Cryopreservation: A Strategy Technique for Safe Preservation of Genetically Transformed Plant Materials

Qiaochun Wang* Renrui Wang†, Baiquan Li‡ and Zhenhua Cui

*State Key Laboratory of Crop Stress Biology for Arid Region, College of Horticulture, Northwest A&F University, China

The world population now is 6.7 billion and is predicted to reach 9 billion by 2050 [1]. Such a rapid growing population has tremendously increased the challenge for food security. Obviously, it is impossible for traditional agriculture to ensure the food security, while plant biotechnology offers considerable potential to realize this goal [2]. Commercial cultivation of genetically modified (GM) crops started in 1996. Since then, cultivation of GM crops has rapidly increased and the total cultivation areas of GM crops had reached 134 million ha by 2009 [3]. Over the last 15 years, great benefits have been brought by 2009 [3]. Over the last 15 years, great benefits have been brought to sustainable agriculture by commercial cultivation of genetically modified (GM) crops [2]. Further development of new GM crops will contribute to meeting the requirements for food by the 2009 [3]. Over the last 15 years, great benefits have been brought to sustainable agriculture by commercial cultivation of genetically modified (GM) crops [2]. Further development of new GM crops will contribute to meeting the requirements for food by the modified (GM) crops [2]. Therefore, establishment of safe and long-term preservation technique of transgenic materials, which is capable of ensuring genetic integrity of transgenes and avoiding gene flow, is of significant importance. The first study attempting to cryopreserve transgenic rice (Oryza sativa) with NPTII and GUS genes was reported by Meijer et al. [10]. Since then, there have been a number of studies on cryopreservation of transgenic materials containing different target genes and including field crops like Oryza sativa and Triticum aestivum, fruit crops such as Carica papaya, Citrus sinensis and Pyrus pyrifolia, ornamental crops like Betula pendula, and medicinal crops like Papaver somniferum [9]. Successful cryopreservation have been reported for transgenic cell suspensions that expressed human serum albumin (HAS) in Nicotiana tabacum [11], Escherichia coli heat labile enterotoxin (LT) protein in N. tabacum [12] and hCTIA4l in O. sativa [13]. All results obtained so far all indicate that cryopreservation does not affect expression of foreign genes in transgenic materials and the productive ability of cryopreserved cells containing recombinant proteins was similar to that in non-cryopreserved cultures [11-13], thus allowing transgenic materials to be stored in a safe manner before being analyzed and evaluated and establishment of stable seed stocks for commercial production of homologous proteins [9]. Results obtained so far all indicate that cryopreservation does not affect expression of foreign genes and allows transgenic materials to be stored in a safe manner before being analyzed and evaluated [6].

With a motive of preservation of plant germplasm, the first report on successful cryopreservation of plants was published in 1960 [14]. Since then, various cryopreservation techniques such as droplet, droplet-vitrification, vitrification, encapsulation-dehydration and encapsulation-vitrification have been successfully developed for almost all economically important crops including woody and herbaceous plants ranging from tropical to temperate regions [7]. The main limitation involved in cryopreservation techniques is a strong genotypic response. Nevertheless, wide application of cryo-techniques to transgenic materials helps ensure their maintenance [9].

References

*Corresponding author: Qiaochun Wang, State Key Laboratory of Crop Stress Biology for Arid Region, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China, Tel: +86-29-87081660; Fax: +86-29-87081660; E-mail: qiaochunwang@nwuaf.edu.cn

Received: July 16, 2012 Accepted: July 18, 2012 Published: July 25, 2012

Author Affiliations
1Department of Structural Biology, University of Vienna, Vienna, Austria
2Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, USA
3Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
4Division of Hygiene and Medical Microbiology, Department of Hygiene, Microbiology and Social Medicine, Innsbruck, Austria