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Methylotrophic and methanotrophic bacteria (methylotrophs 
and methanotrophs) are a diverse group of microbes that can 
use reduced one-carbon (C1) sources, such as methanol and 
methane as a sole source for both energy generation and carbon 
assimilation. Methylobacterium extorquens AM1 is one of the best-
characterized model organisms for the study of C1 metabolism in 
the methylotrophic bacteria. In M. extorquens AM1, the methanol 
is first oxidized to a key intermediate of formate through multiple 
reactions and then formate is assimilated via three overlapped cycles, 
the serine cycle, ethylmalonyl-CoA pathway and tricarboxylic acid 
cycle [1]. Methanotrophic bacteria form a highly specialized group 
of microbes utilizing greenhouse gas methane as a sole source of 
carbon and energy. It consists of type I and type II groups, which 
differ in intracellular membrane arrangement, pathways of carbon 
assimilation, and phospholipids fatty acid composition [2]. A 
number of novel methanotrophic phyla were isolated and described, 
including new members of the Alpha- and Gammaproteobacteria, 
and Verrucomicrobia [3,4]. Recently, the available genome sequences 
of methylotrophs and methanotrophs, such as Methylobacterium 
extorquens AM1, Methylococcus capsulatus Bath, Methylomonas sp. 
LW13, Methylosinus trichosporium OB3b and Methylomicrobium 
alcaliphilum 20Z, have further provided the ability to perform 
integrated metabolism studies by applying transcriptomics, 
proteomics, metabolomics and 13C metabolomics [5-8]. 

Metabolomics is emerging as one of the most important of the 
“-omics” technologies, as cellular metabolism and its regulation 
often will more closely reflect the cell status in response to genetic or 
environmental perturbations, than measurements that are upstream 
of metabolic conversions such as transcriptomics or proteomics. The 
continued development of analytical platforms, database libraries, 
chemometric data analysis tools, and 13C labeling techniques 
are allowing metabolomics studies to cover a broader range of 
metabolites, and are also providing key advancements for 13C flux 
analysis. Mass spectrometry (MS) based metabolomics, in which a 
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separation technique such as gas chromatography (GC), capillary 
electrophoresis (CE) or liquid chromatography (LC) is coupled to a 
mass spectrometer, has been widely applied to profile metabolomes 
or determine metabolite concentrations. Due to the versatile 
separation characteristics of LC, broader selectivity, and omission 
of derivatization steps, LC–MS is often the preferred technique for 
metabolomic analysis. Metabolites are typically moderately to highly 
polar small molecules, which are often too hydrophilic to be reliably 
retained and separated on common reversed-phase columns (RPLC). 
New chromatographic techniques, including hydrophilic interaction 
liquid chromatography (HILIC), ion-pairing reverse phase 
chromatography and hybrid phase chromatography are gaining 
popularity for metabolomics applications [9-11]. However, some 
metabolites with similar physicochemical properties have proven 
challenging for LC analyses. As a result, the combination of multiple 
LC-based and GC-based methods for the same sample was preferred 
to increase the coverage of metabolites. In a recent report, we have 
investigated the central metabolism of M. extorquens AM1 and M. 
trichosporium OB3b by using a combination of complementary 
separation techniques (RPLC, HILIC and comprehensive two-
dimensional gas chromatography) with MS detection [10,12]. 

In addition to a good retention and separation of metabolites, 
introduction of internal standards (I.Ss.) to the samples prior 
to metabolite extraction is important for reliable quantification. 
When complex biological extracts are injected into an electrospray 
ionization source, the ionization efficiency of metabolites can be 
suppressed or enhanced due to the presence of less volatile and 
coeluting compounds [10]. By adding 13C-labeled I.Ss., especially cell 
culture derived global 13C-labeled I.Ss., to the samples, corrections 
can be made for the variations arising from instrumental analysis 
and sample preparation [10,13]. With the introduction of a global 
13C-labeled I.Ss., the concentrations of more than 40 metabolites have 
been well profiled in M. extorquens AM1 and M. trichosporium OB3b 
[10,14].

Many efforts have been made to develop efficient chemometric 
data analysis tools in our laboratory and elsewhere [15,16]. Parallel 
Factor Analysis (PARAFAC) is one of the mathematical tools for peak 
deconvolution that provides accurate quantification of metabolites of 
interest even in the presence of overlapping compounds. Recently, 
a novel PARAFAC method was reported for the analysis of nearly 
co-eluting 12C and 13C isotopically labeled metabolites on GC-MS 
and two-dimensional gas chromatography-time-of-flight mass 
spectrometry (GC x GC-TOFMS) data [15,17]. This methodology 
further forms the basis for dynamic 13C flux analysis to determine 
the fate of interesting metabolites in M. trichosporium OB3b, via 
quantitative determination of 13C-label uptake as a function of time 
[17]. More recently, by using 13C-based metabolomics to track the 
dynamic labeling patterns of CoAs derivatives, novel metabolic 
pathways including the ethylmalonyl-CoA pathway have been 
demonstrated as important for glyoxylate regeneration in the central 
metabolism of M. extorquens AM1 and M. trichosporium OB3b 
[14,18,19].
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