
a S c i T e c h n o l j o u r n a lEditorial

Rikkila et al., J Comput Eng Inf Technol 2012, 1:1
http://dx.doi.org/10.4172/jceit.1000e103 Journal of Computer

Engineering & Information
Technology

All articles published in Journal of Computer Engineering & Information Technology are the property of SciTechnol, and is
protected by copyright laws. “Copyright © 2012, SciTechnol, All Rights Reserved.International Publisher of Science,

Technology and Medicine

The Implications of a
Complexity Perspective for
Software Engineering Practice
and Research
Juha Rikkila1, Pekka Abrahamsson1 and Xiaofeng Wang1*
1Studios for Future Software, Free University of Bozen-Bolzano, Bolzano,
Italy

Large software companies that enjoyed success in the past find
themselves in increasing difficulties in today’s turbulent business
environments. Various issues they need to tackle include delays in
releasing, feature bloating, slow or no response to changing, often
individual, customer needs, and so on. Meanwhile, there are a
growing number of small start-ups and “second-product” companies
struggling to survive and thrive in increasingly competitive market
places, too. For them an accurate definition of future is impossible to
achieve. They have to live in the current moment, yet strive towards
their continuously evolving vision. This new landscape of software
engineering has brought serious challenges to the old approaches
of managing software business. It calls for a different perspective
on it and new approaches underpinned by such a perspective. In
accordance with the new approaches, new research topics emerge
which require appropriate research methodologies to make better
sense of them.

Criticisms of the old (and not so old) approaches
Much of the past software business success can be contributed

to well-planned strategies, well-defined long and short-term goals,
well-defined program and project plans, and the prudent execution
of them. Similarly, the hierarchical structures of authority for
decision-making and for guiding the execution were well established
in most organizations [1]. However, Koskela and Howell (2002)
argue that the basic logic of software project is incorrect, based on a
steam engine like adjustment paradigm. Reinertsen (2009) calls the
traditional product development approach “not just little wrong, but
wrong to its very core”. The old approaches have been built upon
Scientific Management [2], which details the management decisions
and rules of work and leaves very little room for individual creativity
or variation. Individual performance was accurately measured with
predefined attributes. People were considered to be rational and
become motivated and efficient by getting sufficient financial rewards.
Even though the research in organizational behaviors and psychology
has advanced hugely from the scientific management era, the old
attitude is still strong in many software companies. However, the old
approaches to manage software business became ineffective for large
companies in turbulent business environments. And it is obvious that
they would stifle the startup initiatives and entrepreneur spirits.

*Corresponding author: Dr. Xiaofeng Wang, Studios for Future Software, Free
University of Bozen-Bolzano, Bolzano, Italy, E-mail: xiaofeng.wang@unibz.it

Received: July 24, 2012 Accepted: July 26, 2012 Published: July 31, 2012

Agile software development movement appeared as a remedy to
the old approaches. The emphasis of quickly responding to change
and the focus on people’s capabilities to achieve it are at the very
core of agile methods [3]. After some limited success and rather long
overall resistance, various agile practices started to gain ground. In
many software organizations the most notable pressure of change has
come with the desire to implement an agile approach to development.
Initially a team level practice, agile methods have grown to attract
larger organizations, and consequently put pressure on them to
align management structures and practices with the agile methods
they adopt. However, agile initiatives remained a developer and
development team level change in spite of the efforts to scale them to
organizational wide endeavors. Most of the management structures
and practices remained the same in large software companies (Rikkilä
2012). On the other hand, start-ups have often felt that even though
agile approaches are valid for their development effort, they fall short
when dealing with customers in business terms, or creating products
for common market needs. Business and product management agility
are not unknown as terms, but often considered the practice of large
organizations and corresponding to their needs. Start-ups need
typically to deal with much shorter cycles in a much more customer
responsive manner [4].

The perspective of Complexity
To understand why the old (and not so old) approaches are not

sufficient in the new landscape of software engineering, we need to
revisit what we have believed of being true without questioning in
the past. To do so, we take on a perspective that shows promises: the
Complexity theories. Originated in natural sciences such as physics
and biology, the Complexity theories have been increasingly adopted
in social sciences and the studies of human systems. We start with an
overall picture of Complexity offered by the Cynefin model, as shown
in Figure 1.

The Cynefin model separates ordered and unordered domains.
An ordered domain is the one where cause and effect relationships
are known or at least knowable after analysis. Generally a reductionist
approach, that is, breaking a larger whole into pieces, solving the
individual pieces and then summing up the results for the whole,
is an essential analytical approach in an ordered domain. Causality,

U

N

O

R

D

E

R

E

D

O

R

D

E

R

E

D

COMPLEX COMPLICATED

 CHAOTIC SIMPLE

Figure 1: The Cynefin Model (adapted from Snowden & Boone, 2007).

Citation: Rikkila J, Abrahamsson P, Wang X (2012) The Implications of a Complexity Perspective for Software Engineering Practice and Research. J Comput
Eng Inf Technol 1:1.

• Page 2 of 3 •

doi:http://dx.doi.org/10.4172/jceit.1000e103

Volume 1 • Issue 1 • 1000e103

reductionist thinking and predictability enable planning and control.
In contrast, in an unordered domain neither causality nor linearity
applies. This is the domain that interests us. The model makes a
further distinction between complexity and chaos in an unordered
domain. While chaos is completely random in behavior and without
any expected consequence when acted upon, complex systems have
properties that enable meaningful comprehension of and actions
upon them. It is these properties and means of influencing that are
the basis for radical new thinking of software development and its
management in the new landscape.

There is no a unanimous definition of complex system or
understanding of its properties. Drawing on different references, a
condensed definition of a complex system can be an open system
consisting of autonomous agents interacting with each other and with
the environment. When human systems are concerned, human and
non-human agents are heterogeneous, and often have the properties
of a complex system themselves. Several properties have significant
implications to the new approaches we are seeking.

The edge of chaos: A complex adaptive system is poised at the
edge of chaos, where “the components of a system never quite lock
into place, and yet never quite dissolve into turbulence, either” [5].
Stacey (2003) names it bounded instability, which means stable and
unstable at the same time [6]. When a system operates in this dynamic
it displays radical unpredictability over certain time spans and at
certain levels of detail. Uncertainty is inevitable. The system shows
patterns of behavior. The possibility space of the system’s states in the
short term can be depicted using fine details, but the path to which
the system follows is uncertain and unpredictable in the long run. In
addition, although the dynamic at the edge of chaos is required for
novelty to emerge, it does not provide a guarantee of survival.

Self-organization: it is the ability of a system to evolve into an
organized form without any external force. It is a natural result of
nonlinear interaction, not any tendency of individual agents to prefer
or seek order [7]. Generally, a self-organized system is dissipative,
which means it needs energy to flow into and within it in order to
move from one attractor to another. Self-organization only occurs in
open systems that import energy from their environments (Prigogine
and Stengers 1985).

Emergence: it is the appearance of a new feature, structure, or
pattern of behavior at the system level which is not previously observed
as a part of the system’s functional characteristics, without any overall
program or design, in a context that may be characterized by chance
events. It is a collective phenomenon [6]. New structures, patterns,
and properties emerge in a bottom-up way, from the interactions
of lower level agents, but cannot be reduced to the characteristics of
those individuals. Emergent phenomena seem to have a life of their
own with their own rules, laws and possibilities [8]. Emergence is a
source of variety.

Coevolution: the system is continuously adapting to its
environment, and co-evolving with its environment by reconfiguring
itself and changing its characteristics and behavior, creating new
subsystems or agents and their configurations as well as new behavior.
Sometimes the evolution is gradual, sometimes radical. Particularly
system behavior and change is non-linear and not predictable, i.e.,
sensitive to initial condition and disproportionate to initial triggering
effort and succeeding amplifications. On the other hand, a system can
be very robust and path dependent so that the change is minor or
non-existent even when great effort or energy is consumed for it [9].

From the perspective of Complexity, we argue that in most

organizations software development is managed as in an ordered
domain. The assumptions underlying the old approaches are that
software and software organizations are complicated, therefore
knowable, as long as we understand all the factors and causality links
involved. However, an increasing amount of studies and empirical
evidences demonstrate that what we tackle in software engineering
(at least in recent time) are complex or chaotic phenomena, problems
that are hard to define, hard to specify cause and effect relationships
between them and the solutions. Furthermore, different stakeholders
have different opinions on both problems and solutions. No solutions
can be claimed complete, and problems keep on evolving. Any
attempts to resolve them will reveal further problems. Problems vary
over time and relate to other problems, without clear boundaries in
between. Every problem is unique; therefore previous solutions will
not apply to the next problem.

New approaches to software engineering practice
To operate effectively in a complex or even chaotic domain,

different software practices and knowledge acquisition methods are in
need. Some agile proponents have already referred to Complexity as
the theoretical ground of agile methods when the Agile Manifesto was
introduced in 2001. Yet an exhaustive interpretation of Complexity
and the mapping to software development domain are still missing.
Two initiatives are worth the attentions of software practitioners and
researchers alike. One is the CALM (Complex, Agile, Lean Mesh-up)
driven by Cognitive Edge (http://cognitive-edge.com/), and the other
is the Stoos initiative driven by Stoos group (http://www.stoosnetwork.
org/). Intensive activities from the two initiatives, together with the
research on Complexity and its application in software development
domain, create expectations on major advancement in this area.

Even though the new approaches are yet to take forms, we can
specify a short list of requirements for them to be effective, drawing
upon the insights from the Complexity theories:

• Enable effective operation even when there is a poor or no
visibility to the future (efficiency is not measurable).

• Focus on stakeholders’ value; the vision of value propositions
is clear but evolves continuously.

• Constraints and boundaries for a solution can be set, but
solution properties and drives are continuously evolving.

• Effective use of all available capabilities in organizations is
enabled (limited capability to build “dream teams”).

• Novelty and emergence are of high priority; predictability
is secondary; failing is safe and even desirable when more
knowledge is needed.

• Knowledge creation and consequently the adaptation of
constraints and boundaries are continuous; traditional
constraints such as architecture, security and safety
requirements, user experience and the like need to be treated
as continuously evolving.

• Steering of the solution development is done “at the edge”,
that is, setting operational constraints and boundaries,
influencing attractors, creating and adjusting basis
mechanisms (instead of in the middle with controlling
requirements and development steps);

• Intensive internal communication is a must for emergence;
transparency is vital for keeping direction and speed.

Citation: Rikkila J, Abrahamsson P, Wang X (2012) The Implications of a Complexity Perspective for Software Engineering Practice and Research. J Comput
Eng Inf Technol 1:1.

• Page 3 of 3 •

doi:http://dx.doi.org/10.4172/jceit.1000e103

Volume 1 • Issue 1 • 1000e103

• Communication with the environment is a must to ensure
continuous adaptation between stakeholders’ needs and their
implementation.

The list of requirements would serve as a guidance to evolve
new approaches for software engineering practice. These approaches
would be different from traditional, even agile, product and project
management approaches. We are seeking “unproject” management
approaches in which most of the traditional management principles
would be reversed.

Implications to software engineering research
A Complexity perspective on software development and

organizations also has implications to software engineering
research in terms of both what we could study, as suggested by
the new approaches, and how we should study them. Till now the
focus of science has largely been on the problems that are “known”
or “knowable”, and the reductionist approach is effective. When
faced with problems of uncertainty, complexity or chaos where the
problems are “unknown” or “unknowable”, how could we possibly
research on them?

Among several potential challenges raised by Complexity, two
has most significant even profound influence on how we conduct
research. The first is the rethinking of causality. According to Kurtz
and Snowden, in a complex domain where large software organizations
reside, cause and effect relationships are only coherent in retrospect
and do not repeat themselves, therefore no precise prediction can be
made. We can study how patterns emerge through the interaction
of agents, but the non-linear interactions “defy categorization or
analytic techniques”. We can perceive, but not predict, emergent
patterns with retrospective coherence only, and we cannot be sure
that they will repeat themselves because “the underlying sources of
the patterns are not open to inspection (and observation of the system
may itself disrupt the patterns)” [10]. In a chaotic domain where most
startups strive to survive, there are even no perceivable cause and
effect relationships. “There is nothing to analyze”.

As a consequence, the ultimate goals of software engineering
research (on complex phenomena at least) are not the searching for
causalities, striving for predictions and increasing the generalizability
of research findings. Rather the focus should be on the understanding
of software and software development organizations in their local
contexts. The research should target at detecting meaningful patterns
without assuming that the same patterns would repeat themselves in
similar complex systems. Therefore generalization is neither possible
nor relevant. Local insights, local solutions, and local innovations are
acceptable and even desirable.

Another Complexity challenge is the changing role played by
researchers when studying complex or chaotic phenomena. The
perspective of Complexity suggests that one can never achieve a
complete view of a complex system. All views are partial. What’s more,
a researcher is never an outsider of a complex system. Through the act
of researching, he becomes a part, another agent, of the system who
interacts locally with other agents, and what would emerge from these
local interactions are unpredictable. Kurtz and Snowden believe that
without action a researcher would never possibly start to make sense
of the researched phenomena. Therefore, the line between researcher
and “researched” is very much blurred. It seems counterproductive
to regard the researcher as an objective observer or “expert”, and the
researched simply the “targets” or “subjects”.

As a result, a researcher needs to take a more humble and realistic
stance towards his research, and more participative and action
oriented research methods are necessary to achieve joint learning
of researchers and software organization involved. Among various
empirical software engineering research methods, action research
seems particularly an appropriate one. It is “an iterative process
involving researchers and practitioners acting together on a particular
cycle of activities, including problem diagnosis, action intervention,
and reflective learning” [11]. Phelps and Hase demonstrate that there
are theoretical and methodological connections between complexity
and action research. They advocate that action research “may be an
appropriate and powerful vessel” [12] to conduct research where
complexity is the paradigm. Actually action research has been under-
deployed in software engineering research and more action research
is called for [13]. We concur with this call and believe we saw a good
reason for it.

To conclude our article, “sometimes, in order to see the future, it
is necessary to rewrite the past”1. The critique presented against the
contemporary management and development practices in software
industry helped us to set focus on rising fringe areas of software
business where different rules apply. Markets do not seem to stand
still, which leads to the investigation of the “unordered” behavior of
complex systems and how it has become applicable for managing
software development as well. Consistent and proven models do not
exist yet, and more research is needed with research methods suitable
for studying complex systems.

References

1. Cooper RG, Edgett SJ, Kleinschmidt EJ (2002) Portfolio Management for
New Products. (2nd edn).

2. Taylor FW (1911) The Principles of Scientific Management. Harper &
Brothers, New York, NY, USA.

3. Highsmith J (2002) Agile Software Development Ecosystems. (1st edn)
Addison-Wesley Professional.

4. Ries E (2011) The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Business,
USA.

5. Waldrop MM (1994) Complexity: The Emerging Science at the Edge of Order
and Chaos. Penguin books, London.

6. Stacey RD (2003) Strategic Management and Organisational Dynamics: The
Challenge of Complexity. (4th edn) Financial Times, Prentice Hall.

7. Fontana W, Ballati S (1999) Complexity. Complexity 4: 14-16.

8. Choi TY, Dooley KJ, Rungtusanatham M (2001) Supply Networks and
Complex Adaptive Systems: Control versus Emergence. J Oper Manag 19:
351-366.

9. Volberda HW, Lewin AY (2003) Co-evolutionary Dynamics Within and
Between Firms: From Evolution to Co-evolution. J Manage Stud 40: 2111–
2136.

10. Kurtz CF, Snowden DJ (2003) The new dynamics of strategy: Sense-making
in a complex and complicated world. IBM Syst J 42: 462-483.

11. Avison D, Lau F, Myers MD, Nielsen PA (1999) Action Research.
Communications of the ACM 42: 94-97.

12. Phelps R, Hase S (2002) Complexity and action research: exploring the
theoretical and methodological connections. Educational Action Research
10: 507-524.

13. Sjoberg DIK, Dyba T, Jorgensen M (2007) The Future of Empirical Methods
in Software Engineering Research. Future of Software Engineering 358-378.

1Adapted from the HBR blog network article “If You Don’t Like Your Future,
Rewrite Your Past” by Rosabeth Moss Kanter on 12.6.2012.

http://www.amazon.com/Portfolio-Management-For-New-Products/dp/0738205141
http://www.amazon.com/Portfolio-Management-For-New-Products/dp/0738205141
http://www.eldritchpress.org/fwt/ti.html
http://www.eldritchpress.org/fwt/ti.html
http://www.informit.com/store/product.aspx?isbn=9780201760439
http://www.informit.com/store/product.aspx?isbn=9780201760439
http://www.amazon.com/The-Lean-Startup-Entrepreneurs-Continuous/dp/0307887898
http://www.amazon.com/The-Lean-Startup-Entrepreneurs-Continuous/dp/0307887898
http://www.amazon.com/The-Lean-Startup-Entrepreneurs-Continuous/dp/0307887898
http://www.amazon.co.uk/Complexity-Emerging-Science-Order-Penguin/dp/0140179682
http://www.amazon.co.uk/Complexity-Emerging-Science-Order-Penguin/dp/0140179682
http://books.google.co.in/books/about/Strategic_management_and_organisational.html?id=z7haAAAAYAAJ
http://books.google.co.in/books/about/Strategic_management_and_organisational.html?id=z7haAAAAYAAJ
http://onlinelibrary.wiley.com/doi/10.1002/%28SICI%291099-0526%28199901/02%294:3%3C14::AID-CPLX3%3E3.0.CO;2-O/abstract
http://www.sciencedirect.com/science/article/pii/S0272696300000681
http://www.sciencedirect.com/science/article/pii/S0272696300000681
http://www.sciencedirect.com/science/article/pii/S0272696300000681
http://onlinelibrary.wiley.com/doi/10.1046/j.1467-6486.2003.00414.x/abstract
http://onlinelibrary.wiley.com/doi/10.1046/j.1467-6486.2003.00414.x/abstract
http://onlinelibrary.wiley.com/doi/10.1046/j.1467-6486.2003.00414.x/abstract
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5386804&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5386804
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5386804&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5386804
http://dl.acm.org/citation.cfm?id=291479
http://dl.acm.org/citation.cfm?id=291479
http://works.bepress.com/stewart_hase/135/
http://works.bepress.com/stewart_hase/135/
http://works.bepress.com/stewart_hase/135/
http://dl.acm.org/citation.cfm?id=1254730
http://dl.acm.org/citation.cfm?id=1254730

	Title
	Corresponding author
	Criticisms of the old (and not so old) approaches
	The perspective of Complexity
	New approaches to software engineering practice
	Implications to software engineering research
	References
	Figure 1

