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The ability to reprogram somatic cells to pluripotency provides 
both potential opportunities for regenerative medicine, as well as an 
intriguing model for studying cell reprogramming [1]. Although the 
generation of viable cloned mammals from adult cells is technically 
feasible, knowledge of such processes as chromatin reorganization, 
genome activation, and epigenetic modifications is necessary to gain 
a more thorough understanding of gene regulatory networks that 
govern nuclear programming. Chromatin architecture and genome 
wide interactions are not only altered during the transition from a 
somatic to a pluripotent state, but also play active, regulatory roles 
during differentiation and cell fate commitment [2,3].

The dynamics of chromatin reorganization during cellular 
differentiation and lineage specification is modulated by epigenetic 
factors, chromatin remodeling complexes and tissue-specific 
transcription factors (TFs) [4,5]. Histone modifications such as 
H3K4me3, H3K27ac and H3K36me3 maintain an open chromatin 
structure and facilitate transcription, while H3K9me3 and H3K27me3 
histone marks are associated with a repressed chromatin state [4,5]. 

The ENCODE-generated data suggests that TFs preferentially 
bind to the consensus binding motif-enriched genomic regions 
suggesting that chromatin recognition is at least partly encrypted in 
the genome. However, the spatial topology of chromatin can have 
a profound impact on the TF binding preferences. According to 
the “permissive binding” model [6], TFs can discriminate an open 
chromatin structure lacking consensus motifs but marked by active 
histone modifications, whereas the genomic region without such 
marks does not allow permissive binding. Therefore, variability 
in the epigenetic landscape influences chromatin recognition by 
transcriptional regulatory complexes and can impact the expression 
of target genes in different cell types. 

The presence of both active and repressive histone marks at 
promoters and enhancers of developmental genes helps to organize 
the bivalent chromatin conformation [4]. Bivalent chromatin 
contributes to genome-wide repression of developmental genes 
in pluripotent stem cells while keeping them poised for activation 
upon differentiation [4,5]. H3K4me1/K27me3 bivalency at histone 3 
is an epigenetic signature of poised enhancers, whereas H3K4me1/
H3K27ac is a hallmark feature of active enhancers [4]. The deposition 
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of bivalent marks is controlled by the enzymatic activities of Polycomb 
(PcG) and Trithorax (TrxG) group proteins [7]. 

A global increase of H3K27ac is accompanied by loss of 
H3K27me3 over the target genomic sites [4]. An epigenetic switch 
from methylation to acetylation at H3K27 catalyzed by p300 and 
CBP histone acetyltransferases correlates with the transcriptional 
activation of PcG-bound genes during mammalian embryonic stem 
cell (ESC) differentiation. The antagonistic activity of TrxG restricts 
the PRC2-mediated gene repression to keep a balance between 
ESC self-renewal and differentiation [4,5]. TrxG complex mediates 
H3K4me3 and H3K36me3 spreading across the transcriptionally 
active genomic regions. Ablation of either WDR5 or DPY-30, 
components of Trithorax complex, can lead to a significantly reduced 
expression of lineage-specific genes and decrease of H3K4me3 
[4]. Thus, PcG and TrxG proteins are critical regulators of cellular 
homeostasis and embryonic development maintaining the expression 
of key tissue-specific genes in a spatiotemporal fashion. 

Because PcG and TrxG play such a fundamental role in cell 
physiology, many different mechanisms have been evolving to anchor 
these regulatory complexes to discrete genomic loci. The recruitment 
of Polycomb to chromatin can be achieved via different molecular 
interactions. 

1) JARID2, a member of Jumonji family, facilitates binding of 
PcG to chromatin to extend H3K27 trimethylation pattern 
[4,5]. 

2) CpG-islands support to establish and maintain the PcG-
enriched chromatin domains [8]. A high density of 
unmethylated CpG dinucleotides is sufficient to initiate the 
PcG recruitment [9]. 

3) Short RNAs of approximately 50-200 nucleotides in length, 
transcribed from the 5’ end of PRC2 target genes, can also 
mediate PcG binding [10]. 

4) Long non-coding RNAs could assist in actively recruiting 
PcG proteins by binding LSD1/Co-REST repressive complex 
or recognizing the GA-rich DNA segments [11,12]. 

5) Nucleosome density can also contribute to gene repression by 
PcG recruitment at polycomb response elements (PREs) [13]. 

6) The selective recognition of the cis-regulatory elements by 
TFs can mediate the recruitment of Polycomb complexes and 
ensure the repressed chromatin states across large genomic 
regions. For example, PcG binds to the YY1-enriched PREs 
that are largely devoid of nucleosomes [14]. REST/Snail 
complex can also facilitate the site-specific PcG binding 
[15,16]. 

7) Although polycomb-like protein PCL1 recognizes H3K36me3 
modified nucleosomes, the co-occupancy mechanism is not 
well understood. However, it is established that PCL1 stabilizes 
PRC2 complex on bulk chromatin and mediates spreading of 
H3K27me3 across H3K36me3-enriched chromatin regions 
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[17]. In mouse ESCs, co-occupancy of PLC1 with H3K36me3 
and H3K27me3 leads to the repression of a subset of poised 
developmental genes.

8) Repetitive elements comprise over two-thirds of the human 
genome and recent studies revealed that REs play a central 
role in genome integrity, gene expression, and disease. 
Considerable evidence has been accumulated indicating 
that repetitive elements (REs) could contribute to the 3D 
chromatin organization associated with PcG binding [18].

Although PRC2 is the main Polycomb complex in mammalian 
cells, the other component of this group of proteins is PRC1 [7]. 
A prevalent model suggests that the PRC2-mediated H3K27 
trimethylation targets PRC1 to chromatin. However, the PRC1 
complex can interact with PREs through a PRC2-independent 
mechanism. For example, the recruitment of PRC1 to specific genomic 
locations can be achieved via interactions with Runx1 or KDM2b 
[19,20]. Histone demethylase KDM2b occupies unmethylated CpG 
islands and anchors a subset of PRC1 complexes to specific genomic 
loci in pluripotent stem cells [20].

Over the past few years there has been increased attention to 
the problem of establishing 3D nuclear architecture and the role 
of PcG proteins in long-range chromatin interactions mediated 
by chromosome folding. Given that the greatest portion of PRC2-
mediated epigenetic modifications is located in genomic repeats, it 
was suggested that Polycomb proteins provide a structural scaffold 
for the 3D chromatin structure [18,21]. 

One of the main functions of PcG proteins is to maintain Hox 
genes in a repressed state. The spatial and temporal transcriptional 
control of Hox genes is essential for patterning the vertebrate 
anterior-posterior (A-P) body axis [22]. The sequential collinear 
activity of Hox genes along the A-P axis conserved throughout the 
animal kingdom is based on their relative position in the genome. 
Recent studies by Duboule and colleagues using mouse embryonic 
tissues revealed that spatial compartmentalization of Hox clusters 
may be key to the underlying molecular mechanisms of the 
collinear gene activation [23]. 3D re-organization of Hox genes is 
followed by dynamic changes in histone modifications [24]. While 
the transcriptionally inactive Hox cluster is organized into a single 
3D conformation, activated Hox genes switch to a bimodal 3D 
organization where newly activated genes progressively cluster into a 
transcriptionally active compartment. Thus, this transition in spatial 
configuration coincides with the epigenetic switch from a negative to 
a positive transcription state. 

In addition to the vertebrate A-P axis regulation, a late phase 
activation of Hox genes is crucial for the patterning and growth of 
distal structures across the A-P axis of a budding limb. Two levels of 
chromatin topology define the limb HoxD activity; a loss of H3K27me3 
marks initiates the formation of an open genomic domain spanning 
the HoxD cluster in the distal posterior limb while the anterior part 
still retains a repressed chromatin state [25]. Epigenetic imbalance 
is accompanied by the change in 3D organization mediated by 
long-range chromatin interactions at the 5’ HoxD genomic region 
specifically in the distal posterior limb. The formation of a chromatin 
loop between HoxD loci and the remote enhancer region is consistent 
with the time of distal limb bud development. Interestingly, a study by 
DeMare and colleagues [3] highlights the role of cohesin-associated 
interactions in the 3D organization during the limb development.

In summary, high-order chromatin organization plays a crucial 
role in the development of embryonic structures. Nuclear remodeling 
depends on long-range communications, which are mediated by a 
specific set of nuclear factors and structural protein complexes, and 
therefore set the stage for future research addressing fundamental 
questions of chromatin biology.
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