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The incidence of obesity has increased dramatically in the 
last 30 years, to the point where obesity now represents one of the 
major global health challenges. Obese individuals are characterized 
by abnormal or excessive fat accumulation and in many Western 
nations more than 60% of the adult population is overweight 
or obese [1]. The rise in the prevalence of obesity has been linked 
with the increased incidence of a number of serious disease states, 
including insulin resistance, type 2 diabetes, cardiovascular disease 
(CVD) and some cancers. The role of obesity in promoting metabolic 
disease is thought to be related to both an excessive accumulation 
of fatty acid metabolites in non-adipose tissue and over-activation 
of inflammatory and stress-related pathways [2,3]. Therefore it is 
essential that the pathways that lead to excessive lipid accumulation 
within the body are better understood in order to reduce the health 
burden resulting from the obesity epidemic. 

Obesity results from a chronic imbalance between energy intake 
and energy expenditure. The oxidation and storage of nutrients 
involves integrated networks of many metabolic pathways in different 
organs, and abnormal flux through one or more of these pathways 
can lead to a deregulated metabolic state. While genetic abnormalities 
in metabolic enzymes and signaling pathways may be the underlying 
cause of some obesity [4], environmental factors, particularly excess 
dietary calories and reduced physical activity are also important 
contributors to the obesity epidemic. Given the complex interactions 
between different organs and the large array of factors that may 
promote obesity and metabolic disease, studies that employ broad 
approaches examining the entire metabolic landscape likely represent 
the most effective way to discover new insight into the pathogenesis 
of these conditions. 

Global profiling or “omics” technologies (e.g. genomics, 
transcriptomics and proteomics) have been widely employed as tools 
for mechanistic investigations of many diseases. Metabolomics, which 
refers to the comprehensive profiling of small-molecule metabolites 
in a biological sample, is a relatively new bioanalytical technique in 
this field. The metabolite profile of tissues and body fluids can be 
thought of as a net output of changes in the biological activity of 
different pathways and in this respect represents an integrated profile 
of variability in genomic, transcriptomic and proteomic status. To 
date, the profiling of alterations in metabolite concentrations has 
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shown great potential for gaining new insight into a number of 
different disease states [5-8].

In the field of obesity and metabolic disease, recent studies 
employing targeted metabolomics, have identified a number of 
novel metabolites and pathways that may be involved in disease 
pathogenesis [9-12]. Chronic lipid oversupply is well known to cause 
obesity and the accompanying insulin resistance is often associated 
with excessive accumulation of toxic lipid intermediates (e.g. 
diacylglycerols and ceramides) in insulin-sensitive tissues [2]. In a 
series of elegant studies using mass spectrometry-based metabolite 
profiling in rodents and cells, it has been recently shown that lipid 
oversupply can also lead to accumulation of fatty acylcarnitines 
within skeletal muscle [13-15]. This acylcarnitine signature, which is 
thought be the result of mitochondrial fatty acid overload, has also 
been observed in humans with obesity and type 2 diabetes [16,17]. To 
date a direct role for acylcarnitines in promoting metabolic defects 
in muscle has not been demonstrated, however recent work suggests 
that accumulation of these metabolites may serve as a marker for 
disturbances in the ability of mitochondria to efficiently transition 
between fuel substrates [18].

Metabolic profiling has also identified a critical role for gut 
flora-dependent metabolism of dietary phosphatidylcholine in the 
pathogenesis of CVD. Using an unbiased screen, Wang et al. [19] 
discovered that three metabolites of phosphatidylcholine (choline, 
trimethylamine N-oxide (TMAO) and betaine) were predictive 
of increased risk for CVD. Studies in mice, confirmed that these 
metabolites could directly promote atherosclerosis when included 
in the diet. Furthermore, through the use of germ-free mice and 
broad-spectrum antibiotics treatments, it was shown that intestinal 
microflora play an essential role in this pathogenic process. In 
addition to CVD, metabolomics analyses have also implicated an 
active role for the intestinal microbial community in determining 
the susceptibility to insulin resistance and non-alcoholic fatty liver 
disease [20].

A final example of how metabolomics has provided new insight 
into human metabolic disease states comes from studies that have 
identified a novel association between branched chain amino acids 
(BCAA) and insulin resistance. The metabolite profile of plasma 
from obese (BMI 37) and lean (BMI 23) individuals was examined 
and the component of the plasma that most strongly correlated 
with insulin resistance (HOMA score) was the BCAA concentration 
[21]. Studies in rats provided with high-fat diets with or without 
supplemented BCAA, suggested that BCAA may play a direct role in 
causing metabolic dysfunction [21]. Several subsequent reports have 
confirmed a strong association between the BCAA metabolite cluster 
and metabolic disease [22-24], sparking new interest in investigating 
the complex interplay between lipids and protein in the development 
of metabolic dysfunction.

The above are just a few examples illustrating the novel insight 
into factors contributing to obesity and metabolic disease provided 
by metabolite profiling. As the analytical tools and experimental 
platforms for metabolomics continue to develop, there will be an 
expanded scope for identifying novel disease mechanisms and 
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biomarkers using this approach. Furthermore, the integration of 
metabolite profiles with genomic, transcriptomic and proteomic data 
will provide crucial new knowledge about the importance of different 
metabolic regulatory networks as potential therapeutic targets to treat 
obesity and metabolic disease. 
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