Complications Related to Radial Artery Cannulation from 2004 to 2013

Kenji Kayashima* and Keiko Imai
Department of Anesthesia, Kyushu Kosei Nenkin Hospital, Kitakyushu, Fukuoka, Japan

Summary
Radial artery cannulation facilitates the monitoring of arterial pressure, enables the introduction of gas-sampling lines, and provides routes for cardiac diagnostic and interventional catheterization. However, detailed information is needed to prevent complications associated with radial arterial cannulations.

Through an extensive literature search for case reports in PubMed and other databases from 2004 to 2013, 27 cases (from 24 articles) of complications related to radial artery cannulation for pressure monitoring and cardiac catheterization were identified. These cases included 7 cases of pseudoaneurysms, 6 cases of hand or finger ischemia, 5 cases of foreign bodies, 1 case of spasm, 2 cases of arteriovenous fistula, and 6 cases of perforation. In 13 cases, surgical intervention was required and completed successfully. Most cases of pseudoaneurysms and ischemia were associated with co-existing diseases, such as ischemic heart disease with an assumption of atherosclerosis. Radial artery perforations were successfully treated with catheter interventions.

Radial artery cannulation with longer catheters (≥5 cm) was associated with a decreased incidence of thrombosis. Although both 22-G and 20-G catheters are <5 cm long, 22-G catheters appear to have a favorable safety profile compared to 20-G catheters in atherosclerotic patients. Moreover, 5-Fr sheaths appear to have a favorable safety profile compared to 6-Fr sheaths. Care should be taken in choosing the size of catheters for cannulation according to the co-existing diseases.

Keywords
Radial artery; Cannulation; Complication; Catheter

Introduction
Radial artery cannulation facilitates the monitoring of arterial pressure, enables the introduction of gas-sampling lines, and provides routes for cardiac diagnostic and interventional catheterization. However, it can result in several types of complications. Review articles have included discussions of these complications, but these articles almost always refer to complications occurring before 2004 [1-7].

This review article discusses case reports published from 2004 to 2013 describing complications related to radial arterial cannulation. Articles published during this same time frame that describe strategies to deal with complications in order to ensure safe cannulation are also discussed.

Results
In an extensive literature search, we searched case reports, review articles, and original articles published from 2004 to 2013 related to complications of radial artery cannulation. We identified those articles in PubMed, Google Scholar, and science journals by using keywords such as radial artery, transradial, complication, pseudoaneurysm, occlusion, perforation, and spasm.

We initially searched PubMed and found 447 documents with the keyword “radial artery complication” and 134 with the keyword “transradial complication.” We then found 197 articles in a search for “radial artery pseudoaneurysm,” 956 articles in a search for “radial artery occlusion,” 46 articles in a search for “radial artery perforation,” and 286 articles in a search for “radial artery spasm.” Thereafter, we searched for articles using Google Scholar, and also identified the science journals related to the searched articles through PubMed.

After reviewing titles and abstracts, we identified 27 cases of complications in 24 papers published from 2004 to 2013.

Table 1 shows a summary of the 27 case reports related to radial arterial cannulation [8-31]. These cases included 7 cases of pseudoaneurysm [8-14], 6 cases of ischemia [15-20], 5 cases of foreign bodies [8,21-24], 1 case of spasm [25], 2 cases of arteriovenous fistulas [26,27], and 6 cases of perforations [28-31]. In 2 of the 27 cases, the patients were children [17,25].

Surgical repair was required in 13 of the 27 cases. Pseudoaneurysms were resected [9-12,14], a hand or fingers were amputated for ischemia [15,16,19], foreign bodies were removed [22-25], and an arteriovenous fistula was ligated [26].

Pseudoaneurysms and foreign bodies were frequent and were successfully resected or removed surgically. Risk factors for the development of pseudoaneurysm were abnormal vessel wall (atherosclerosis), age of >70 years, indwelling duration, and other miscellaneous factors [9,11,13]. All 7 cases of pseudoaneurysms and 5 of the 6 cases of hand ischemia were associated with co-existing diseases, such as ischemic heart disease with an assumption of atherosclerosis. In 5 of the 7 pseudoaneurysm cases, the patients were aged >70 years [10-14]. In 4 of the 7 cases, the indwelling duration was >9 days [8,9,11,14].

Discussion
We identified 27 cases of complications related to radial arterial cannulation. These cases included 7 cases of pseudoaneurysms, 6 cases of hand or finger ischemia, 5 cases of foreign bodies, 1 case of spasm, 2 cases of arteriovenous fistula, and 6 cases of perforations.

The most common complications associated with peripheral
Table 1: Summary of case reports related to radial arterial cannulation.

<table>
<thead>
<tr>
<th>Reference no.</th>
<th>Year</th>
<th>Complications</th>
<th>Age</th>
<th>Co-existing condition(s) before cannulation</th>
<th>Catheter size</th>
<th>Purpose</th>
<th>Duration</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blasco et al. [8]</td>
<td>2005</td>
<td>Pseudoaneurysm</td>
<td>55 y</td>
<td>AMI</td>
<td>6Fr Sh</td>
<td>Diagnostic CC</td>
<td>14 d</td>
<td>Mechanical compression</td>
</tr>
<tr>
<td>Afshar and Nasiri [9]</td>
<td>2009</td>
<td></td>
<td>48 y</td>
<td>MVM</td>
<td>?</td>
<td>Pressure monitoring</td>
<td>1 m</td>
<td>Surgical resection</td>
</tr>
<tr>
<td>Nazeri et al. [10]</td>
<td>2011</td>
<td></td>
<td>82 y</td>
<td>IHD, HT</td>
<td>–</td>
<td>Pressure monitoring</td>
<td>5 d</td>
<td>Surgical resection</td>
</tr>
<tr>
<td>Truong and Thakar [12]</td>
<td>2013</td>
<td></td>
<td>73 y</td>
<td>IHD</td>
<td>20G</td>
<td>Surgical resection</td>
<td>2 d</td>
<td>Surgical resection</td>
</tr>
<tr>
<td>Suchori [13]</td>
<td>2013</td>
<td></td>
<td>84 y</td>
<td>HT</td>
<td>6Fr Sh</td>
<td>Diagnostic CC</td>
<td>1 d</td>
<td>Compression</td>
</tr>
<tr>
<td>Bhat et al. [14]</td>
<td>2013</td>
<td></td>
<td>80 y</td>
<td>IHD</td>
<td>5Fr Sh</td>
<td>CC intervention</td>
<td>10 d</td>
<td>Surgical resection</td>
</tr>
<tr>
<td>Wallach [15]</td>
<td>2004</td>
<td>Ischemia</td>
<td>61 y</td>
<td>DM PAD IHD</td>
<td>–</td>
<td>Pressure monitoring</td>
<td>12 h</td>
<td>Surgical amputation</td>
</tr>
<tr>
<td>Lemaitre et al. [16]</td>
<td>2006</td>
<td></td>
<td>58 y</td>
<td>COPD DM HT HL HHCys</td>
<td>–</td>
<td>Pressure monitoring</td>
<td>21 d</td>
<td>Surgical ligation</td>
</tr>
<tr>
<td>Stephenson et al. [17]</td>
<td>2009</td>
<td></td>
<td>3 m</td>
<td>–</td>
<td>24G</td>
<td>Pressure monitoring</td>
<td>5 h</td>
<td>Bacitracin ointment</td>
</tr>
<tr>
<td>Rhyne and Mann [18]</td>
<td>2010</td>
<td></td>
<td>72 y</td>
<td>HT HL Smoking</td>
<td>6Fr Sh</td>
<td>Diagnostic CC</td>
<td>14 d</td>
<td>Angioplasty</td>
</tr>
<tr>
<td>Chaparro [19]</td>
<td>2012</td>
<td></td>
<td>31 y</td>
<td>DM</td>
<td>20G</td>
<td>Pressure monitoring</td>
<td>3 d</td>
<td>Surgical amputation</td>
</tr>
<tr>
<td>Rademakers and Laarman [20]</td>
<td>2012</td>
<td></td>
<td>44 y</td>
<td>Smoking</td>
<td>6Fr Sh</td>
<td>Diagnostic CC</td>
<td>5 d</td>
<td>Medication</td>
</tr>
<tr>
<td>Blasco et al. [8]</td>
<td>2005</td>
<td>Foreign body</td>
<td>57 y</td>
<td>AMI</td>
<td>6Fr Sh</td>
<td>Cardiac angioplasty</td>
<td>14 d</td>
<td>Biopsy</td>
</tr>
<tr>
<td>Luo et al. [21]</td>
<td>2010</td>
<td></td>
<td>73 y</td>
<td>–</td>
<td>20G</td>
<td>Pressure monitoring</td>
<td>–</td>
<td>Surgical removal</td>
</tr>
<tr>
<td>Moon et al. [22]</td>
<td>2012</td>
<td></td>
<td>69 y</td>
<td>–</td>
<td>22G</td>
<td>–</td>
<td>–</td>
<td>0 d</td>
</tr>
<tr>
<td>Aslam et al. [23]</td>
<td>2012</td>
<td></td>
<td>63 y</td>
<td>–</td>
<td>20G</td>
<td>Pressure monitoring</td>
<td>0 d</td>
<td>Surgical removal</td>
</tr>
<tr>
<td>Olechowski et al. [24]</td>
<td>2013</td>
<td></td>
<td>42 y</td>
<td>IHD</td>
<td>6Fr Sh</td>
<td>CC intervention</td>
<td>0 d</td>
<td>Surgical removal</td>
</tr>
<tr>
<td>Latham et al. [25]</td>
<td>2013</td>
<td></td>
<td>8 m</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0 d</td>
</tr>
<tr>
<td>Na et al. [26]</td>
<td>2012</td>
<td>Fistula</td>
<td>61 y</td>
<td>IHD</td>
<td>–</td>
<td>CC intervention</td>
<td>11 m</td>
<td>Surgical ligation</td>
</tr>
<tr>
<td>Dehghani et al. [27]</td>
<td>2013</td>
<td></td>
<td>62 y</td>
<td>IHD</td>
<td>6Fr 23 cm Sh</td>
<td>CC intervention</td>
<td>30 d</td>
<td>Observation</td>
</tr>
<tr>
<td>Patel et al. [28]</td>
<td>2009</td>
<td>Perforation</td>
<td>60 y</td>
<td>IHD</td>
<td>5Fr</td>
<td>Diagnostic CC</td>
<td>0 d</td>
<td>Observation</td>
</tr>
<tr>
<td>Mamearis et al. [29]</td>
<td>2010</td>
<td></td>
<td>70 y</td>
<td>IHD DM</td>
<td>5Fr</td>
<td>Diagnostic CC</td>
<td>0 d</td>
<td>Observation</td>
</tr>
<tr>
<td>Narayan et al. [30]</td>
<td>2012</td>
<td></td>
<td>75 y</td>
<td>IHD HT HL Obesity</td>
<td>6Fr 10 cm Sh</td>
<td>Diagnostic CC</td>
<td>0 d</td>
<td>Balloon occlusion</td>
</tr>
<tr>
<td>Buturak et al. [31]</td>
<td>2013</td>
<td></td>
<td>73 y</td>
<td>IHD HT HL</td>
<td>5Fr Sh</td>
<td>CC intervention</td>
<td>0 d</td>
<td>Catheter sealing</td>
</tr>
</tbody>
</table>


arterial catheters used for hemodynamic monitoring from 1978 to 2001 were temporary radial artery occlusion (19.7%), and hematoma (14.4%), followed by infection at the arterial site (0.7%), hemorrhage (0.5%) or bacteremia (0.1%), and permanent ischemic damage or pseudoaneurysm (0.1% each) [2].

In the reviewed cases, pseudoaneurysms and foreign bodies were successfully resected or removed surgically. Ultrasonography and three-dimensional computerized tomography proved useful for the detection of the presence of intra-arterial catheter remnants or foreign bodies [8,21,22].

Greenwood et al. [32] and Kohonen et al. [33] suggest that the Allen test is a good and valid screening test for the circulation of the hand. It is noted that the Modified Allen’s test cannot predict ischemic complications in the setting of radial artery occlusion in review articles [4,6,7]. Ischemic events were reported in the present 6 cases. Allen’s test was normal in one case [20], was not mentioned in other 4 cases including one child [15-18], and a patent ulnar artery was confirmed in the other case [19].

Thrombosis can cause ischemia. Radial artery cannulation with a 15.2-cm catheter is associated with a lower incidence of post-decannulation radial artery thrombosis as compared to cannulation with a 4.45 cm catheter. Radial artery cannulation with longer catheters (≥5 cm) appears to have a favorable safety profile [36]. In patients with atherosclerosis, the radial arterial occlusion rate was 6% for a 25-mm-long 22-G catheter compared with 26% for a 33-mm-long 20-G catheter for radial arterial cannulation [37]. Moreover, radial artery occlusion was less frequent when a 5-Fr sheath was used (14.4%) compared to a 6-Fr sheath (33.1%) for coronary hand circulation.
catheterization (P<0.001) [38]. Radial artery occlusion was also less frequent when using a 5-Fr sheath than when using a 6-Fr sheath in another study [39]. Radial artery occlusion occurred in 0.6% of coronary angiographies and 1.4% of coronary interventions out of 1191 cases [40]. A 5-Fr sheath can be used for diagnostic angiography. In the present review, complications occurred in 1 case involving a 22-G catheter and 4 cases involving 20-G catheters. Complications occurred in 4 cases involving a 5-Fr sheath and 9 cases involving a 6-Fr sheath.

Advancement of the ultrasonographic apparatus with a 50-MHz probe clearly indicated the presence of a radial arterial spasm in an infant [25]. Intra-arterial vasodilators remain mandatory in prevention of radial arterial spasm. The combination of verapamil (1.25–5 mg) and nitroglycerin (100–200 μg) can reduce the incidence of radial arterial spasm by up to 3.8%, and the use of hydrophilic-coated sheaths and catheters can further reduce the incidence of radial arterial spasm to 1% [5]. Radial spasm was significantly reduced when using the long sheath, compared to the short sheath in 7 (4% vs. 32 [18%]) of patients, P<0.001) [41]. It seems unclear whether or not such prevention is effective for children.

In cases of iatrogenic radial artery perforation, 9 patients were managed conservatively by inserting a long arterial sheath in the damaged radial artery up to the brachial artery [42]. In this review, 6 cases of perforations were managed successfully, with 4 catheter interventions and 2 observations without operation.

One article supports the superiority of radial access over femoral access in reducing complications [43]. However, severe complications related to radial artery cannulation were reported in papers published from 2004 to 2013. Therefore, we believe that care should be taken when choosing the size of the catheter for cannulation according to the co-existing diseases, especially in cases with atherosclerosis.

We could not retrieve all the data about the radial artery cannulation in case reports, although we attempted to obtain the data directly from the authors. However, we believe that this review covers most of the available information about radial artery cannulation from case reports, in addition to past reviews and original articles. However, further information on this topic would facilitate the reduction of complications related to radial artery cannulation.

References


