authors showed that patients with 
the β2AR haplotype containing the Arg16 and Gln27 alleles would 
be at relatively higher risk for cardiovascular events and that atenolol 
would be beneficial as compared with sustained-release verapamil 
(verapamil SR). Pharmacogenetic analysis revealed that the risk 
for the primary outcome was significantly higher in Gly16-Glu27- 
haplotype in verapamil SR–treated patients but not in atenolol-treated 
patients. The analysis revealed that patients with at least one copy 
of the Ser49-Arg389 β1AR haplotype and zero copies of the Gly16-
Glu27 β2AR haplotype (representing 42% of the study population) 
had better outcomes when treated with atenolol than with verapamil 
SR (HR 0.42, 95% CI 0.21–0.82, P = 0.01). Comparing this result 
to the HR of 0.64 when considering the β1AR gene alone suggests 
that a consideration of both genes may be even more informative 
for identifying those most likely to benefit from β-blocker therapy 
[78]. In another study performed on 80 heart failure patients treated 
with the non-selective β-blocker carvedilol, Kaye et al. demonstrated 
that subjects carriers of the Glu27 allele were more likely to have an 
increase in ejection fraction or fractional shortening than those who 
were homozygous for the allele encoding the Gln27 variant (63vs. 
26%, P = 0.003) thus suggesting that determination of β2AR status 
may be of value for tailoring individual therapy in patients with HF 
[79]. In contrast, De Groote observed that β2AR polymorphisms did 
not explain inter individual variability in the response to β-blocker 
therapy [80]. In a recently published study, a β2AR haplotype 
(Arg16Arg26/Gln27Gln) was associated with increased risk for death 
or heart transplantation in 220 patients, 95 and 80% of whom were 
on an ACE inhibitor/angiotensin receptor blocker and a β-blocker 
at baseline [81]. When considered relative to β-blocker use, this 
association was most strongly driven by those not on a β-blocker (HR 
of 3.52 vs. HR of 1.55). These results suggest that certain genotypes/
haplotypes may be at increased risk of adverse outcomes and that 
β-blockers may attenuate the risk associated with that genotype/
haplotype. Interestingly, these findings are consistent with those from 
an acute coronary syndrome population, in which the Arg16Gln27 
haplotype was also associated with adverse outcomes, even among 
those treated with a β-blocker [82]. Collectively, these data may 

suggest that the Arg16Gln27 haplotype of the β2AR may be a high-
risk haplotype group deserving of more aggressive therapy. Confirm 
to this view derives from Troncoso et al. who have evaluated the 
influence of Gln27Glu β2AR polymorphism on the variable response 
to treatment with carvedilol in patients with chronic HF [83]. The 
results of this study showed that chronic HF patients with the 
Glu27β2AR allele have a better response to carvedilol [83].

For the more clinically relevant outcome of survival in HF 
patients, the results are mixed. Brodde et al. observed that HF 
patients with the Arg16Arg–Gln27Gln-β2AR seem to have a more 
pronounced adverse outcome (heart transplantation) and increased 
risk for sudden cardiac death [42]. In a prospective study on large 
cohort of clinically treated HF patients who had been prescribed 
metoprolol or carvedilol Sehnert et al. failed to found significant 
effect of β2AR genotypes on incidence of critical end point of survival 
in β-blocker–treated HF patients [84]. Similar results were obtained 
by de Groote et al. that found no association between functional 
βAR polymorphisms and survival in patients with stable HF [85]. 
However, the authors demonstrated, with a univariate analysis, 
a possible association between the combined β2ARGly16Gly/
β2ARGln27Gln genotype and survival [85]. Recently, Petersen et al. 
showed that β1AR Arg389-homozygous and β2AR Gln27-carrier 
HF patients treated with carvedilol present a two-fold major risk of 
mortality relative to all other genotype combinations [86]. There was 
no difference in survival in metoprolol-treated HF patients between 
genotype groups [86]. The data indicate that patients with β1AR and 
β2AR genotypes may benefit more from metoprolol than carvedilol 
treatment. 

In HF, the Thr164Ile polymorphism is characterized by 
reduced exercise tolerance and higher mortality [57]. However, 
pathophysiological mechanisms contributing to the poor outcome 
of these patients are not clear and it is unclear whether the poor 
outcome is related to direct effects of the Ile164 polymorphism on the 
myocardial contractile performance or to systemic haemodynamics. 
Preliminary study showed that in chronic HF-patients, terbutaline-
induced increases in heart rate, but not in contractility, were not 
different in patients with the Thr164Thr or the Thr164Ile variant of 
the β2AR [65,66,73]. On the other hand, Wagoner et al. assessed in 
chronic HF-patients either heterozygous Thr164Ile or homozygous 
Thr164Thr exercise capacity and found that patients with the 
Thr164Ile variant of the β2AR 8 had a lower peak V˙O2 than patients 
homozygous Thr164Thr [87]. Moreover, Liggett et al. [11] genotyped 
259 patients with HF due to ischemic or dilated cardiomyopathy 
and found that the allele frequencies for the Arg16Gly, Gln27Glu 
and Thr164Ile polymorphisms of the β2AR did not differ with those 
assessed in 212 healthy controls. However, those patients carrying 
the Thr164Ile polymorphism had much more rapid progression 
to transplantation or death [11]. This data is challenged by the 
observation from Leineweber, showing that the frequency of the 
Ile164 allele is almost identical in healthy controls, chronic HF-
patients and heart transplantation-patients [88]. 

β2AR Gene Polymorphisms in Hypertension
Hypertension is the most important risk factor for cerebral 

ictus, myocardial infarction and heart failure, as well as the one 
with the highest incidence in the population, peaking at 60-70% at 
advanced age. It is well known that LV hypertrophy is a multifactorial 
condition, influenced by a complex interplay of hemodynamic, 
neurohumoral, and genetic determinants [38,89], and blood pressure 

http://eurjhf.oxfordjournals.org/search?author1=Pascal+de+Groote&sortspec=date&submit=Submit
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can usually explain no more than 25% of the overall variance of LV 
mass index (LVMi) [90]. Thus BP normalization can explain only part 
of the change in LVMi. In particular, the activity of the sympathetic 
nervous system appears to play a major role, since it is possible to 
induce in normotensive off springs of hypertensive patients a 10% 
increase or decrease in LV mass (LVM), in absence of any change in 
blood pressure and in accord to maneuvers of chronic activation or 
deactivation of the sympathetic nervous system [91]. The increase in 
LVM induced by these maneuvers is prevented by β−blockade [91].

Moreover, several studies have identified genetic factors that 
influence blood pressure and metabolic responses to β-blockers, 
thiazide diuretics, and renin–angiotensin system antagonists. 
Whether such pharmacogenetic differences translate to differences 
in the clinical outcome of antihypertensive therapy is less clear, 
particularly when patients receive multiple drugs that are titrated 
to a target blood pressure [5]. A pharmacogenetic approach to 
treating hypertension could not only reduce the number and cost of 
medications but also reduce morbidity and mortality if the outcome 
of drug treatment differs by genotype. Given functional relevance of 
β2AR polymorphisms on expression and properties of the β2AR, in 
recent years their possible association with hypertension has been 
extensively studied, but altogether, the results fell short of unequivocally 
demonstrating a causal association of these polymorphisms and 
hypertension [14,92,93]. The association between hypertension and 
Gly16 variant was found in Africans [12], but no association either 
for Arg16 or Gly16 with hypertension was confirmed in a Japanese 
population [94]or black and white Americans [95]. Another study 
on German twins showed that Arg16 variant seems to be associated 
with increased blood pressure values and a higher risk to develop 
hypertension in white subjects [96]. Another study investigated sib-
pairs from 55 pedigrees and about 2500 additional subjects from 589 
families, found that the risk for hypertension was greater for those 
subjects carrying the Gly16 and Glu27 alleles [97]. 

Association studies relating polymorphisms of different genes 
to hypertension often result in controversial findings [98-100]. 
It has been suggested that the use of relaxed selection criteria may 
increase background noise and mask possible genotype-phenotype 
relationships [101]. For this reason, restrictive inclusion criteria, 
such as those requiring similar race, age, body dimension, duration, 
and severity of hypertension, as well as no previous pharmacologic 
treatment, may strengthen the conclusion of our study [51].

The sympathetic activation increases LVM in normotensive 
offspring of both hypertensive parents, in absence of any change in 
blood pressure [91] and this response is prevented by β−blockade. 
Furthermore, in hypertensive patients, β-blockade induces a vascular 
remodeling that correlates with changes in left ventricular wall 
thickness [102]. Based on these observations Iaccarino et al. [50] 
assessed the impact of the β2AR polymorphisms on cardiac and 
vascular target organ damage in a population of untreated essential 
hypertensive patients after evaluation of clinical, anamnesis and 
biochemical data. This study showed Arg16Gly, Glu27Gln, and 
Thr164Ile polymorphisms had no effect of on systolic, diastolic, mean 
arterial blood pressure and heart rate, although Arg16 affected the age 
of the onset of hypertension [50]. The main result of this study is that 
for the first time it is shown that β2AR gene polymorphism affects 
cardiac remodeling in response to hypertension. In particular, the 
presence of Glu27 variant is associated to a significantly higher risk 
of cardiac hypertrophy and all other measured cardiac indexes were 
significantly higher than those in patients with the Gln27 allele. This 

observation holds true even after correction for all factors that influence 
cardiac remodeling (body mass index, blood pressure levels, age and 
sex). The effects of Glu27 polymorphism are more predominant in 
younger patients while it seems to fade with age. The effect of the 
presence of Glu27 polymorphism on the cardiac remodeling might be 
related to the gain-of-function in signal transduction induced by the 
mutation on β2AR gene [11]. Consequently, it could be hypothesized 
that the reduction of sympathetic activation should be particularly 
effective to induce LV hypertrophy reduction in Glu27 β2AR patients 
[50]. 

Therefore, in another study Iaccarino et al. [51] investigated the 
effects of β2AR variants on the LVMi regression when BP is reduced 
with β1-blockers (Atenolol), which are unable to completely block 
β2AR [103,104] rather than with angiotensin-converting enzyme 
(ACE) inhibitors (Enalapril), which in hypertension reduce the 
whole sympathetic discharge [105-107]. In this prospective follow 
up study were selected untreated hypertensive patients descent for 
the Gly16Arg, Gln27Glu, and Thr164Ile β2AR polymorphisms and 
left ventricular echocardiographic hypertrophy and assigned selected 
patients to enalapril or atenolol to assess LV hypertrophy regression. 
After 2 years, antihypertensive therapy reduced BP similarly in both 
groups. Interestingly, when was considered the whole population, 
Glu27 patients showed a higher reduction in LVMi than Gln27 patients 
independently from treatment [51]. Moreover, the patients harboring 
Glu27 β2AR showed a larger regression of LVMi when treated with 
enalapril rather than atenolol. These results have suggested that in 
Glu27 patients an important effect of antihypertensive therapy 
on regression of LV hypertrophy is mediated through a non–BP-
dependent mechanism, but depend on enhanced hypertrophic 
effect of the sympathetic system [51]. ACE inhibitors, which reduce 
the sympathetic discharge overall 107, are also able to reverse LV 
hypertrophy through the reduction of the hypertrophic effect of 
catecholamines [91]. This property may be particularly relevant in 
Glu27 patients, because by reducing sympathetic activation, it may 
prevent the more marked catecholamine-mediated hypertrophy 
stimulus induced by the Glu27 β2AR variant. 

Thr164Ile has been shown to cause impaired vasodilator 
function in vivo, suggesting that this variation has the most profound 
consequences on receptor function and may increase peripheral 
vascular resistance [44,58]. There have been few previous studies 
to investigate the effect of Thr164Ile on hypertension. Pereira et al. 
reported increased systolic blood pressure in Thr164Ile heterozygotes 
compared to non carriers in a ethnically mixed Brazilian 
population108. Furthermore, no significant association between 
Thr164Ile genotype and hypertension w as found in a linkage study 
with 638 participants from 212 Polish pedigrees with clustering of 
hypertension [74]. The lack of consistency amongst these studies 
may be attributable to ethnic differences in study subjects. Another 
explanation could be that analyses were not stratified by gender 
in any of these previous studies, probably due to the loss of power 
resulting from the reduction in sample size. Thr164Ile heterozygosity 
was associated with increased diastolic blood pressure in women, but 
not in men in the population of Copenhagen City Heart Study [109]. 

β2AR Gene Polymorphisms and Metabolic Phenotype
Adrenergic receptors regulate lipid mobilization, energy 

expenditure and glycogen breakdown through endogenous 
catecholamines which are involved in the regulation of adipose 
tissue lipolysis, nonesterified fatty acid distribution, lipoprotein 
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metabolism, glucose homeostasis, vascular tone and blood pressure.
Thus, the β2AR gene constitutes a potential candidate gene to explain 
part of the genetic predisposition to metabolic disorders.

Current studies allow the speculation that the Glu27 variant might 
be associated with higher indices of obesity, higher body fat, larger fat 
cell volume and higher fasting insulin levels when compared with the 
Gln27 allele110 [38]. However, although the Glu27variant has been 
associated with obesity and Type II diabetes [110], the findings have 
not been replicated in all studies [111-114]. 

Iaccarino et al. tested the hypothesis that in hypertensive patients 
a given polymorphism of β2ARs might predict the occurrence of 
metabolic adverse events during βAR blocking treatment [17]. 
In particular, in this study were evaluated the effects of β2AR 
polymorphism in hypertensive population, which are involved in 
glucose and lipid metabolism, on the occurrence of diabetes and 
dyslipidemia observed after long-term treatment with β-blockers. 
The β2AR Glu27 variant resulted associated with a larger occurrence 
of dyslipidemia due to increased serum triglycerides, independently 
from treatment [17].

Treatment with β-blockers in these patients associates with 
a further significant increase of elevated serum triglycerides and 
combined dyslipidemia. On the contrary, β-blockade in patients 
harboring this polymorphism did not change the occurrence of 
diabetes or low HDL. This result is particularly noteworthy, because 
it allows identifying a subpopulation where the occurrence of 
dyslipidemia after β-blockade is very likely, with an incidence that is 
above 60%. The identification of this subpopulation makes safer the 
long-term treatment with β−blockers in patients who do not carry 
the polymorphism and who represent the majority of hypertensive 
patients [17]. These data are in line with those of Iwamoto et al. 
[115] and Ehrenborg et al. [116] who described the same association 
between the β2AR Glu27 variant and hypertriglyceridemia in 
unselected populations. The mechanism by which the β2AR Glu27 
variant is associated with a larger incidence of dyslipidemia is presently 
unknown. However, the key role of β2AR in the regulation of lypolysis 
is acquired. Indeed, it has been demonstrated that in skeletal muscle, 
β2AR subtype is the only receptor involved in this function, whereas 
in adipose tissue β1- and β3AR are also involved [117-119]. The Glu27 
is a gain-of-function variant that causes an increase in the β2AR 
signaling, and therefore, it is possible to speculate that the resulting 
physiology is an increased lypolysis, leading to hypertriglyceridemia. 
Regarding the reasons why β-blocker treatment is associated with an 
increased incidence of dyslipidemia in patients with the β2AR Glu27 
variant, it can be hypothesized that the β1AR β−lockade induced by 
atenolol or metoprolol, two rather selective β1 antagonists [119], 
may result in the preferential activation of β2ARs. The consequence 
of this phenomenon would be even larger in patients with the β2AR 
genetic variant resulting in dyslipidemia. The relevance of this finding 
includes the possibility to predict those patients that are highly likely 
to develop this side effect and consequently to extend to the majority 
of the patients the benefits of chronic β-blockade.

Conclusions
β2AR gene polymorphism represents a unique example 

of investigation in the genetics of CVD. The amount of data 
accumulating should be summed up in systematic meta-analysis. 
This would be necessary to finally pose the final word on whether this 
polymorphism is a viable predictor for many feature of CVD. The 
jury has been in consultation for long enough and the time has come 
for a final verdict.
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