Progression and therapy resistance are poorly understood. Hence, the discovery of novel biomarkers remains central to earlier and improved accuracy of detection and diagnosis of human prostate cancer disease.

Recently, Naₙ channels have been linked to human prostate cancer cell proliferation [2], invasion [3] and metastasis [4]. Naₙs are members of a single gene family with at least nine isoatypes (Na₁.1-1.9) which are commonly found in excitable cells including heart (Na₁.5), skeletal muscles (Na₁.4) and neurons (CNS, Na₁.1–Na₁.2, Na₁.6; PNS, Na₁.7–Na₁.9) [5]. Naₙ s mediate sodium influx to generate action potentials which are critical for normal cellular functions [5].

Na₁.8 is a pore forming trans-membrane protein composed of a large α subunit (>200 kDa) and at least two β subunits (~30-40 kDa) [5]. The large pore forming alpha subunit consists of four internal homologous transmembrane domains (I-IV) linked by three interdomain cytoplasmic loops which contain a number of phosphorylation sites that participate in intracellular signaling [6]. Protein kinases (PKA, PKC, receptor tyrosine kinase (RTK), Ca²⁺/calmodulin-dependent protein kinase (CaMK), p38MAPK, and p42/44 MAPK) have been shown to modulate Na₁.8 current by promoting protein–protein interactions, stimulating channel trafficking and insertion to the membrane, and rapid translation of Na₁.8 chains [6,7]. Expression of the α subunit alone is sufficient for cellular function [5].

Na₁.8 isoforms (Na₁.1–Na₁.9) in hormone-dependent and -independent prostate cancer cell proliferation [2], invasion [3] and metastasis [4]. Na₁.8 is a pore forming trans-membrane protein composed of a large α subunit (>200 kDa) and at least two β subunits (~30-40 kDa) [5]. The large pore forming alpha subunit consists of four internal homologous transmembrane domains (I-IV) linked by three interdomain cytoplasmic loops which contain a number of phosphorylation sites that participate in intracellular signaling [6]. Protein kinases (PKA, PKC, receptor tyrosine kinase (RTK), Ca²⁺/calmodulin-dependent protein kinase (CaMK), p38MAPK, and p42/44 MAPK) have been shown to modulate Na₁.8 current by promoting protein–protein interactions, stimulating channel trafficking and insertion to the membrane, and rapid translation of Na₁.8 chains [6,7]. Expression of the α subunit alone is sufficient for cellular function [5].

Materials and Methods

Cell culture

LNCaP, C4-2, and C4-2B (gift from Dr. Robert Sikes, University of Delaware, Department of Biological Sciences, Newark, DE) and CWR22Rv-1, DU-145, PC-3, and PC-3M cell lines (ATCC, Manassas, VA) were cultured in RPMI-1640 with L-glutamine (Mediatech, Herdon, VA) containing 5% fetal bovine serum (FBS), 2.5 mM L-glutamine at 37°C with 5% CO₂. LNCaP cells were cultured in the presence of 0.5 nM dihydrotestosterone (5α-androstan-17β-ol-3-one) (Sigma-Aldrich, St. Louis, MO).

Western blot analysis

Western protocols were adapted from Collins et al. [13]. Briefly,
prostate cancer cells were lysed in the radioimmunoprecipitation (RIPA) buffer (50 mM Tris-HCl, pH 7.6, 5 mM EDTA, 150 mM NaCl, 30 mM sodium pyrophosphate, 50 mM sodium fluoride, 1 mM sodium orthovanadate, 1% Triton X-100, 0.01% SDS, 0.5% sodium deoxycholate). Protease inhibitor cocktails (Sigma-Aldrich) were added to RIPA buffer prior to use. The protein samples were separated by 4% Tris-Glycine SDS-PAGE or 4-12% Bis-Tris SDS-PAGE (Invitrogen, Carlsbad, CA) and transferred into immuno blot PVDF membranes (Biorad Laboratories, Hercules, CA). The membranes were blocked with binding buffer (50 mM Tris-Cl, 150 mM NaCl, 10 g/L BSA) and probed with the following antibodies: anti-Na\(_{1.1}\), anti-Na\(_{1.2}\), anti-Na\(_{1.3}\), anti-Na\(_{1.5}\), anti-Na\(_{1.6}\), anti-Na\(_{1.7}\), anti-Na\(_{1.8}\), anti-Na\(_{1.9}\) (Upstate/Millipore, Billerica, MA); anti-EGFR, anti-PARP (Cell Signaling Technology, Danvers, MA); and anti-\(\alpha\)-tubulin (Sigma-Aldrich). Chemiluminescent detection was performed using ECL reagents according to the vendor’s instructions (Pierce, Rockford, IL).

Subcellular fractionation

C4-2 and PC-3 cells were fractionated using the Fraction PREP Cell Fractionation system (Biovision, Mountain View, CA) according to manufacturer’s instructions. Fractionation was accomplished on cells (10\(^6\)) treated with a series of extraction buffers, followed by sequential centrifugation to separate the cytoplasmic, the plasma membrane, and nuclear enriched fractions. Western blot was performed on the fractions using antibodies to Na\(_{1.1,1.7}\) and 1.8. The purity of the enriched fraction was determined using antibodies to PARP (nuclear), EGFR (plasma membrane) and \(\alpha\)-tubulin (cytosol).

Immunohistochemical detection of Na\(_{1.8}\) in human prostate specimens

Paraffin-embedded cells or arrayed prostate cancer specimens (US Biomax, Inc, Rockville, VA) containing normal (17) and malignant (160) prostate tissues were deparaffinized, rehydrated, boiled with citrate buffer (pH 6), treated with 0.3% H\(_2\)O\(_2\), and preincubated in blocking solution (10% normal goat serum). The primary antibody, anti-Na\(_{1.8}\), was incubated with the specimens at a concentration of 1:50 for one hour at room temperature. Antigen-antibody complexes were detected using a horseradish-peroxidase complexed anti-rabbit secondary antibody (Dako Envision-Plus) (Dako North America, Inc., Carpinteria, CA), 3,3′-diaminobenzidine (Dako) was used as chromogen and hematoxylin as counterstain. A subtype-specific IgG was used as a negative control. Sprague-Dawley rat sciatic nerve dorsal root ganglion (DRG) was used as a positive control tissue. Samples were imaged with Olympus BX61 camera/DP-70 inverted microscope (Center Valley, PA) using provided DP Controller software. Individual prostate specimens were scored (TH and SS) using semi-quantitative steps of increasing staining intensity, where 0 was undetectable, low immunostaining, 1+; intermediate immunostaining, 2+; and high immunostaining, 3+ as previously described [14]. Fisher’s exact test was used to compare presence of staining (negative stain vs. positive stain) and localization in each site among the clinical features. The exact Jonckheere-Terpstra test was used to determine if staining intensity was associated with the clinical features. The association between two sites of localization controlling for clinical factors were compared using the exact Cochran-Mantel-Haenszel test. All statistical analyses were performed using SAS software (SAS Institute Inc., Cary, NC).

Results

Voltage-gated sodium channel isoforms are differentially expressed in human prostate cancer cell lines

We examined the expression of specific Na\(_i\) isoforms in seven human prostate cancer cells, including hormone-dependent (LNCaP) and hormone-independent (C4-2, C4-2B, CWR22Rv-1, DU145, PC-3, and PC-3M) cells. Antibodies against unique epitopes of the O-subunit of sodium channel isoforms were used to detect the neuronal (Na\(_{1.1–1.2}\), Na\(_{1.6}\), cardiac (Na\(_{1.5}\)), and peripheral neurons (Na\(_{1.7–1.9}\)) isoforms. The specificity of the antibodies was verified by peptide competition studies (data not shown). The isotype-specific antibodies detected band of appropriate molecular weight by Western blot analysis (Figure 1).

As shown in Figure 1, Na\(_{1.8}\) demonstrated ubiquitous expression in both hormone-dependent and independent human prostate cancer cells. In contrast, the expression of Na\(_{1.8}\) isoforms, 1.1, 1.2 and 1.9, were higher in DU-145, PC-3, and PC-3M cells as compared to LNCaP and its two lineage cell lines, C4-2 and C4-2B, and CWR22Rv-1. Na\(_{1.5}\) and Na\(_{1.6}\) were expressed in all prostate cancer cells examined. The expression of Na\(_{1.7}\) was absent in PC-3M and CWR22Rv-1, but expressed in the other prostate cancer cells examined. The levels of Na\(_{1.3}\) and Na\(_{1.4}\) were undetectable (data not shown). This could be due to the quality of the antibodies and/or the lack of expression of these isoforms.

Na\(_{1.8}\) expression in human prostate cancer tissues

Because Na\(_{1.8}\) was highly expressed in all the human prostate
cancer cell lines examined, we asked whether the expression of Na\textsubscript{1.8} increased in prostate cancer tissues with advancing Gleason score. For optimization of Na\textsubscript{1.8} tissue staining, we initially performed an immunocytochemical analysis of Na\textsubscript{1.8} in both hormone-dependent and independent cells. The specificity of Na\textsubscript{1.8} antibody was verified by peptide inhibition (negative control) and rat DRG staining (positive control) (Figure 2). Human prostate tissue specimens were then immunostained and sections were scored with a semiquantitative scoring method (0-3+) based on the intensity of Na\textsubscript{1.8} staining. Normal prostate epithelium was either absent or weakly stained (intensity score of 0 to 1+) for Na\textsubscript{1.8} (A representative sample in Figure 3A). The malignant prostate tissues with GS 4 or less were either absent or weak Na\textsubscript{1.8} stained (A representative sample in Figure 3B, GS 4). A moderate (A representative sample in Figures 3C and 3D; GS 6, GS 7) to strong (A representative sample in Figures 3E and 3F; GS 8, GS 10) Na\textsubscript{1.8} staining was observed in more advanced prostate tissue specimens. Figure 4 shows the distribution of Na\textsubscript{1.8} staining intensity (0-3) and Gleason score. The percentage of prostate cancer specimens with high Na\textsubscript{1.8} immunoreactivity (2+ and 3+) increased as GS increased. In contrast, the percentage of prostate cancer specimens with little or low Na\textsubscript{1.8} immunoreactivity decreased as GS increased.

Table 1 provides a history of the patient specimens and statistical correlations. The observed difference in staining intensity between normal and malignant tissues was statistically significant (P<0.0001). When Na\textsubscript{1.8} expression was compared with PSA secretion, pathologic stage, Gleason score, and lymph node involvement in malignant prostate cancer tissues, statistically significant correlations were observed in all clinical features (p-values for pathological stage, p=0.04; Gleason Score, p= 0.01; pathologic lymph node stage, p<0.001). These findings were not observed with PSA secretion and Na\textsubscript{1.8} staining (p=0.15).

Localization of Na\textsubscript{1.8} in human prostate cancer tissues

While previous studies show Na\textsubscript{5} localize to the plasma membrane in excitable cells (such as neurons), the cellular localization of Na\textsubscript{5} in prostate cancer is not well established. Cellular localization of Na\textsubscript{1.8} in human prostate tissue is shown in Figure 5. In normal human prostate tissue, the nuclei of the prostatic acinar basal cells showed either absent or weak Na\textsubscript{1.8} staining (Figure 5A). In a case of GS 6 tumor, Na\textsubscript{1.8} staining was observed in both the plasma membrane and cytosol of the prostate epithelial cells (Representative

![Figure 2: Na\textsubscript{1.8} immunohistochemical analysis of human prostate cancer cell lines. DRG from rat tissue was used as a positive control for Na\textsubscript{1.8}. Negative control (top panels) represents neutralization of Na\textsubscript{1.8} antibody with Na\textsubscript{1.8} peptide.](image2.png)

![Figure 3: Expression of Na\textsubscript{1.8} in human prostate cancer tissues. Human prostate tissue specimens consist of normal (n=17) and malignant (n=160) were analyzed by immunohistochemical staining using a polyclonal anti-Na\textsubscript{1.8} antibody. Representative samples are shown. A. Normal human prostate specimen with very low Na\textsubscript{1.8} staining. B. Prostatic adenocarcinoma specimen GS 4 with very low Na\textsubscript{1.8} staining. Prostatic adenocarcinoma specimens with moderate Na\textsubscript{1.8} staining, GS 6 (C) and GS 7(D). Prostatic adenocarcinoma specimens with strong Na\textsubscript{1.8} staining, GS 8 (E) and GS10 (F). Images were taken at 40x (Olympus BX61 Camera/ DP70 inverted microscope) using DP Controller Software. Arrows indicate prostate epithelium. Asterisks indicate stroma. GS, Gleason score.](image3.png)

![Figure 4: Relationship between Na\textsubscript{1.8} staining intensity and Gleason score. Human prostate tissue specimens consist of normal (n=17) and malignant (n=160) were analyzed by immunohistochemical staining using a polyclonal anti-Na\textsubscript{1.8} antibody. Prostate tissue specimens were divided into four groups (normal, GS 3-6, GS 7, and GS 8-10) and individually scored for Na\textsubscript{1.8} staining: 0 = no detectable, 1+ = low Na\textsubscript{1.8} staining, 2+ = moderate Na\textsubscript{1.8} staining, 3+ = strong Na\textsubscript{1.8} staining.](image4.png)

Citation: Suy S, Hansen TP, Auto HD, Kallakury BVS, Dailey V, et al. (2012) Expression of Voltage-Gated Sodium Channel Na\textsubscript{1.8} in Human Prostate Cancer is Associated with High Histological Grade. J Clin Exp Oncol 1:2.
sample in Figure 5B). We noticed a disappearance of Na\(_{1.8}\) staining in the plasma membrane of many prostate cancer tissue specimens with higher Gleason grade. In epithelial cells of a case of GS7 tumor, moderate Na\(_{1.8}\) staining was seen in the nucleus (Representative sample in Figure 5C). Strong staining was observed in the cytosol (Figure 5D, GS10), or strong mixed cytosol and nucleus staining (Figure 5E) in advanced prostate cancer tissues. The observation that Na\(_{1.8}\) localized to the nucleus was unexpected. To verify that Na\(_{1.8}\) localized to the nucleus, subcellular enriched fractions of C4-2 and PC-3 cells were immunoblotted with antibody to Na\(_{1.8}\). Western blot analysis revealed detection of Na\(_{1.8}\) in the nuclear enriched fractions of PC-3 cells (Figure 6A) and C4-2 cells (Figure 6B). We also probed the subcellular enriched fractions of C4-2 for the presence of Na\(_{1.1}\) and Na\(_{1.7}\). As illustrated in Figure 6B, Na\(_{1.1}\) was detected in the cytosolic enriched fractions while Na\(_{1.7}\) was present in the membrane enriched fractions. These results further validate our observation of nuclear Na\(_{1.8}\) in human prostate cancer. The purity of the subcellular enriched fractions was probed using EGFR as a plasma membrane marker, cytosolic marker alpha-tubulin, and nuclear marker PARP (Figures 6A and 6B).

Discussion

Although a number of reports have linked voltage-gated sodium channels to human prostate cancer, little information is known regarding the expression of Na\(_{1}\) specific proteins and its cellular distribution [4,9,12,15-17]. In this study, we demonstrate for the first time that Na\(_{1.8}\), normally found in excitable cells like dorsal root ganglia, is highly expressed in human prostate cancer cells. Additionally, Na\(_{1.8}\) expression is associated with advanced histopathological grade of human prostate cancer disease. Our current observations are consistent with Abdul and Hoosen [12] studies in which the authors used a pan-Na\(_{s}\) antibody and demonstrated that Na\(_{s}\) immunoreactivity is greater in human prostate cancer tissues as compared to normal human prostate.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n</th>
<th>Negative vs. Positive</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All healthy tissues</td>
<td>17</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>All tumors</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSA (ng/ml)</td>
<td></td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>< 4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10–20</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 20</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathologic Stage</td>
<td></td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>pT(_2)</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT(_3)</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT(_4)</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gleason Score</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3–6</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8–10</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathologic lymph node stage</td>
<td></td>
<td>0.0006</td>
<td><0.0001</td>
</tr>
<tr>
<td>pN(_0)</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pN(_1)</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- P-values computed using the fisher’s exact test
- P-values computed using the exact Jonckheere-Terpstra test

Table 1: Summary of Patient History and Correlations to Na\(_{1.8}\) Epithelial Staining.

The molecular mechanisms for the upregulation of Na\(_{1.8}\) are unknown. It has been suggested that that increased Na\(_{1.8}\) expression by p38MAPK is regulated at the post-transcriptional level [18]. Our laboratory is currently exploring a possible connection between Na\(_{1.8}\) and p38 MAPK activation in human prostate cancer. Our
Western blot data demonstrated that both LNCaP and PC3 cells have comparable of Na\textsubscript{1.7} protein. This result did not agree with previous reports identifying Na\textsubscript{1.7} as the major isoform found in PC-3 prostate cancer cells [9]. These discrepancies suggest that increased Na\textsubscript{1.7} mRNA in prostate cancer may not be a reflective of functional expression of Na\textsubscript{1.7}.

Localization of Na\textsubscript{1.8} in the nucleus is another intriguing finding from our current study. Recently the voltage-independent potassium ion channel Trek-1 was found to be localized to the nucleus of human prostate cancer cells [19]. Furthermore, the nuclear localization of a plasma membrane protein ErB3 has been linked to poor prognosis in prostate cancer survival [20]. These studies strongly support that the translocation of membrane proteins to the nucleus of human prostate cancer cells.

The functional and mechanistic roles of Na\textsubscript{1.8} in prostate cancer cells are not known. However, the altered cytoplasmic to nuclear ratio of Na\textsubscript{1.8} in prostate cancer tissues may be useful in differentiating early and advanced stages of prostate cancer. Currently, the role of this isoform and other Na\textsubscript{1,2-4} isoforms in human prostate cancer cells and tissues are under investigation by our laboratory. Finally, our study identified Na\textsubscript{1.8}, a voltage regulated ion channel protein, in human prostate cancer cells and tissues and strongly supports the further study of Na\textsubscript{1.8} as a potential biomarker and a therapeutic target in this disease.

Acknowledgments
This work was supported by NIH-R01 grant CA105435-04, The Georgetown Drug Discovery Program, and the Lombardi Comprehensive Cancer Center at Georgetown Medical Center.

Conflict of Interest
The authors do not have conflict of interest for this study.

References

Author Affiliation
1Drug Discovery Program, Georgetown University Medical Center, Washington DC, USA
2Department of Oncology, Georgetown University Medical Center, Washington DC, USA
3Department of Pathology, Georgetown University Medical Center, Washington DC, USA
4Department of Neurosciences, Georgetown University Medical Center, Washington DC, USA
5Department of Biostatistics, Georgetown University Medical Center, Washington DC, USA
6Department of Radiation Medicine, Georgetown University Medical Center, Washington DC, USA

Submit your next manuscript at • www.scitechnol.com/submission

Submit your next manuscript and get advantages of SciTechnol submissions
- 50 journals
- 21 Day rapid review process
- 1000 Editorial team
- 1 Million readers
- More than 3500
- Publication immediately after acceptance
- Quality and quick editorial, review processing