����JFIFXX�����    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222����"��4�� ���,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu���#ډb���_�N�?��wQ���5-�~�I���8����TK<5o�Iv-�����k�_U_�����~b�M��d����Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F�?_�'ϔ��_�Ջt��=||I ��6�έ"�����D���/[�k�9���Y�8ds|\���Ҿp6�Ҵ���]��.����6�z<�v��@]�i%��$j��~�g��J>��no����pM[me�i$[����s�o�ᘨ�˸ nɜG-�ĨU�ycP�3.DB�li�;��hj���x7Z^�N�h������N3u{�:j�x�힞��#M&��jL P@_���� P��&��o8������9�����@Sz6�t7#O�ߋ �s}Yf�T���lmr����Z)'N��k�۞p����w\�Tȯ?�8`�O��i{wﭹW�[�r�� ��Q4F�׊���3m&L�=��h3����z~��#�\�l :�F,j@�� ʱ�wQT����8�"kJO���6�֚l����}���R�>ډK���]��y����&����p�}b��;N�1�m�r$�|��7�>e�@B�TM*-iH��g�D�)� E�m�|�ؘbҗ�a��Ҿ����t4���o���G��*oCN�rP���Q��@z,|?W[0�����:�n,jWiE��W��$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S����VN;�}�s?.����� w�9��˟<���Mq4�Wv'��{)0�1mB��V����W[�����8�/<� �%���wT^�5���b��)iM� pg�N�&ݝ��VO~�q���u���9� ����!��J27����$O-���! �:�%H��� ـ����y�ΠM=t{!S�� oK8������t<����è:a������[�����ա�H���~��w��Qz`�po�^ ����Q��n� �,uu�C�$ ^���,������8�#��:�6��e�|~���!�3�3.�\0��q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�<���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y�|�y��� ~�6�@c��1vOp�Ig����4��l�OD���L����� R���c���j�_�uX6��3?nk��Wy�f;^*B� ��@�~a�`��Eu������+���6�L��.ü>��}y���}_�O�6�͐�:�YrG�X��kG�����l^w���~㒶sy��Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2��#I/�׍qz��^t�̔���b�Yz4x���t�){ OH��+(E��A&�N�������XT��o��"�XC��'���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�|Lp�d�H��}�(�.|����k��c4^�"�����Z?ȕ ��a<�L�!039C� �Eu�C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf���M}7����]����s2tcS{�\icTx;�\��7K���P���ʇ Z O-��~��c>"��?�������P��E��O�8��@�8��G��Q�g�a�Վ���󁶠�䧘��_%#r�>�1�z�a��eb��qcPѵ��n���#L��� =��׀t� L�7�`��V���A{�C:�g���e@�w1 Xp3�c3�ġ����p��M"'-�@n4���fG��B3�DJ�8[Jo�ߐ���gK)ƛ��$���� ���8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`���?��K����QK�d����B`�s}�>���`��*�>��,*@J�d�oF*����弝��O}�k��s��]��y�ߘ��c1G�V���<=�7��7����6�q�PT��tXԀ�!9*4�4Tހ3XΛex�46���Y��D ����� �BdemDa����\�_l,��G�/���֌7���Y�](�xTt^%�GE�����4�}bT���ڹ�����;Y)���B�Q��u��>J/J �⮶.�XԄ��j�ݳ�+E��d ��r�5�_D�1 ��o�� �B�x�΢�#���<��W�����8���R6�@g�M�.��� dr�D��>(otU��@x=��~v���2� ӣ�d�oBd��3�eO�6�㣷�����ݜ6��6Y��Qz`��S��{���\P�~z m5{J/L��1������<�e�ͅPu�b�]�ϔ���'������f�b� Zpw��c`"��i���BD@:)ִ�:�]��hv�E�w���T�l��P���"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u�)]կ�����7x���s�M�-<ɯ�c��r�v�����@��$�ޮ}lk���a���'����>x��O\�ZFu>�����ck#��&:��`�$�ai�>2Δ����l���oF[h��lE�ܺ�Πk:)���`�� $[6�����9�����kOw�\|���8}������ބ:��񶐕��I�A1/�=�2[�,�!��.}gN#�u����b��� ~��݊��}34q����d�E��Lc��$��"�[q�U�硬g^��%B �z���r�pJ�ru%v\h1Y�ne`ǥ:g���pQM~�^�Xi� ��`S�:V29.�P���V�?B�k�� AEvw%�_�9C�Q����wKekPؠ�\�;Io d�{ ߞo�c1eP����\� `����E=���@K<�Y���eڼ�J���w����{av�F�'�M�@/J��+9p���|]�����Iw &`��8���&M�hg��[�{��Xj��%��Ӓ�$��(����ʹN���<>�I���RY���K2�NPlL�ɀ)��&e����B+ь����( � �JTx���_?EZ� }@ 6�U���뙢ط�z��dWI�n` D����噥�[��uV��"�G&Ú����2g�}&m��?ċ�"����Om#��������� ��{�ON��"S�X��Ne��ysQ���@Fn��Vg���dX�~nj�]J�<�K]:��FW��b�������62�=��5f����JKw��bf�X�55��~J �%^����:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v���g�8�1��f24;�V���ǔ�)����9���1\��c��v�/'Ƞ�w�������$�4�R-��t���� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃������A��20�c#��@ 0!1@AP"#2Q`$3V�%45a6�FRUq��� ����^7ׅ,$n�������+��F�`��2X'��0vM��p�L=������5��8������u�p~���.�`r�����\���O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;������S�T���1���i[U�ɵz�]��U)V�S6���3$K{�ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u�!��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� ���D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v�����멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$�JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4�[�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ�dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il��d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J��oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.���3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R=X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N�����#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%���JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$���L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����)�H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>�dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\�y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~������Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7��ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz��)�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!)'��8Ϣ�ٔ��ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'�L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���(}��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3�������QT��a����x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3�,#c�co��q�a)*Pt����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O���������m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l�O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m���PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q������~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~�|,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)`7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ����}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i����>J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q��nxҍ!U�f�!eh�i�2�m���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{/ �?�͟��|1�:�#g��W�>$����d��J��d�B��=��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H����O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l����l�cGs�ځ�������y�Ac�����\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6����N6�q������N ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td�� ?���N����a��3��m���C���w��������xA�m�q�m���m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4���r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0������u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ����V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�����Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q�(v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9��3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M����A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#yw��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa����Q�#� WeF��ŮNj�p�J* mQ�N����*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]��陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv:��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WPw���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp�BGv[]�u�Ov���0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R��� ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`(�>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG��{+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�>e]�����Q�r�:����g�,i"�����ԩA�*M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f�����֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ���˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)��h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~������ G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W�I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��BS�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c���]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪�\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W�����6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}�����6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@�P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6�����m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw�k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ����mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e��R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1[y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN��ĕ��0 !01@Q"2AaPq3BR������?���@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j�ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^���ԯ̾9Z��F��������n��1��� ��]�[��)�'������:�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0��;_��3 !01"@AQa2Pq#3BR������?��ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6����������4B>��o��](��$B���m�����a�!=��?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)����I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a�84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b��$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7��k�� 403WebShell
403Webshell
Server IP : 172.67.215.126  /  Your IP : 172.69.214.61
Web Server : Apache/2.4.52 (Ubuntu)
System : Linux ip-172-31-19-221 6.8.0-1029-aws #31~22.04.1-Ubuntu SMP Thu Apr 24 21:16:18 UTC 2025 x86_64
User : www-data ( 33)
PHP Version : 8.1.28
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : ON  |  Pkexec : ON
Directory :  /efsdata/scitechnol.com/httpdocs/submission/uploads/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /efsdata/scitechnol.com/httpdocs/submission/uploads/27-1-Manuscript-12-Jul-2012.doc
��ࡱ�>��	�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������	��bjbj���	$R�����&������������������8��k4�+?*�:�"���777�>�>�>�>�>�>�>UA��Cb�>�7777;�>g(����<�>g(g(g(?"	����:�g(7�>g(g(��7���f9
�Yl`��a$B8�9<�>0+?V8YDg(YD(f9g(f9P��9777������������������������������I:
	Title 
Human Hepatocellular Carcinoma Metabolism: Imaging by Hyperpolarized 13C Magnetic Resonance Spectroscopy
Authors
Moses M. Darpolor1, David E. Kaplan2, Peter L. Pedersen3, and Jerry D. Glickson1
Authors� Affiliations:
Departments of 1Radiology and 2Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA; 3Departments of Biological Chemistry and Oncology, Sidney Kimmel Cancer Research Center, and Center for Obesity Research & Metabolism, John Hopkins University, School of Medicine, Baltimore, MD, USA
Correspondence to:
Moses M. Darpolor, Ph.D.
University of Pennsylvania,
Department of Radiology,
B-6 Blockley Hall - 6021,
423 Guardian Drive
Philadelphia, PA 19104-6100
E-mail: HYPERLINK "mailto:mdarpolor@gmail.com"mdarpolor@gmail.com

Running Head: Hyperpolarized 13C MRS imaging of HCC



Abstract
Purpose: Most cancers exhibit high levels of aerobic glycolytic metabolism with diminished levels of mitochondrial oxidative phosphorylation even in the presence of normal or near-normal levels of oxygen ("Warburg effect"). However, technical challenges have limited the development of non-invasive in vivo imaging techniques for monitoring glycolytic metabolism of hepatocellular carcinoma (HCC) and quantitatively evaluating the impact of this effect on the growth and therapy of this disease. Thus, there is a critical need to develop non-invasive techniques for longitudinal assessment of the metabolism and treatment response of patients with unresectable HCCs. 
Procedures: This article discusses a novel method, "hyperpolarized 13C MRS imaging", for achieving this objective and thus improving the prognosis of HCC patients. The primary objective has been to characterize in vivo metabolic biomarkers as determinants of HCC metabolism and treatment response of unresectable HCC tumors or viable HCC cells. 
Results: This innovative technique capitalizes on a new technology that increases the sensitivity of MRS detection of crucial metabolites in cancer cells. 
Conclusion: It is anticipated that this innovative approach will lead to improved methods, both for the diagnosis and staging of HCCs and for the facilitation of the development of enzyme targeted therapies and other therapeutic interventions.
Key Words: hepatocellular carcinoma, "Warburg effect", hyperpolarized 13C MRS, [1-13C]pyruvate, alanine transaminase, branched-chain aminotransferases





List of Abbreviations: 
HCC, hepatocellular carcinoma
MRSI, magnetic resonance spectroscopic imaging
ATP, adenine triphosphate
TCA, tricarboxylic acid 
DNP, dynamic nuclear polarization
NAD(P)H, nicotinamide adenine (phosphate) dinucleotide 
LDH-A, lactate dehydrogenase A
HBV, hepatitis B virus
HCV, hepatitis C virus
3D DSE-EPSI, three-dimensional double-spin-echo echo-planar spectroscopic imaging
PCR, polymerase chain reaction
NQO1, NAD(P)H dehydrogenase quinone 1
ALT, alanine transaminase
SEM, standard error of mean
BCAT-1 or -2, branched-chain aminotransferases-1 or -2
cDNA, complementary deoxyribonucleic acid
TACE, transcatheter arterial chemoembolization





Introduction
	A characteristic feature of cancer cells is the alteration of their central carbon metabolism. It is generally acknowledged that for energy production cancer cells enhance their utilization of glycolysis and diminish that of oxidative phosphorylation irrespective of oxygen supply  ADDIN EN.CITE <EndNote><Cite><Author>Warburg</Author><Year>1924</Year><RecNum>86</RecNum><record><rec-number>86</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">86</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Otto Warburg</author><author>Karl Posener</author><author>Erwin Negelein</author></authors></contributors><titles><title>Uber den Stoffwechsel der Carcinomzelle</title><secondary-title>Biochemische Zeitschrift</secondary-title></titles><periodical><full-title>Biochemische Zeitschrift</full-title></periodical><pages>309-344</pages><volume>152</volume><dates><year>1924</year></dates><urls></urls><language>German</language></record></Cite></EndNote>[1]. However, although mechanistic explanations for this enhanced glycolytic phenotype are controversial, it is likely due to the need for a versatile method for ATP production to serve as a direct form of energy, or as energy to drive both biosynthesis of vital intermediates for cell growth and provide anaplerotic flux for the tricarboxylic acid (TCA) cycle  ADDIN EN.CITE  ADDIN EN.CITE.DATA [2-4]. 
	As technological improvements increase the feasibility of studying cancer metabolism, a growing number of reports have investigated the molecular basis of malignant transformation and cell metabolism. Recently, a state-of-the-art metabolome analysis tool based on capillary electrophoresis coupled to mass spectrometry  ADDIN EN.CITE <EndNote><Cite><Author>Hirayama</Author><Year>2009</Year><RecNum>67</RecNum><record><rec-number>67</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">67</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Akiyoshi Hirayama</author><author>Kenjiro Kami</author><author>Masahiro Sugimoto</author><author>Maki Sugawara</author><author>Naoko Toki</author><author>Hiroko Onozuka</author><author>Taira Kinoshita</author><author>Norio Saito</author><author>Atsushi Ochiai</author><author>Masaru Tomita</author><author>Hiroyasu Esumi</author><author>Tomoyoshi Soga</author></authors></contributors><titles><title>Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>4918-4925</pages><volume>69</volume><number>11</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[5] quantified the various levels of metabolites involved in central carbon metabolism in human tumor tissues and globally mapped the glycolysis, pentose phosphate, and TCA pathways. In addition, the liquid state preservation of polarized nuclear spins from dynamic nuclear polarization (DNP)  ADDIN EN.CITE <EndNote><Cite><Author>Ardenkjaer-Larsen</Author><Year>2003</Year><RecNum>52</RecNum><record><rec-number>52</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">52</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ardenkjaer-Larsen, Jan Henrik</author><author>Bjorn Fridlund</author><author>Andreas Gram</author><author>George Hansson</author><author>Lennart Hansson</author><author>Mathilde H. Lerche</author><author>Rolf Servin</author><author>Mikkel Thaning</author><author>Klaes Golman</author></authors></contributors><titles><title>Increase in signal-to-noise ratio of &gt;10,000 times in liquid-state NMR</title><secondary-title>PNAS</secondary-title></titles><periodical><full-title>PNAS</full-title></periodical><pages>10158-10163</pages><volume>100</volume><number>18</number><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>[6] has advanced 13C magnetic resonance spectroscopic imaging (MRSI) and enabled the implementation of in vivo tumor metabolic imaging with hyperpolarized [1-13C]pyruvate  ADDIN EN.CITE  ADDIN EN.CITE.DATA [7-15], 13C-labelled bicarbonate  ADDIN EN.CITE <EndNote><Cite><Author>Gallagher</Author><Year>2008</Year><RecNum>62</RecNum><record><rec-number>62</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">62</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ferdia A. Gallagher</author><author>Mikko I. Kettunen</author><author>Sam E. Day</author><author>De-En Hu</author><author>Ardenkjaer-Larsen, Jan Henrik</author><author>in &apos;t  Zandt, Rene</author><author>Pernille R. Jensen</author><author>Magnus Karlsson</author><author>Klaes Golman</author><author>Mathilde H. Lerche</author><author>Kevin M. Brindle</author></authors></contributors><titles><title>Magnetic resonance imagin of pH in vivo using hyperpolarized 13C-labelled bicarbonate</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>940-943</pages><volume>453</volume><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>[16], [2-13C]fructose  ADDIN EN.CITE <EndNote><Cite><Author>Keshari</Author><Year>2009</Year><RecNum>70</RecNum><record><rec-number>70</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">70</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kayvan R. Keshari</author><author>David M. Wilson</author><author>Albert P. Chen</author><author>Robert Bok</author><author>Peder E. Z. Larson</author><author>Simon Hu</author><author>Mark Van Criekinge</author><author>Jeffrey M. Macdonald</author><author>Daniel B. Vigneron</author><author>John Kurhanewicz</author></authors></contributors><titles><title>Hyperpolarized [2-13C]-Fructose: A Hemiketal DNP Substrate for In Vivo Metabolic Imaging</title><secondary-title>Journal of the American Chemical Society</secondary-title></titles><periodical><full-title>Journal of the American Chemical Society</full-title></periodical><pages>17591-17596</pages><volume>131</volume><number>48</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[17], [1,4-13C2]fumarate  ADDIN EN.CITE <EndNote><Cite><Author>Gallagher</Author><Year>2009</Year><RecNum>63</RecNum><record><rec-number>63</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">63</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ferdia A. Gallagher</author><author>Mikko I. Kettunen</author><author>De-En Hu</author><author>Pernille R. Jensen</author><author>in &apos;t  Zandt, Rene</author><author>Magnus Karlsson</author><author>Anna Gisselsson</author><author>Sarah K. Nelson</author><author>Timothy H. Witney</author><author>Sarah E. Bohndiek</author><author>Georg Hansson</author><author>Torben Peitersen</author><author>Mathilde H. Lerche</author><author>Kevin M. Brindle</author></authors></contributors><titles><title><style face="normal" font="default" size="100%">Production of hyperpolarized [1,4-</style><style face="superscript" font="default" size="100%">13</style><style face="normal" font="default" size="100%">C</style><style face="subscript" font="default" size="100%">2</style><style face="normal" font="default" size="100%">]malate from [1,4-</style><style face="superscript" font="default" size="100%">13</style><style face="normal" font="default" size="100%">C</style><style face="subscript" font="default" size="100%">2</style><style face="normal" font="default" size="100%">]fumarate is a marker of cell necrosis and treatment response in tumors</style></title><secondary-title>PNAS</secondary-title></titles><periodical><full-title>PNAS</full-title></periodical><pages>19801-19806</pages><volume>106</volume><number>47</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[18] or [1-13C]ketoisocaproate  ADDIN EN.CITE <EndNote><Cite><Author>Karlsson</Author><Year>2010</Year><RecNum>69</RecNum><record><rec-number>69</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">69</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Magnus Karlsson</author><author>Pernille R. Jensen</author><author>in &apos;t  Zandt, Rene</author><author>Anna Gisselsson</author><author>Georg Hansson</author><author>Jens O. Duus</author><author>Sebastian Meier</author><author>Mathilde H. Lerche </author></authors></contributors><titles><title>Imaging of Branched Chain Amino Acid Metabolism in Tumors with Hyperpolarized 13C Ketoisocaproate</title><secondary-title>International Journal of Cancer</secondary-title></titles><periodical><full-title>International Journal of Cancer</full-title></periodical><pages>729-736</pages><volume>127</volume><number>3</number><edition>3 Dec 2009</edition><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[19] to investigate local changes in the carbon metabolic pathways after intravenous administration of the hyperpolarized substrate. Detection of these substrates and their metabolic products provide crucial information about multiple transporters and enzymes involved in carbon metabolism. Due to the short lifetime of the hyperpolarized signal (~ 60 s), a complete investigation of carbon metabolism is not feasible in a single data acquisition session. 
Hyperpolarized [1-13C]pyruvate MRSI was previously used to demonstrate changes in metabolism of fasted rat liver in which the [1-13C]lactate to [1-13C]alanine ratios increased as compared to normal rat liver  ADDIN EN.CITE <EndNote><Cite><Author>Hu</Author><Year>2009</Year><RecNum>68</RecNum><record><rec-number>68</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">68</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Simon Hu</author><author>Albert P. Chen</author><author>Matthew L. Zierhut</author><author>Robert Bok</author><author>Yi-Fen Yen</author><author>Marie A. Schroeder</author><author>Ralph E. Hurd</author><author>Sarah J. Nelson</author><author>John Kurhanewicz</author><author>Daniel B. Vigneron</author></authors></contributors><titles><title>In Vivo Carbon-13 Dynamic MRS and MRSI of Normal and Fasted Rat Liver with Hyperpolarized 13C-Pyruvate</title><secondary-title>Molecular Imaging and Biology</secondary-title></titles><periodical><full-title>Molecular Imaging and Biology</full-title></periodical><pages>399-407</pages><volume>11</volume><number>6</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[20]. Another study demonstrated an increased lactate production rate in rat liver when [1-13C]pyruvate was co-administered with ethanol  ADDIN EN.CITE <EndNote><Cite><Author>Spielman</Author><Year>2009</Year><RecNum>82</RecNum><record><rec-number>82</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">82</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Daniel M. Spielman</author><author>Dirk Mayer</author><author>Yi-Fen Yen</author><author>James Tropp</author><author>Ralph E. Hurd</author><author>Adolf Pfefferbaum</author></authors></contributors><titles><title>In Vivo Measurement of Ethanol Metabolism in the Rat Liver Using Magnetic Resonance Spectroscopy of Hyperpolarized [1-13C]Pyruvate</title><secondary-title>Magnetic Resonance in Medicine</secondary-title></titles><periodical><full-title>Magnetic Resonance in Medicine</full-title></periodical><pages>307-313</pages><volume>62</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[21]. This finding was attributed to increase nicotinamide adenine dinucleotide (NADH) in relation to ethanol metabolism in the rat liver. More recently, it was reported that a fasted rat bearing an orthotopic HCC showed increased [1-13C]lactate and [1-13C]alanine levels after a bolus intravenous injection of hyperpolarized [1-13C]pyruvate  ADDIN EN.CITE <EndNote><Cite><Author>Yen</Author><Year>2010</Year><RecNum>90</RecNum><record><rec-number>90</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">90</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Yi-Fen Yen</author><author>Le Roux, Patrick</author><author>Dirk Mayer</author><author>Randy King</author><author>Daniel Spielman</author><author>James Tropp</author><author>Kim Butts Pauly</author><author>Adolf Pfefferbaum</author><author>Shreyas Vasanawala</author><author>Ralph Hurd</author></authors></contributors><titles><title>T2 relaxation times of 13C metabolites in a rat hepatocellular carcinoma model measured in vivo using 13C-MRS of [1-13C]pyruvate</title><secondary-title>NMR in Biomedicine</secondary-title></titles><periodical><full-title>NMR in Biomedicine</full-title></periodical><pages>414-423</pages><volume>23</volume><number>4</number><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[15]. Unlike most [1-13C]pyruvate studies, a single-voxel MRS study  ADDIN EN.CITE <EndNote><Cite><Author>Yen</Author><Year>2010</Year><RecNum>90</RecNum><record><rec-number>90</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">90</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Yi-Fen Yen</author><author>Le Roux, Patrick</author><author>Dirk Mayer</author><author>Randy King</author><author>Daniel Spielman</author><author>James Tropp</author><author>Kim Butts Pauly</author><author>Adolf Pfefferbaum</author><author>Shreyas Vasanawala</author><author>Ralph Hurd</author></authors></contributors><titles><title>T2 relaxation times of 13C metabolites in a rat hepatocellular carcinoma model measured in vivo using 13C-MRS of [1-13C]pyruvate</title><secondary-title>NMR in Biomedicine</secondary-title></titles><periodical><full-title>NMR in Biomedicine</full-title></periodical><pages>414-423</pages><volume>23</volume><number>4</number><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[15] and a MRS imaging study  ADDIN EN.CITE <EndNote><Cite><Author>Darpolor</Author><Year>2011</Year><RecNum>91</RecNum><record><rec-number>91</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">91</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moses M. Darpolor</author><author>Yi-Fen Yen</author><author>Mei-Sze Chua</author><author>Lei Xing</author><author>Regina H. Clarke-Katzenberg</author><author>Wenfang Shi</author><author>Dirk Mayer</author><author>Sonal Josan</author><author>Ralph E. Hurd</author><author>Adolf Pfefferbaum</author><author>Lasitha Senadheera</author><author>Samuel So</author><author>Lawrence V. Hofmann</author><author>Gary M. Glazer</author><author>Daniel M. Spielman</author></authors></contributors><titles><title><style face="italic" font="default" size="100%">In Vivo</style><style face="normal" font="default" size="100%"> Magnetic Resonance Spectroscopic Imaging of Hyperpolarized [1-</style><style face="superscript" font="default" size="100%">13</style><style face="normal" font="default" size="100%">C]Pyruvate Metabolism in Rat Hepatocellular Carcinoma</style></title><secondary-title>NMR in Biomedicine</secondary-title></titles><periodical><full-title>NMR in Biomedicine</full-title></periodical><pages>506-513</pages><volume>24</volume><number>5</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[9] revealed a marked increase in [1-13C]alanine above that from [1-13C]lactate in tumors. A switchable transgenic mouse model of MYC-driven liver cancer showed a correlation of increased alanine to tumor formation and increased lactate as a biomarker  ADDIN EN.CITE <EndNote><Cite><Author>Hu</Author><Year>2011</Year><RecNum>92</RecNum><record><rec-number>92</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">92</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Simon Hu</author><author>Asha Balakrishnan</author><author>Robert A. Bok</author><author>Brittany Anderton</author><author>Peder E. Larson</author><author>Sarah J. Nelson</author><author>John Kurhanewicz</author><author>Daniel B. Vigneron</author><author>Andrei Goga</author></authors></contributors><titles><title>13C-Pyruvate Imaging Reveals Alterations in Glycolysis that Precede c-Myc-Induced Tumor Formation and Regression.</title><secondary-title>Cell Metabolism</secondary-title></titles><periodical><full-title>Cell Metabolism</full-title></periodical><pages>131-142</pages><volume>14</volume><number>1</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[22]. However, a seminar review  ADDIN EN.CITE <EndNote><Cite><Author>Cairns</Author><Year>2011</Year><RecNum>97</RecNum><record><rec-number>97</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">97</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Rob A. Cairns</author><author>Isaac S. Harris</author><author>Tak W. Mak</author></authors></contributors><titles><title>Regulation of cancer cell metabolism.</title><secondary-title>Nature Reviews</secondary-title></titles><periodical><full-title>Nature Reviews</full-title></periodical><pages>85-95</pages><volume>11</volume><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[23] discussed that the glycolytic phenotype observed in tumor cells is regulated by the PI3K, hypoxia-inducible factor (HIF), p53, MYC and AMP-activated protein kinase (AMPK)-liver kinase B1 (LKB1) pathways, which make it difficult to attribute the glycolytic phenotype of liver cancer to a single pathway. These contributions are significant because they may characterize inherent biomarkers of HCC that can provide new insights into the progression of unresectable hepatomas. Studies have previously investigated the pattern of glycolytic enzymes in buffalo rat hepatomas using invasive tissue assay analyses  ADDIN EN.CITE <EndNote><Cite><Author>Reynolds</Author><Year>1979</Year><RecNum>78</RecNum><record><rec-number>78</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">78</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Robert D. Reynolds</author><author>Harold P. Morris</author></authors></contributors><titles><title>Effects of Dietary Vitamin B6 on the in Vitro Inactivation of Rat Tyrosine Aminotransferase in Host and Moris Hepatomas</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>2988-2994</pages><volume>39</volume><dates><year>1979</year></dates><urls></urls></record></Cite><Cite><Author>Shonk</Author><Year>1965</Year><RecNum>79</RecNum><record><rec-number>79</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">79</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Carl E. Shonk</author><author>Harold P. Morris</author><author>George E. Boxer</author></authors></contributors><titles><title>Patterns of Glycolytic Enzymes in Rat Liver and Hepatoma</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>671-676</pages><volume>25</volume><dates><year>1965</year></dates><urls></urls></record></Cite></EndNote>[24, 25]. With the exceptions of glucokinase, phosphofructokinase and pyruvate kinase, the activities of the enzymes of the main glycolytic pathway are generally similar in rat liver and hepatomas  ADDIN EN.CITE <EndNote><Cite><Author>Shonk</Author><Year>1965</Year><RecNum>79</RecNum><record><rec-number>79</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">79</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Carl E. Shonk</author><author>Harold P. Morris</author><author>George E. Boxer</author></authors></contributors><titles><title>Patterns of Glycolytic Enzymes in Rat Liver and Hepatoma</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>671-676</pages><volume>25</volume><dates><year>1965</year></dates><urls></urls></record></Cite></EndNote>[25]. The activities of these three enzymes, glucokinase, phosphofructokinase and pyruvate kinase, reflect the growth potential of the tumors that is consistently highest in the more rapidly growing HCC tumors and gradually decreasing from slowly growing HCC tumors to normal rat liver. 
The enzyme patterns of rat hepatomas also showed distinctive changes indirectly related to glycolysis at branched points that involve alternate pathways to the main glycolytic route. One such pathway is via lactate dehydrogenase (LDH). The ratio of LDH to glycerol phosphate dehydrogenase activities was highest in the most rapidly growing HCC tumors and lowest in the slowly growing HCC tumors as compared to normal liver, thereby suggesting a correlation of the rate of aerobic glycolysis of malignant tissues to their rate of proliferation. Also, it has been noted that total tyrosine aminotransferase in many host livers and hepatomas were slightly elevated in rats fed a vitamin B6-deficient diet  ADDIN EN.CITE <EndNote><Cite><Author>Reynolds</Author><Year>1979</Year><RecNum>78</RecNum><record><rec-number>78</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">78</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Robert D. Reynolds</author><author>Harold P. Morris</author></authors></contributors><titles><title>Effects of Dietary Vitamin B6 on the in Vitro Inactivation of Rat Tyrosine Aminotransferase in Host and Moris Hepatomas</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>2988-2994</pages><volume>39</volume><dates><year>1979</year></dates><urls></urls></record></Cite></EndNote>[24]. These observations could point to distinguishable metabolic markers of HCC that may be identifiable in vivo. In light of these findings, we conclude that previous studies have not adequately investigated enzyme levels in connection with catalyzed metabolites in in vivo HCC animal models or in humans.
	Liver cancer, the vast majority (91%) of which is hepatocellular carcinoma (HCC), is the sixth most common cancer worldwide, and the third most common cause of death from cancer  ADDIN EN.CITE <EndNote><Cite><Author>Parkin</Author><Year>2005</Year><RecNum>76</RecNum><record><rec-number>76</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">76</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>D. Max Parkin</author><author>Freddie Bray</author><author>J. Ferlay</author><author>Paola Pisani</author></authors></contributors><titles><title>Global Cancer Statistics, 2002</title><secondary-title>CA Cancer J Clin</secondary-title></titles><periodical><full-title>CA Cancer J Clin</full-title></periodical><pages>74-108</pages><volume>55</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[26]. The incidence rates of HCC tripled in the United States from 1975 through 2005 across all ethnic groups with marked recent increases among middle-aged black, hispanic, and white males  ADDIN EN.CITE <EndNote><Cite><Author>Altekruse</Author><Year>2009</Year><RecNum>51</RecNum><record><rec-number>51</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">51</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sean F. Altekruse</author><author>Katherine A. McGlynn</author><author>Marsha E. Reichman</author></authors></contributors><titles><title>Hepatocellular Carcinoma Incidence, Mortality, and Survival Trends in the United States From 1975 to 2005</title><secondary-title>Journal of Clinical Oncology</secondary-title></titles><periodical><full-title>Journal of Clinical Oncology</full-title></periodical><pages>1485-1491</pages><volume>27</volume><number>9</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[27]. The rapid increases in HCC incidence in developed countries correlates with a similar trend in the prevalence of chronic infection with hepatitis B virus (HBV)  ADDIN EN.CITE <EndNote><Cite><Author>Altekruse</Author><Year>2009</Year><RecNum>51</RecNum><record><rec-number>51</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">51</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sean F. Altekruse</author><author>Katherine A. McGlynn</author><author>Marsha E. Reichman</author></authors></contributors><titles><title>Hepatocellular Carcinoma Incidence, Mortality, and Survival Trends in the United States From 1975 to 2005</title><secondary-title>Journal of Clinical Oncology</secondary-title></titles><periodical><full-title>Journal of Clinical Oncology</full-title></periodical><pages>1485-1491</pages><volume>27</volume><number>9</number><dates><year>2009</year></dates><urls></urls></record></Cite><Cite><Author>Kim</Author><Year>2009</Year><RecNum>72</RecNum><record><rec-number>72</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">72</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sun-Young Kim</author><author>Phil Young Lee</author><author>Hye-Jun Shin</author><author>Do Hyung Kim</author><author>Sunghyun Kang</author><author>Hyung-Bae Moon</author><author>Sang Won Kang</author><author>Jin-Man Kim</author><author>Sung Goo Park</author><author>Byoung Chul Park</author><author>Dae-Yeul Yu</author><author>Kwang-Hee Bae</author><author>Sang Chul Lee</author></authors></contributors><titles><title>Proteomic analysis of liver tissue from HBx-transgenic mice at early stages of hepatocarcinogenesis</title><secondary-title>Proteomics</secondary-title></titles><periodical><full-title>Proteomics</full-title></periodical><pages>5056-5066</pages><volume>9</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[27, 28] and hepatitis C virus (HCV)  ADDIN EN.CITE <EndNote><Cite><Author>Altekruse</Author><Year>2009</Year><RecNum>51</RecNum><record><rec-number>51</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">51</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sean F. Altekruse</author><author>Katherine A. McGlynn</author><author>Marsha E. Reichman</author></authors></contributors><titles><title>Hepatocellular Carcinoma Incidence, Mortality, and Survival Trends in the United States From 1975 to 2005</title><secondary-title>Journal of Clinical Oncology</secondary-title></titles><periodical><full-title>Journal of Clinical Oncology</full-title></periodical><pages>1485-1491</pages><volume>27</volume><number>9</number><dates><year>2009</year></dates><urls></urls></record></Cite><Cite><Author>Mas</Author><Year>2009</Year><RecNum>73</RecNum><record><rec-number>73</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">73</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Valeria R. Mas</author><author>Daniel G Maluf</author><author>Kellie J. Archer</author><author>Kenneth Yanek</author><author>Karen Bornstein</author><author>Robert A. Fisher</author></authors></contributors><titles><title>Proteomic analysis of HCV cirrhosis and HCV-induced HCC: Identifying biomarkers for monitoring HCV-cirrhotic patients awaiting liver transplantation</title><secondary-title>Transplantation</secondary-title></titles><periodical><full-title>Transplantation</full-title></periodical><pages>143-152</pages><volume>87</volume><number>1</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[27, 29]. Most patients with HCC are diagnosed when the disease is already at an advanced stage, thereby limiting therapeutic options and leading to a dismal one-year cause-specific survival rate  ADDIN EN.CITE <EndNote><Cite><Author>Altekruse</Author><Year>2009</Year><RecNum>51</RecNum><record><rec-number>51</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">51</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sean F. Altekruse</author><author>Katherine A. McGlynn</author><author>Marsha E. Reichman</author></authors></contributors><titles><title>Hepatocellular Carcinoma Incidence, Mortality, and Survival Trends in the United States From 1975 to 2005</title><secondary-title>Journal of Clinical Oncology</secondary-title></titles><periodical><full-title>Journal of Clinical Oncology</full-title></periodical><pages>1485-1491</pages><volume>27</volume><number>9</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[27]. This health challenge warrants efforts to effectively manage and treat the disease. Research on alterations of gene and protein expression of HCC could facilitate identification of molecular hallmarks for effective therapeutic strategies. Therefore, suitable animal models of orthotopic HCC that permit the control of genetic and environmental conditions in longitudinal studies promises to recapitulate all phases of the disease, facilitate the development of diagnostic or prognostic biomarkers, develop robust tumor imaging approaches, and provide evaluation of potential therapeutic strategies. Perhaps, limited technologies may have previously prevented initiation of advanced imaging studies of HCC metabolism in vivo with subsequent translation into humans. There is clearly a critical need for introduction of robust technologies to permit earlier intervention and provide better prognosis. Researchers may develop measures for distinguishing the metabolic characteristics of HCC and identify promising therapeutic modalities for improving studies of HCC metabolism. The expected outcomes may be utilized complimentarily for down-staging of HCC to meet established criteria for liver transplantation and for assessing functional hepatic reserve. In addition, the early detection of treatment failure will permit other treatment options thus avoiding wasted time, cost and morbidity. Furthermore, better understanding of the metabolic phenotype of HCC could lead to pharmacologic strategies that may develop targeted inhibition of crucial enzymes in the inherent biochemical pathway(s) of HCC. 
Discussion
Metabolic hallmarks of hepatocellular carcinoma (HCC)
In the study discussed herein, a three-dimensional double-spin-echo echo-planar spectroscopic imaging (3D DSE-EPSI) pulse sequence was implemented, and gene expression analysis by quantitative real-time PCR for lactate dehydrogenase A (LDH-A), NAD(P)H dehydrogenase quinone 1 (NQO1), and alanine transaminase (ALT) as previously described  ADDIN EN.CITE  ADDIN EN.CITE.DATA [9, 30]. 
Proton MR images (Figure 1) and metabolic maps (Figure 2) of [1-13C]pyruvate, [1-13C]lactate, and [1-13C]alanine from a representative rat are shown. These maps are color-coded with values ranging from minimum (blue) to maximum (red). It is notable that both [1-13C]lactate and [1-13C]alanine maps are co-localized with the HCC tumor, and the heterogeneous tumor values are greater than those of normal liver (Figure 2). Spectra from reconstructed voxels in tumor and normal liver are shown (Figure 3a). The integral values of four reconstructed voxels per region (tumor or normal) were tabulated across 7 rats for statistical comparisons (Figure 3b). Each metabolite peak integral was expressed as a ratio to the reference 13C-urea phantom, always placed alongside each rat. This cohort of rats (N =7) was treated on two consecutive days with a doxorubicin HCl liposome injection, Doxil� (2.5 mg/kg, intraperitoneally, i.p.), (Ben Venue Laboratories Inc, Bedford, OH) prior to hyperpolarized 13C MRSI. However, there was no significant difference  (p ( 0.05) between the levels of alanine and lactate metabolites in Doxil� treated tumors as compared to those of control rats previously published.
To account for the observed elevated levels of metabolites in HCC tumors, quantitative real-time PCR  ADDIN EN.CITE <EndNote><Cite><Author>Darpolor</Author><Year>2011</Year><RecNum>91</RecNum><record><rec-number>91</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">91</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moses M. Darpolor</author><author>Yi-Fen Yen</author><author>Mei-Sze Chua</author><author>Lei Xing</author><author>Regina H. Clarke-Katzenberg</author><author>Wenfang Shi</author><author>Dirk Mayer</author><author>Sonal Josan</author><author>Ralph E. Hurd</author><author>Adolf Pfefferbaum</author><author>Lasitha Senadheera</author><author>Samuel So</author><author>Lawrence V. Hofmann</author><author>Gary M. Glazer</author><author>Daniel M. Spielman</author></authors></contributors><titles><title><style face="italic" font="default" size="100%">In Vivo</style><style face="normal" font="default" size="100%"> Magnetic Resonance Spectroscopic Imaging of Hyperpolarized [1-</style><style face="superscript" font="default" size="100%">13</style><style face="normal" font="default" size="100%">C]Pyruvate Metabolism in Rat Hepatocellular Carcinoma</style></title><secondary-title>NMR in Biomedicine</secondary-title></titles><periodical><full-title>NMR in Biomedicine</full-title></periodical><pages>506-513</pages><volume>24</volume><number>5</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[9] was used to measure the expression levels of putative enzymes (LDH-A, NQO1, and ALT) associated with the metabolism of [1-13C]pyruvate. Measurements were made in triplicates for each specimen (tumor or normal liver) from four rats. All three enzymes, LDH-A, NQO1, and ALT were significantly elevated (p < 0.05) in HCC tumors relative to normal liver tissues. 
Preclinical correlates to human HCC
	In addition, it is interesting to note that an upregulation of both cytosolic and mitochondrial branched-chain aminotransferases (BCAT-1 and BCAT-2) was found  ADDIN EN.CITE <EndNote><Cite><Author>Darpolor</Author><Year>2011</Year><RecNum>91</RecNum><record><rec-number>91</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">91</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moses M. Darpolor</author><author>Yi-Fen Yen</author><author>Mei-Sze Chua</author><author>Lei Xing</author><author>Regina H. Clarke-Katzenberg</author><author>Wenfang Shi</author><author>Dirk Mayer</author><author>Sonal Josan</author><author>Ralph E. Hurd</author><author>Adolf Pfefferbaum</author><author>Lasitha Senadheera</author><author>Samuel So</author><author>Lawrence V. Hofmann</author><author>Gary M. Glazer</author><author>Daniel M. Spielman</author></authors></contributors><titles><title><style face="italic" font="default" size="100%">In Vivo</style><style face="normal" font="default" size="100%"> Magnetic Resonance Spectroscopic Imaging of Hyperpolarized [1-</style><style face="superscript" font="default" size="100%">13</style><style face="normal" font="default" size="100%">C]Pyruvate Metabolism in Rat Hepatocellular Carcinoma</style></title><secondary-title>NMR in Biomedicine</secondary-title></titles><periodical><full-title>NMR in Biomedicine</full-title></periodical><pages>506-513</pages><volume>24</volume><number>5</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[9] in rat HCC tissues (Figure 4). Using cDNA microarrays to characterize human HCC, another study found an upregulation of BCAT-2 enzymes  ADDIN EN.CITE <EndNote><Cite><Author>Chen</Author><Year>2002</Year><RecNum>94</RecNum><record><rec-number>94</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">94</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Xin Chen</author><author>Siu Tim Cheung</author><author>Samuel So</author><author>Sheung Tat Fan</author><author>Christopher Barry</author><author>John Higgins</author><author>Kin-Man Lai</author><author>Jiafu Ji</author><author>Sandrine Dudoit</author><author>Irene O.L. Ng</author><author>Matt van de Rijn</author><author>David Botstein</author><author>Patrick O. Brown</author></authors></contributors><titles><title>Gene Expression Patterns in Human Liver Cancers.</title><secondary-title>Molecular Biology of the Cell</secondary-title></titles><periodical><full-title>Molecular Biology of the Cell</full-title></periodical><pages>1929-1939</pages><volume>13</volume><number>6</number><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[31]. It has been reported that BCAT is only expressed in extra hepatic tissues, and BCAT-2 activity is required in hepatocytes under conditions of rapid cell proliferation  ADDIN EN.CITE <EndNote><Cite><Author>Perez-Villasenor</Author><Year>2005</Year><RecNum>95</RecNum><record><rec-number>95</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">95</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Graciela Perez-Villasenor</author><author>Armando R. Tovar</author><author>Ana H. Moranchel</author><author>Rogelio Hernandez-Pando</author><author>Susan M. Hutson</author><author>Nimbe Torres</author></authors></contributors><titles><title>Mitochondrial branched chain aminotransferase gene expression in AS-30D hepatoma rat cells and during liver regeneration after partial hepatectomy in rat.</title><secondary-title>Life Sciences</secondary-title></titles><periodical><full-title>Life Sciences</full-title></periodical><pages>334-339</pages><volume>78</volume><number>4</number><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[32]. We suspect that ALT and BCAT-1 in the cytoplasm may be associated with the significantly high levels of alanine in HCC, because both enzymes are aminotranferases located in the cytoplasm that transfer the amine group from glutamate to a keto-carbon of an alpha ketoacid like pyruvate.  An ongoing study will test this hypothesis with the utility of hyperpolarized [1-13C]ketoisocaproate MRSI similar to a recent study on EL4 lymphoma in the mouse  ADDIN EN.CITE <EndNote><Cite><Author>Karlsson</Author><Year>2010</Year><RecNum>69</RecNum><record><rec-number>69</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">69</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Magnus Karlsson</author><author>Pernille R. Jensen</author><author>in &apos;t  Zandt, Rene</author><author>Anna Gisselsson</author><author>Georg Hansson</author><author>Jens O. Duus</author><author>Sebastian Meier</author><author>Mathilde H. Lerche </author></authors></contributors><titles><title>Imaging of Branched Chain Amino Acid Metabolism in Tumors with Hyperpolarized 13C Ketoisocaproate</title><secondary-title>International Journal of Cancer</secondary-title></titles><periodical><full-title>International Journal of Cancer</full-title></periodical><pages>729-736</pages><volume>127</volume><number>3</number><edition>3 Dec 2009</edition><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[19]. These findings may suggest potential molecular signatures of HCC, and fortunately, in vivo hyperpolarized 13C MRS imaging can be used to investigate the catalyzed reactions of the aforementioned enzymes.
	Since these BCAT enzymes indicate strong correlates to those of human HCC tissues, it could be possible to image the activity of these enzymes with hyperpolarized [1-13C]ketoisocaproate MRSI. In fact, this technique was demonstrated in rat livers (Figure 5) by implementing a 3D spiral chemical shift imaging  ADDIN EN.CITE <EndNote><Cite><Author>Mayer</Author><Year>2011</Year><RecNum>96</RecNum><record><rec-number>96</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">96</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Dirk Mayer</author><author>Yi-Fen Yen</author><author>Atsushi Takahashi</author><author>Sonal Josan</author><author>James Tropp</author><author>Brian K. Rutt</author><author>Ralph E. Hurd</author><author>Daniel M. Spielman</author><author>Adolf Pfefferbaum</author></authors></contributors><titles><title>Dynamic and High-Resolution metabolic Imaging of Hyperpolarized [1-13C]-Pyruvate in the Rat Brain Using a High-performance Gradient Insert.</title><secondary-title>Magnetic Resonance in Medicine</secondary-title></titles><periodical><full-title>Magnetic Resonance in Medicine</full-title></periodical><pages>1228-1233</pages><volume>65</volume><number>5</number><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[33] pulse sequence. This demonstrated study was performed on a clinical 3 Tesla magnet thereby making the technique translatable into humans with appropriate radio-frequency coil for imaging human livers. 
The utility of hyperpolarized 13C substrates for MRSI
	The effect of 3-bromopyruvate on AS-30D rat HCC  ADDIN EN.CITE <EndNote><Cite><Author>Ko</Author><Year>2001</Year><RecNum>28</RecNum><record><rec-number>28</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">28</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ko, Y. H.</author><author>Pedersen, P. L.</author><author>Geschwind, J. F.</author></authors></contributors><titles><title>Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase</title><secondary-title>Cancer Letters</secondary-title></titles><periodical><full-title>Cancer Letters</full-title></periodical><pages>83-91</pages><volume>173</volume><number>1</number><dates><year>2001</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>0304-3835</isbn><accession-num>ISI:000171579300012</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://000171579300012 </url></related-urls></urls></record></Cite></EndNote>[34] has shown remarkable results by regressing the tumor completely. The mechanism of 3-bromopyruvate is assumed to inhibit hexokinase II and prevent glucose from entering the glycolytic pathway  ADDIN EN.CITE  ADDIN EN.CITE.DATA [35-38]. More specifically, it is suggested that 3-bromo-pyruvate targets the sulfhydryl group of cysteine residues in hexokinase II  ADDIN EN.CITE <EndNote><Cite><Author>Chen</Author><Year>2009</Year><RecNum>7</RecNum><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Chen, Z.</author><author>Zhang, H.</author><author>Lu, W. Q.</author><author>Huang, P.</author></authors></contributors><titles><title>Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate</title><secondary-title>Biochimica Et Biophysica Acta-Bioenergetics</secondary-title></titles><periodical><full-title>Biochimica Et Biophysica Acta-Bioenergetics</full-title></periodical><pages>553-560</pages><volume>1787</volume><number>5</number><dates><year>2009</year><pub-dates><date>May</date></pub-dates></dates><isbn>0005-2728</isbn><accession-num>ISI:000266475400032</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://000266475400032 </url></related-urls></urls><electronic-resource-num>10.1016/j.bbabio.2009.03.003</electronic-resource-num></record></Cite></EndNote>[39]. It is possible to label the C1 position with the 13C isotope, 3-bromo-[1-13C]pyruvate, and hyperpolarize this compound for the study of its pharmacokinetics and pharmacodynamics. In addition, the spatial distribution of this therapeutic agent could be evaluated with 3D MRS imaging.	
	Another pharmacologic strategy  ADDIN EN.CITE <EndNote><Cite><Author>Fantin</Author><Year>2006</Year><RecNum>60</RecNum><record><rec-number>60</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">60</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Valeria R. Fantin</author><author>St-Pierre, Julie</author><author>Philip Leder</author></authors></contributors><titles><title>Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance</title><secondary-title>Cancer Cell</secondary-title></titles><periodical><full-title>Cancer Cell</full-title></periodical><pages>425-434</pages><volume>9</volume><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[3] had used small interfering RNA against lactate dehydrogenase to preferentially inhibit the glycolysis of cancer cells. To avoid complications with systemic administration of such a drug in vivo, short hairpin RNA can be incorporated into a transcatheter arterial chemoembolization (TACE) to localize the drug within the tumor. As a demonstration of feasibility, image-guided nanoembolization has been performed in a rabbit model of liver cancer to target micro RNA  ADDIN EN.CITE <EndNote><Cite><Author>Mouli</Author><Year>2010</Year><RecNum>93</RecNum><record><rec-number>93</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">93</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>S. Mouli</author><author>J. Chung</author><author>A.C. Eifler</author><author>R.J. Lewandowski</author><author>H. Ardehali</author><author>D. Bentrem</author><author>A. Larson</author><author>C.A. Mirkin</author><author>C.S. Thaxton</author><author>R.A. Omary</author></authors></contributors><titles><title>Image-guided nanoembolization to target microRNA 210 in the VX2 rabbit model of liver cancer.</title><secondary-title>Journal of Vascular and Interventional Radiology</secondary-title></titles><periodical><full-title>Journal of Vascular and Interventional Radiology</full-title></periodical><pages>S29</pages><volume>21</volume><number>2</number><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[40]. Other investigators have used 
ethyl-bromopyruvate, a hydrophobic derivative of 3-bromopyruvate, for intraarterial treatment of a rabbit HCC model (VX2 carcinoma) by a transfemoral intraarterial approach  ADDIN EN.CITE <EndNote><Cite><Author>Choi</Author><Year>2011</Year><RecNum>8</RecNum><record><rec-number>8</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">8</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Young Ho Choi</author><author>Jin Wook Chung</author><author>Kyu Ri Son</author><author>Young Ho So</author><author>Won Kim</author><author>Chang Jin Yoon</author><author>Jung Hwan Yoon</author><author>Hesson Chung</author><author>Hy-Cheol Kim</author><author>Hwan Jun Jae</author><author>Young II Kim</author><author>Jae Hyung Park</author></authors></contributors><titles><title>Novel Intraarterial Therapy for Liver Cancer Using Ethylbromopyruvate Dissolved in an Iodized Oil</title><secondary-title>Academic Radiology</secondary-title></titles><periodical><full-title>Academic Radiology</full-title></periodical><pages>471-478</pages><volume>18</volume><number>4</number><dates><year>2011</year><pub-dates><date>Apr</date></pub-dates></dates><isbn>1076-6332</isbn><accession-num>ISI:000288572200008</accession-num><urls><related-urls><url><style face="underline" font="default" size="100%">&lt;Go to ISI&gt;://000288572200008 </style></url></related-urls></urls><electronic-resource-num><style face="underline" font="default" size="100%">10.1016/j.acra.2010.12.001</style></electronic-resource-num></record></Cite></EndNote>[41].
Potential for clinical translation of hyperpolarized 13C MRSI
Hyperpolarized 13C 3D MRSI is currently limited to preclinical studies. These studies may have overestimated the physiological levels of metabolites because the exogenous metabolic substrate surpasses physiological levels when administered in vivo. However, advanced techniques in mass spectrometry have demonstrated elevated levels of lactate and alanine in ex vivo human tumors at physiological levels  ADDIN EN.CITE <EndNote><Cite><Author>Hirayama</Author><Year>2009</Year><RecNum>67</RecNum><record><rec-number>67</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">67</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Akiyoshi Hirayama</author><author>Kenjiro Kami</author><author>Masahiro Sugimoto</author><author>Maki Sugawara</author><author>Naoko Toki</author><author>Hiroko Onozuka</author><author>Taira Kinoshita</author><author>Norio Saito</author><author>Atsushi Ochiai</author><author>Masaru Tomita</author><author>Hiroyasu Esumi</author><author>Tomoyoshi Soga</author></authors></contributors><titles><title>Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>4918-4925</pages><volume>69</volume><number>11</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[5].   Despite these limitations, the findings herein strongly support the advent of novel in vivo imaging technologies that hold promise for improved diagnosis and prognosis of HCC.
	MRS imaging could complement retrospective metabolomics of glycolytic metabolites in human HCC tissues with advanced techniques in mass spectrometry as demonstrated in ex vivo human tumors  ADDIN EN.CITE <EndNote><Cite><Author>Hirayama</Author><Year>2009</Year><RecNum>67</RecNum><record><rec-number>67</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">67</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Akiyoshi Hirayama</author><author>Kenjiro Kami</author><author>Masahiro Sugimoto</author><author>Maki Sugawara</author><author>Naoko Toki</author><author>Hiroko Onozuka</author><author>Taira Kinoshita</author><author>Norio Saito</author><author>Atsushi Ochiai</author><author>Masaru Tomita</author><author>Hiroyasu Esumi</author><author>Tomoyoshi Soga</author></authors></contributors><titles><title>Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>4918-4925</pages><volume>69</volume><number>11</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[5] and mouse livers  ADDIN EN.CITE <EndNote><Cite><Author>Soga</Author><Year>2009</Year><RecNum>80</RecNum><record><rec-number>80</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">80</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Tomoyoshi Soga</author><author>Kaori Igarashi</author><author>Chiharu Ito</author><author>Katsuo Mizobuchi</author><author>Hans-Peter Zimmermann</author><author>Masaru Tomita</author></authors></contributors><titles><title>Metabolic Profiling of Anionic Metabolites by Capillary Electrophoresis Mass Spectrometry</title><secondary-title>Analytical Chemistry</secondary-title></titles><periodical><full-title>Analytical Chemistry</full-title></periodical><pages>6165-6174</pages><volume>81</volume><number>15</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[42]. In addition, enzyme analysis can be utilized to validate the translational capabilities of hyperpolarized 13C MRS imaging into humans. In terms of administration of pyruvate, intracoronary pyruvate injections have been successfully performed on clinical patients with congested heart failure (27.75 mmol of pyruvate, 185 mL volume, 15 min injection time)  ADDIN EN.CITE <EndNote><Cite><Author>Hermann</Author><Year>2004</Year><RecNum>65</RecNum><record><rec-number>65</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">65</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hans-Peter Hermann</author><author>Jordis Arp</author><author>Burkert Pieske</author><author>Herald Kogler</author><author>Steffen Baron</author><author>Paul M.L. Janssen</author><author>Gerd Hasenfuss</author></authors></contributors><titles><title>Improved systolic and diastolic myocardial function with intracoronary pyruvate in patients with congestive heart failure.</title><secondary-title>The European Journal of Heart Failure</secondary-title></titles><periodical><full-title>The European Journal of Heart Failure</full-title></periodical><pages>213-218</pages><volume>6</volume><number>2</number><dates><year>2004</year></dates><urls></urls></record></Cite><Cite><Author>Hermann</Author><Year>1999</Year><RecNum>66</RecNum><record><rec-number>66</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">66</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Hans-Peter Hermann</author><author>Burkert Pieske</author><author>Eberhard Schwarzmuller</author><author>Josef Keul</author><author>Hanjorg Just</author><author>Gerd Hasenfuss</author></authors></contributors><titles><title>Hemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study.</title><secondary-title>Lancet</secondary-title></titles><periodical><full-title>Lancet</full-title></periodical><pages>1321-1323</pages><volume>353</volume><number>9161</number><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[43, 44]. Similarly, this amount of stable isotopic 13C-enriched pyruvate can be hyperpolarized and injected via transcatheter arterial infusion as performed on patients with HCC with the advantage of localizing the substrate to the HCC lesion in the liver. However, fast imaging techniques are critical to follow dynamic metabolic processes in vivo. Therefore, we encourage researchers to develop fast volumetric 13C MRSI methods for dynamic metabolic imaging. Additionally, the development of novel kinetic modeling tools to measure enzyme kinetics characterizing the in vivo metabolism of hyperpolarized [1-13C]pyruvate will be essential to the application of the technique with validation by molecular analysis of metabolites and enzymes in liver tissues.
Concluding Opinion
	In summary, the objective of this report has been to describe potential molecular hallmarks of an orthotopic hepatocellular carcinoma in vivo. The reports herein suggest that the conversion of exogenous [1-13C]pyruvate to [1-13C]lactate and [1-13C]alanine is a characteristic marker of this HCC type in vivo. Coupled to this finding, the associated enzymes (LDH-A, NQO1, and ALT) are significantly elevated in this HCC tumor as compared to normal liver. Also, this HCC type exhibits a characteristic increase in lactate and alanine production in vivo following a bolus infusion of hyperpolarized [1-13C]pyruvate that can be detected with non-invasive imaging. Concomitant up-regulation of the enzymes (LDH-A, ALT, NQO1) may explain the observed increases in metabolic products in HCCs, or at least in the HCC type (s) described in this report. Such molecular signatures of HCCs could provide an impetus to developing novel enzyme inhibitors as therapeutic agents. Hyperpolarized 13C 3D MRSI is a potential diagnostic tool for detection of HCCs and may become an important new imaging tool to measure surrogate markers or endpoints for drug treatment. 

Acknowledgements. We very much appreciate the scholarships and critical review of Dr. Houry Puzantian, Dr. Mona Al Mukaddam and Dr.Steven Siegel. We also appreciate the scientific contributions of Drs. Yi-Fen Yen, Mei-Sze Chua, Dirk Mayer, and, Daniel M. Spielman. Funding sources were provided by the follow NIH grants ; 5KL2 RR024132-06, CA-09695, RR-09784, AA-018681, EB-009070, AA-005965, CA 10951; and the T.S. Kwok Foundation.
Conflict of interest. The authors declare that they have no conflict of interest.

References

 ADDIN EN.REFLIST 1.	Warburg O, Posener K, and Negelein E (1924) Uber den Stoffwechsel der Carcinomzelle. Biochemische Zeitschrift 152: 309-344
2.	DeBerardinis RJ (2008) Is cancer a disease of abnormal cellular metabolism? New angles on a old idea. Genetics in Medicine 10: 767-777
3.	Fantin VR, St-Pierre J, and Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9: 425-434
4.	Plathow C and Weber WA (2008) Tumor Cell Metabolism Imaging. Journal of Nuclear Medicine 49: 43S-63S
5.	Hirayama A, Kami K, Sugimoto M et al (2009) Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Cancer Research 69: 4918-4925
6.	Ardenkjaer-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. PNAS 100: 10158-10163
7.	Albers MJ, Bok R, Chen AP et al (2008) Hyperpolarized 13C Lactate, Pyruvate, and Alanine: Noninvasive Biomarkers for Prostate Cancer Detection and Grading. Cancer Research 68: 8607-8615
8.	Chen AP, Albers MJ, Cunningham CH et al (2007) Hyperpolarized C-13 Spectroscopic Imaging of the TRAMP Mouse at 3T-Initial Experience. Magnetic Resonance in Medicine 58: 1099-1106
9.	Darpolor MM, Yen Y-F, Chua M-S et al (2011) In Vivo Magnetic Resonance Spectroscopic Imaging of Hyperpolarized [1-13C]Pyruvate Metabolism in Rat Hepatocellular Carcinoma. NMR in Biomedicine 24: 506-513
10.	Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nature Medicine 13: 1382-1387
11.	Golman K, in 't  Zandt R, Lerche M, Pehrson R, and Ardenkjaer-Larsen JH (2006) Metabolic Imaging by Hyperpolarized 13C Magnetic Resonance Imaging for In vivo Tumor Diagnosis. Cancer Research 66: 10855-10860
12.	Kettunen MI, Hu D-E, Witney TH et al (2010) Magnetization Transfer Measurements of Exchange Between Hyperpolarized [1-13C]Pyruvate and [1-13C]Lactate in a Murine Lymphoma. Magnetic Resonance in Medicine 63: 872-880
13.	Park I, Larson PEZ, Zierhut ML et al (2010) Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-Oncology 12: 133-144
14.	Ward CS, Venkatesh HS, Chuameil MM et al (2010) Noninvasive Detection of Target Modulation following Phosphatidylinositol 3-Kinase Inhibition Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Cancer Research 70: 1296-1305
15.	Yen Y-F, Le Roux P, Mayer D et al (2010) T2 relaxation times of 13C metabolites in a rat hepatocellular carcinoma model measured in vivo using 13C-MRS of [1-13C]pyruvate. NMR in Biomedicine 23: 414-423
16.	Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imagin of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453: 940-943
17.	Keshari KR, Wilson DM, Chen AP et al (2009) Hyperpolarized [2-13C]-Fructose: A Hemiketal DNP Substrate for In Vivo Metabolic Imaging. Journal of the American Chemical Society 131: 17591-17596
18.	Gallagher FA, Kettunen MI, Hu D-E et al (2009) Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. PNAS 106: 19801-19806
19.	Karlsson M, Jensen PR, in 't  Zandt R et al (2010) Imaging of Branched Chain Amino Acid Metabolism in Tumors with Hyperpolarized 13C Ketoisocaproate. International Journal of Cancer 127: 729-736
20.	Hu S, Chen AP, Zierhut ML et al (2009) In Vivo Carbon-13 Dynamic MRS and MRSI of Normal and Fasted Rat Liver with Hyperpolarized 13C-Pyruvate. Molecular Imaging and Biology 11: 399-407
21.	Spielman DM, Mayer D, Yen Y-F et al (2009) In Vivo Measurement of Ethanol Metabolism in the Rat Liver Using Magnetic Resonance Spectroscopy of Hyperpolarized [1-13C]Pyruvate. Magnetic Resonance in Medicine 62: 307-313
22.	Hu S, Balakrishnan A, Bok RA et al (2011) 13C-Pyruvate Imaging Reveals Alterations in Glycolysis that Precede c-Myc-Induced Tumor Formation and Regression. Cell Metabolism 14: 131-142
23.	Cairns RA, Harris IS, and Mak TW (2011) Regulation of cancer cell metabolism. Nature Reviews 11: 85-95
24.	Reynolds RD and Morris HP (1979) Effects of Dietary Vitamin B6 on the in Vitro Inactivation of Rat Tyrosine Aminotransferase in Host and Moris Hepatomas. Cancer Research 39: 2988-2994
25.	Shonk CE, Morris HP, and Boxer GE (1965) Patterns of Glycolytic Enzymes in Rat Liver and Hepatoma. Cancer Research 25: 671-676
26.	Parkin DM, Bray F, Ferlay J, and Pisani P (2005) Global Cancer Statistics, 2002. CA Cancer J Clin 55: 74-108
27.	Altekruse SF, McGlynn KA, and Reichman ME (2009) Hepatocellular Carcinoma Incidence, Mortality, and Survival Trends in the United States From 1975 to 2005. Journal of Clinical Oncology 27: 1485-1491
28.	Kim S-Y, Lee PY, Shin H-J et al (2009) Proteomic analysis of liver tissue from HBx-transgenic mice at early stages of hepatocarcinogenesis. Proteomics 9: 5056-5066
29.	Mas VR, Maluf DG, Archer KJ et al (2009) Proteomic analysis of HCV cirrhosis and HCV-induced HCC: Identifying biomarkers for monitoring HCV-cirrhotic patients awaiting liver transplantation. Transplantation 87: 143-152
30.	Yen Y-F, Kohler SJ, Chen AP et al (2009) Imaging Considerations for In Vivo 13C Metabolic Mapping Using Hyperpolarized 13C-Pyruvate. Magnetic Resonance in Medicine 62: 1-10
31.	Chen X, Cheung ST, So S et al (2002) Gene Expression Patterns in Human Liver Cancers. Molecular Biology of the Cell 13: 1929-1939
32.	Perez-Villasenor G, Tovar AR, Moranchel AH et al (2005) Mitochondrial branched chain aminotransferase gene expression in AS-30D hepatoma rat cells and during liver regeneration after partial hepatectomy in rat. Life Sciences 78: 334-339
33.	Mayer D, Yen Y-F, Takahashi A et al (2011) Dynamic and High-Resolution metabolic Imaging of Hyperpolarized [1-13C]-Pyruvate in the Rat Brain Using a High-performance Gradient Insert. Magnetic Resonance in Medicine 65: 1228-1233
34.	Ko YH, Pedersen PL, and Geschwind JF (2001) Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Letters 173: 83-91
35.	Mathupala SP, Ko YH, and Pedersen PL (2006) Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25: 4777-4786
36.	Mathupala SP, Ko YH, and Pedersen PL (2009) Hexokinase-2 bound to mitochondria: Cancer's stygian link to the "Warburg effect" and a pivotal target for effective therapy. Seminars in Cancer Biology 19: 17-24
37.	Pedersen PL (2007) The cancer cell's "power plants" as promising therapeutic targets: An overview. Journal of Bioenergetics and Biomembranes 39: 1-12
38.	Pedersen PL (2007) Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen. Journal of Bioenergetics and Biomembranes 39: 211-222
39.	Chen Z, Zhang H, Lu WQ, and Huang P (2009) Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochimica Et Biophysica Acta-Bioenergetics 1787: 553-560
40.	Mouli S, Chung J, Eifler AC et al (2010) Image-guided nanoembolization to target microRNA 210 in the VX2 rabbit model of liver cancer. Journal of Vascular and Interventional Radiology 21: S29
41.	Choi YH, Chung JW, Son KR et al (2011) Novel Intraarterial Therapy for Liver Cancer Using Ethylbromopyruvate Dissolved in an Iodized Oil. Academic Radiology 18: 471-478
42.	Soga T, Igarashi K, Ito C et al (2009) Metabolic Profiling of Anionic Metabolites by Capillary Electrophoresis Mass Spectrometry. Analytical Chemistry 81: 6165-6174
43.	Hermann H-P, Arp J, Pieske B et al (2004) Improved systolic and diastolic myocardial function with intracoronary pyruvate in patients with congestive heart failure. The European Journal of Heart Failure 6: 213-218
44.	Hermann H-P, Pieske B, Schwarzmuller E et al (1999) Hemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study. Lancet 353: 1321-1323



Figure Legends
Figure 1: Representative 7T MR images of rat liver at pre-screening with a set of (a) coronal images and (a) axial images with HCC tumors indicated by arrows. A T2-weight fast-spin-echo acquisition, 5 ( 5 cm field-of-view, 256 ( 256 matrix dimensions, and 2 mm slice thickness. [In: Proceedings of the World Molecular Imaging Congress (WMIC); 2010 September 8-11 Abstract# 0049; International Conference Center (ICC), Kyoto, Japan.]
Figure 2: Representative metabolite maps computed from integral of metabolite peak. (a) 1H MR image of rat liver, (b) [1-13C]pyruvate metabolic map, (c) [1-13C]lactate metabolic map, and (d) [1-13C]alanine metabolic map. [In: Proceedings of the World Molecular Imaging Congress (WMIC); 2010 September 8-11 Abstract# 0049; International Conference Center (ICC), Kyoto, Japan.]
Figure 3: (a) Representations of in vivo hyperpolarized 13C MRS spectra of normal liver and HCC tumor obtained within the same rat. Quantitative measures of 13C-metabolites peaks intregrals plotted as bar graphs for (b) normal liver and HCC tumor. All bar graphs are displayed as mean(SEM, and the p-values were evaluated by unpaired t test (nsp-value > 0.05, *p-value ( 0.05, ** p-value ( 0.01, *** p-value ( 0.001). [In: Proceedings of the World Molecular Imaging Congress (WMIC); 2010 September 8-11 Abstract# 0049; International Conference Center (ICC), Kyoto, Japan.]
Figure 4: Pairwise bar graphs of enzyme gene expression from normal liver and tumor tissues in control and treated cohorts. (a) branched-chain aminotransferase-1 (BCAT-1) gene expressions, and (b) branched-chain aminotransferase-2 (BCAT-2) gene expressions. All bar graphs are displayed as mean(SEM, and the p-values were evaluated by unpaired t test (*p-value ( 0.05, ** p-value ( 0.01, *** p-value ( 0.001).
Figure 5: Hyperpolarized [1-13C]ketoisocaproate MRS of a slab across a rat liver. (a) an averaged spectrum indicating a ketoisocaproate (KIC), its product leucine (Leu) and a reference lactate phantom (Lac (ref)), and (b) a plot of spectral dynamics during acquisition. Axial slab (4 mm) across the liver includes some partial volume of the kidney (2.7 mL of 23 mM KIC, 5( flip angle in dynamic spiral CSI).












PAGE  


PAGE  19




LNpx���������������D	E	�	�	�	




R
S
�
�
�
�
�
�
�
	/02:;CDH������������������������ݽ����謨����������菽��h�q�h�G�OJQJh�q�h�G�6�OJQJhaUh�G�0JOJQJh�G�jh�G�Uh�G�5�OJQJh�G�OJQJhaUh�G�H*OJQJh�Rh�G�H*OJQJh�Rh�G�OJQJhaUh�G�OJQJhaUh�G�5�OJQJ3px��

7
S
l
�
�
�
�
�
/012;�
1��XYZ[����������������������������d�gd�G���fm�
�
�
�
�
�
�

)*MQRy����019:>�����&(04QRSWn�����������������א���������������������haUh�G�5�OJQJh�\�h�G�5�OJQJhaUh�G�H*OJQJhXwh�G�5�OJQJh�q�h�G�OJQJh�q�h�G�6�OJQJhaUh�G�6�OJQJh�Rh�G�OJQJh�G�OJQJhaUh�G�OJQJh%C�h�G�OJQJ0�������	57X]thw����������������%&���������������ౡ������{p�p��p��d�jh�G�OJQJUh8�h�G�OJQJhnOh�G�OJQJht*6h�G�5�OJQJhaUh�G�B*OJQJphhaUh�G�OJQJ]�^JaJ$haUh�G�OJQJ^JaJ haUh�G�5�OJQJhaUh�G�H*OJQJh�G�OJQJhaUh�G�OJQJh�Rh�G�OJQJh�G�5�OJQJ&[\]u����On���
3Mi����������9����������������������������d�gd�G�"*+MUVe���������,<}~�����������?@CDf g !$$"$#$1$3$�$�$�$�$�$�$�$�$�������������������������������������������סוס����haUh�G�6�OJQJhaUh�G�H*OJQJ'�jhT�h�G�0JOJQJUh=j�h�G�OJQJh8�h�G�OJQJhaUh�G�OJQJh�G�OJQJjh�G�OJQJUh�G�OJQJ�*:�$�$�$�$�$�$�$�$%%'))))))&)')+K-L-P-Q-X-Z-[-\-f-g-/44
4444&4'45!8"8&8'8�9�9�9:m:o::�:�:�:<�>�>�>�>??K?L?A�����������������ͬ�����������͡�����������h=j�h�G�OJQJhaUh�G�H*OJQJh�G�OJQJ�*haUh�G�H*OJQJhaUh�G�OJQJjh�G�OJQJU'�j�hT�h�G�0JOJQJUh�G�OJQJ?A�B�B�B�B�C�C�C�C�C�C�C+D-D8D9DE9H:H>H?HPHRHH�HJ�L�L�L�L�L�LN.R/R2R3RURWRtRvR�R,S-ST�VWW	W
W&W'WX�Y�Y�Y�Y[D\E\^�a�a�a�a�b�bd�e�e�e�e�f�fzg�������������������������������������������������������������haUh�G�H*OJQJh=j�h�G�OJQJhaUh�G�OJQJh�G�OJQJjh�G�OJQJUh�G�OJQJ�*J�9�f�m<�G�}�����7��+�a�H�l�����������5�6���9������������������������"
�&0`���
 
P���@d�1$7$8$H$gd�G�d�gd�G���d�`��gd�G�zg}g�g�g\i]iminikjlklolpl�l�lmmxmmSnTnq"q#q'q(q�q�qt$u%u)u*u�u�ux}}}},}-}���������������Ɗ͊}�~���<�������Ž�Ž��������Ž�Ž��Ž�Ž��Ž�Ž��Ž�Ž��Ž�Ž������h�h�G�OJQJhaUh�G�h�pOJQJh�G�OJQJ�*h�G�OJQJjh�G�OJQJUhaUh�G�H*OJQJh=j�h�G�OJQJhaUh�G�OJQJhaUh�G�6�OJQJ<<�G�|�}�Џя���������������$�1�3�;�<�C�E�T�V�h�j�����֐ڐ�����ȵ�������ȁymy�ymy�a�a�a�y�U�UhaUh�G�6�OJQJhaUh�G�H*OJQJh�'�h�G�5�OJQJh�G�OJQJhaUh�G�OJQJ4�j*.hT�h�G�0JB*OJQJUaJphh�G�B*OJQJaJph$jh�G�B*OJQJUaJph!haUh�G�B*OJQJaJphh'o�h�G�6�;�OJQJh'o�h�G�6�OJQJhOIh�G�5�OJQJ!��	���������������8�G�^�������גْ�� �!�"�$�}����������� �%�=�P�f�u�����������������������������������}n}������	j>�hM
�h�G�6�OJQJhM
�h�G�6�OJQJhM
�h�G�OJQJh`d	h�G�H*OJQJh�G�6�OJQJh`d	h�G�6�OJQJh`d	h�G�OJQJhaUh�G�6�OJQJh�G�5�OJQJhaUh�G�5�OJQJhaUh�G�H*OJQJhaUh�G�OJQJh�G�OJQJ+������������������������%�'�l���؛�������7�ל؜�f�g�j�k��������������O�\�§ç���������������׶ת׶׶���ד�������ׇ~�������ן�����h�G�5�OJQJhaUh�G�5�OJQJh
Kh�G�6�OJQJh�h�G�OJQJhaUh�G�H*OJQJhaUh�G�6�OJQJh�G�OJQJ�*jh�G�OJQJUhaUh�G�OJQJh`d	h�G�OJQJh�G�OJQJhM
�h�G�OJQJ1�������K�S�������ìĬ����@�D�J�K��E�F�J�K�����������²��O�P��Z�[�_�`�+�I����λΨ��������|���s�����gh
Kh�G�6�OJQJh�G�5�OJQJhaUh�G�6�OJQJh�G�OJQJ�*haUh�G�H*OJQJh�h�G�OJQJ%haUh�G�B*OJQJ^JaJph=@%h�h�G�B*OJQJ^JaJph%haUh�G�B*OJQJ^JaJphhaUh�G�OJQJjh�G�OJQJUh�G�OJQJ&I�K�`�a������]�^�b�c�"�#�$�3�4�H�I�K�R�S�ѽҽ�$�%�)�*�]�_�u�w������$�h�i�p�q�t�u���)����ʾ�����ʶ��������ʾ�����ʍʍ��ʶʾ�����shaUh�G�B*OJQJphh�h�G�OJQJhaUh�G�H*OJQJ'�j>8hT�h�G�0JOJQJUh�G�OJQJ�*h�G�OJQJjh�G�OJQJUhaUh�G�OJQJ h
Kh�G�6�B*OJQJphh
Kh�G�6�OJQJh
Kh�G�6�H*OJQJ+)�*�+�0�7�������=�F�G�H��E�F�J�K�k�l����������������������������������������ճ䥳������ճ䥳�Ոz�i^haUh�G�OJQJ h
Kh�G�6�B*OJQJphh
Kh�G�6�H*OJQJh
Kh�G�6�OJQJ h�Qjh�G�5�B*OJQJphh�G�B*OJQJph�* jh�G�B*OJQJUph haUh�G�6�B*OJQJphhaUh�G�B*OJQJphh�G�B*OJQJphh�>�h�G�B*OJQJph#��������S�Z��������������.�5�3�:�H�I���������������#�$�(�)���������������������������G�I������
�������������;�B��������������ȿ���������ȿ�����ȿ�������ȿ���������������訜������hQmuh�G�5�OJQJh�wh�G�OJQJhOIh�G�5�OJQJh�G�OJQJ�*h�G�OJQJjh�G�OJQJUhaUh�G�6�OJQJhaUh�G�OJQJhaUh�G�H*OJQJ=�������������������������/�O�S�T�{������������������������!�"��������������6�G�H����������������ݽ��������������������虋��v����h�G�6�OJQJh�$9h�G�6�OJQJh�wh�G�>*OJQJ\�haUh�G�OJQJ\�h�wh�G�>*OJQJhaUh�G�6�OJQJhQmuh�G�5�OJQJh�G�OJQJh�wh�G�5�OJQJh�wh�G�OJQJhaUh�G�OJQJhaUh�G�H*OJQJ.�&�x�����������������������8�:�E�F�G�Y�Z�������������9:;<������������͖�|�|�p�p�p�d�p�d�|��hT�h�G�H*OJQJhT�h�G�H*OJQJjhT�h�G�OJQJUhT�h�G�OJQJhOIh�G�5�OJQJh�G�5�;�OJQJh�$9h�G�6�OJQJh�G�6�OJQJh�wh�G�OJQJhaUh�G�OJQJ(haUh�G�B*OJQJ\�^JaJphh�G�OJQJh(~�h�G�OJQJ$9�:�E�F���b����_�����i�6�����B�,�����\*���H������������������������������0�d�^��`�0�gd�G�d�gd�G��o�c.��f	�	�
�}C
���R���89;<K���������������������������d�gd�G����0�d�^��`�0�gd�G�<KST����������./b���NOPQRSnopquw���������������������ҾҰҰҤ�ݘ阍����ʍʁʍu���ʍu����haUh�G�H*OJQJh@,�h�G�5�OJQJhaUh�G�OJQJhaUh�G�5�OJQJh(�h�G�6�OJQJ	j��h(�h�G�OJQJh(�h�G�H*OJQJh�G�OJQJh(�h�G�OJQJh(�h�G�5�OJQJh�G�5�OJQJhaUh�G�5�;�OJQJ.����t{|}~������LMNO��������
U����-./0rstu��-.ABKRSTgi�������������������������������������������������	j��haUh�G�OJQJ	j��haUh�G�OJQJh�G�OJQJh�G�5�OJQJhaUh�G�5�OJQJhaUh�G�6�OJQJhaUh�G�H*OJQJhaUh�G�OJQJ@�t�K����������������

�������������������������h]�hgd�G�����&`#$gd�G�gd�G�d�gd�G��%&'(X��������������������	

��������������������������h�G�0JmHnHu
h�G�0Jjh�G�0JUh�G�jh�G�Uh�G�OJQJmHnHu	j��h�G�OJQJh�G�5�OJQJh�G�OJQJhaUh�G�OJQJ ":p�G���/ ��=!��"��#��$��%��D<EndNote><Cite><Author>DeBerardinis</Author><Year>2008</Year><RecNum>59</RecNum><record><rec-number>59</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">59</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ralph J. DeBerardinis</author></authors></contributors><titles><title>Is cancer a disease of abnormal cellular metabolism? New angles on a old idea</title><secondary-title>Genetics in Medicine</secondary-title></titles><periodical><full-title>Genetics in Medicine</full-title></periodical><pages>767-777</pages><volume>10</volume><number>11</number><dates><year>2008</year></dates><urls></urls></record></Cite><Cite><Author>Fantin</Author><Year>2006</Year><RecNum>60</RecNum><record><rec-number>60</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">60</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Valeria R. Fantin</author><author>St-Pierre, Julie</author><author>Philip Leder</author></authors></contributors><titles><title>Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance</title><secondary-title>Cancer Cell</secondary-title></titles><periodical><full-title>Cancer Cell</full-title></periodical><pages>425-434</pages><volume>9</volume><dates><year>2006</year></dates><urls></urls></record></Cite><Cite><Author>Plathow</Author><Year>2008</Year><RecNum>77</RecNum><record><rec-number>77</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">77</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Christian Plathow</author><author>Wolfgang A. Weber</author></authors></contributors><titles><title>Tumor Cell Metabolism Imaging</title><secondary-title>Journal of Nuclear Medicine</secondary-title></titles><periodical><full-title>Journal of Nuclear Medicine</full-title></periodical><pages>43S-63S</pages><volume>49</volume><number>6</number><dates><year>2008</year></dates><urls></urls></record></Cite></EndNote>�%D<EndNote><Cite><Author>Albers</Author><Year>2008</Year><RecNum>49</RecNum><record><rec-number>49</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">49</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mark J. Albers</author><author>Robert Bok</author><author>Albert P. Chen</author><author>Charles H. Cunningham</author><author>Matt L. Zierhut</author><author>Vickie Yi Zhang</author><author>Susan J. Kohler</author><author>James Tropp</author><author>Ralph E. Hurd</author><author>Yi-Fen Yen</author><author>Sarah J. Nelson</author><author>Daniel B. Vigneron</author><author>John Kurhanewicz</author></authors></contributors><titles><title>Hyperpolarized 13C Lactate, Pyruvate, and Alanine: Noninvasive Biomarkers for Prostate Cancer Detection and Grading</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>8607-8615</pages><volume>68</volume><number>20</number><dates><year>2008</year></dates><urls></urls></record></Cite><Cite><Author>Chen</Author><Year>2007</Year><RecNum>55</RecNum><record><rec-number>55</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">55</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Albert P. Chen</author><author>Mark J. Albers</author><author>Charles H. Cunningham</author><author>Susan J. Kohler</author><author>Yi-Fen Yen</author><author>Ralph E. Hurd</author><author>James Tropp</author><author>Robert Bok</author><author>John M. Pauly</author><author>Sarah J. Nelson</author><author>John Kurhanewicz</author><author>Daniel B. Vigneron</author></authors></contributors><titles><title>Hyperpolarized C-13 Spectroscopic Imaging of the TRAMP Mouse at 3T-Initial Experience</title><secondary-title>Magnetic Resonance in Medicine</secondary-title></titles><periodical><full-title>Magnetic Resonance in Medicine</full-title></periodical><pages>1099-1106</pages><volume>58</volume><dates><year>2007</year></dates><urls></urls></record></Cite><Cite><Author>Darpolor</Author><Year>2011</Year><RecNum>91</RecNum><record><rec-number>91</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">91</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moses M. Darpolor</author><author>Yi-Fen Yen</author><author>Mei-Sze Chua</author><author>Lei Xing</author><author>Regina H. Clarke-Katzenberg</author><author>Wenfang Shi</author><author>Dirk Mayer</author><author>Sonal Josan</author><author>Ralph E. Hurd</author><author>Adolf Pfefferbaum</author><author>Lasitha Senadheera</author><author>Samuel So</author><author>Lawrence V. Hofmann</author><author>Gary M. Glazer</author><author>Daniel M. Spielman</author></authors></contributors><titles><title><style face="italic" font="default" size="100%">In Vivo</style><style face="normal" font="default" size="100%"> Magnetic Resonance Spectroscopic Imaging of Hyperpolarized [1-</style><style face="superscript" font="default" size="100%">13</style><style face="normal" font="default" size="100%">C]Pyruvate Metabolism in Rat Hepatocellular Carcinoma</style></title><secondary-title>NMR in Biomedicine</secondary-title></titles><periodical><full-title>NMR in Biomedicine</full-title></periodical><pages>506-513</pages><volume>24</volume><number>5</number><dates><year>2011</year></dates><urls></urls></record></Cite><Cite><Author>Day</Author><Year>2007</Year><RecNum>58</RecNum><record><rec-number>58</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">58</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sam E. Day</author><author>Mikko I. Kettunen</author><author>Ferdia A. Gallagher</author><author>De-En Hu</author><author>Mathilde Lerche</author><author>Jan Wolber</author><author>Klaes Golman</author><author>Ardenkjaer-Larsen, Jan Henrik</author><author>Kevin M. Brindle</author></authors></contributors><titles><title>Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy</title><secondary-title>Nature Medicine</secondary-title></titles><periodical><full-title>Nature Medicine</full-title></periodical><pages>1382-1387</pages><volume>13</volume><number>11</number><dates><year>2007</year></dates><urls></urls></record></Cite><Cite><Author>Golman</Author><Year>2006</Year><RecNum>64</RecNum><record><rec-number>64</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">64</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Klaes Golman</author><author>in &apos;t  Zandt, Rene</author><author>Mathilde Lerche</author><author>Rikard Pehrson</author><author>Ardenkjaer-Larsen, Jan Henrik</author></authors></contributors><titles><title>Metabolic Imaging by Hyperpolarized 13C Magnetic Resonance Imaging for In vivo Tumor Diagnosis</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>10855-10860</pages><volume>66</volume><number>22</number><dates><year>2006</year></dates><urls></urls></record></Cite><Cite><Author>Kettunen</Author><Year>2010</Year><RecNum>71</RecNum><record><rec-number>71</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">71</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mikko I. Kettunen</author><author>De-En Hu</author><author>Timothy H. Witney</author><author>Rebekah McLaughlin</author><author>Ferdia A. Gallagher</author><author>Sarah E. Bohndiek</author><author>Sam E. Day</author><author>Kevin M. Brindle</author></authors></contributors><titles><title>Magnetization Transfer Measurements of Exchange Between Hyperpolarized [1-13C]Pyruvate and [1-13C]Lactate in a Murine Lymphoma</title><secondary-title>Magnetic Resonance in Medicine</secondary-title></titles><periodical><full-title>Magnetic Resonance in Medicine</full-title></periodical><pages>872-880</pages><volume>63</volume><dates><year>2010</year></dates><urls></urls></record></Cite><Cite><Author>Park</Author><Year>2010</Year><RecNum>75</RecNum><record><rec-number>75</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">75</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ilwoo Park</author><author>Peder E. Z. Larson</author><author>Matthew L. Zierhut</author><author>Simon Hu</author><author>Robert Bok</author><author>Tomoko Ozawa</author><author>John Kurhanewicz</author><author>Daniel B. Vigneron</author><author>Scott R. VandenBerg</author><author>C. David James</author><author>Sarah J. Nelson</author></authors></contributors><titles><title><style face="normal" font="default" size="100%">Hyperpolarized </style><style face="superscript" font="default" size="100%">13</style><style face="normal" font="default" size="100%">C magnetic resonance metabolic imaging: application to brain tumors</style></title><secondary-title>Neuro-Oncology</secondary-title></titles><periodical><full-title>Neuro-Oncology</full-title></periodical><pages>133-144</pages><volume>12</volume><number>2</number><dates><year>2010</year></dates><urls></urls></record></Cite><Cite><Author>Ward</Author><Year>2010</Year><RecNum>87</RecNum><record><rec-number>87</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">87</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Christopher S. Ward</author><author>Humsa S. Venkatesh</author><author>Myriam M. Chuameil</author><author>Alissa H. Brandes</author><author>Mark Van Criekinge</author><author>Hagit Dafni</author><author>Subbramaniam Sukumar</author><author>Sarah J. Nelson</author><author>Daniel B. Vigneron</author><author>John Kurhanewicz</author><author>C. David James</author><author>Haas-Kogan, Daphne A.</author><author>Sabrina M. Ronen</author></authors></contributors><titles><title>Noninvasive Detection of Target Modulation following Phosphatidylinositol 3-Kinase Inhibition Using Hyperpolarized 13C Magnetic Resonance Spectroscopy</title><secondary-title>Cancer Research</secondary-title></titles><periodical><full-title>Cancer Research</full-title></periodical><pages>1296-1305</pages><volume>70</volume><number>4</number><dates><year>2010</year></dates><urls></urls></record></Cite><Cite><Author>Yen</Author><Year>2010</Year><RecNum>90</RecNum><record><rec-number>90</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">90</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Yi-Fen Yen</author><author>Le Roux, Patrick</author><author>Dirk Mayer</author><author>Randy King</author><author>Daniel Spielman</author><author>James Tropp</author><author>Kim Butts Pauly</author><author>Adolf Pfefferbaum</author><author>Shreyas Vasanawala</author><author>Ralph Hurd</author></authors></contributors><titles><title>T2 relaxation times of 13C metabolites in a rat hepatocellular carcinoma model measured in vivo using 13C-MRS of [1-13C]pyruvate</title><secondary-title>NMR in Biomedicine</secondary-title></titles><periodical><full-title>NMR in Biomedicine</full-title></periodical><pages>414-423</pages><volume>23</volume><number>4</number><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>
D<EndNote><Cite><Author>Darpolor</Author><Year>2011</Year><RecNum>91</RecNum><record><rec-number>91</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">91</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moses M. Darpolor</author><author>Yi-Fen Yen</author><author>Mei-Sze Chua</author><author>Lei Xing</author><author>Regina H. Clarke-Katzenberg</author><author>Wenfang Shi</author><author>Dirk Mayer</author><author>Sonal Josan</author><author>Ralph E. Hurd</author><author>Adolf Pfefferbaum</author><author>Lasitha Senadheera</author><author>Samuel So</author><author>Lawrence V. Hofmann</author><author>Gary M. Glazer</author><author>Daniel M. Spielman</author></authors></contributors><titles><title><style face="italic" font="default" size="100%">In Vivo</style><style face="normal" font="default" size="100%"> Magnetic Resonance Spectroscopic Imaging of Hyperpolarized [1-</style><style face="superscript" font="default" size="100%">13</style><style face="normal" font="default" size="100%">C]Pyruvate Metabolism in Rat Hepatocellular Carcinoma</style></title><secondary-title>NMR in Biomedicine</secondary-title></titles><periodical><full-title>NMR in Biomedicine</full-title></periodical><pages>506-513</pages><volume>24</volume><number>5</number><dates><year>2011</year></dates><urls></urls></record></Cite><Cite><Author>Yen</Author><Year>2009</Year><RecNum>89</RecNum><record><rec-number>89</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">89</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Y-F Yen</author><author>S.J Kohler</author><author>A.P. Chen</author><author>J. Tropp</author><author>R. Bok</author><author>J. Wolber</author><author>M.J. Albers</author><author>K.A. Gram</author><author>M.L. Zierhut</author><author>I. Park</author><author>V. Zhang</author><author>S. Hu</author><author>S.J. Nelson</author><author>D.B. Vigneron</author><author>J. Kurhanewicz</author><author>H.A.A.M Dirven</author><author>R.E. Hurd</author></authors></contributors><titles><title>Imaging Considerations for In Vivo 13C Metabolic Mapping Using Hyperpolarized 13C-Pyruvate</title><secondary-title>Magnetic Resonance in Medicine</secondary-title></titles><periodical><full-title>Magnetic Resonance in Medicine</full-title></periodical><pages>1-10</pages><volume>62</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>�D<EndNote><Cite><Author>Mathupala</Author><Year>2006</Year><RecNum>33</RecNum><record><rec-number>33</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">33</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mathupala, S. P.</author><author>Ko, Y. H.</author><author>Pedersen, P. L.</author></authors></contributors><titles><title>Hexokinase II: Cancer&apos;s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria</title><secondary-title>Oncogene</secondary-title></titles><periodical><full-title>Oncogene</full-title></periodical><pages>4777-4786</pages><volume>25</volume><number>34</number><dates><year>2006</year><pub-dates><date>Aug</date></pub-dates></dates><isbn>0950-9232</isbn><accession-num>ISI:000239687000014</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://000239687000014 </url></related-urls></urls><electronic-resource-num>10.1038/sj.onc.1209603</electronic-resource-num></record></Cite><Cite><Author>Mathupala</Author><Year>2009</Year><RecNum>34</RecNum><record><rec-number>34</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">34</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mathupala, S. P.</author><author>Ko, Y. H.</author><author>Pedersen, P. L.</author></authors></contributors><titles><title>Hexokinase-2 bound to mitochondria: Cancer&apos;s stygian link to the &quot;Warburg effect&quot; and a pivotal target for effective therapy</title><secondary-title>Seminars in Cancer Biology</secondary-title></titles><periodical><full-title>Seminars in Cancer Biology</full-title></periodical><pages>17-24</pages><volume>19</volume><number>1</number><dates><year>2009</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>1044-579X</isbn><accession-num>ISI:000264608700004</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://000264608700004 </url></related-urls></urls><electronic-resource-num>10.1016/j.semcancer.2008.11.006</electronic-resource-num></record></Cite><Cite><Author>Pedersen</Author><Year>2007</Year><RecNum>38</RecNum><record><rec-number>38</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">38</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Pedersen, P. L.</author></authors></contributors><titles><title>The cancer cell&apos;s &quot;power plants&quot; as promising therapeutic targets: An overview</title><secondary-title>Journal of Bioenergetics and Biomembranes</secondary-title></titles><periodical><full-title>Journal of Bioenergetics and Biomembranes</full-title></periodical><pages>1-12</pages><volume>39</volume><number>1</number><dates><year>2007</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0145-479X</isbn><accession-num>ISI:000247375900001</accession-num><urls><related-urls><url>&lt;Go to ISI&gt;://000247375900001 </url></related-urls></urls><electronic-resource-num>10.1007/s10863-007-9070-5</electronic-resource-num></record></Cite><Cite><Author>Pedersen</Author><Year>2007</Year><RecNum>99</RecNum><record><rec-number>99</rec-number><foreign-keys><key app="EN" db-id="pf2vzawxqdexd4e5trrve9fk9tzs0aextvr9">99</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Peter L. Pedersen</author></authors></contributors><titles><title>Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers&apos; most common phenotypes, the &quot;Warburg Effect&quot;, i.e., elevated glycolysis in the presence of oxygen.</title><secondary-title>Journal of Bioenergetics and Biomembranes</secondary-title></titles><periodical><full-title>Journal of Bioenergetics and Biomembranes</full-title></periodical><pages>211-222</pages><volume>39</volume><number>3</number><dates><year>2007</year></dates><urls></urls></record></Cite></EndNote>����������666666666vvvvvvvvv666666>666666666666666666666666666�6666666666�666666666666hH66666666666666666666666666666666666666666666666666666666666666666�66666666662���� 0@P`p������2(�� 0@P`p������ 0@P`p������ 0@P`p������ 0@P`p������ 0@P`p������ 0@P`p��8X�V~ OJPJQJ_HmH	nH	sH	tH	@`�@V�NormalCJ_HaJmH	sH	tH	DA`�D
Default Paragraph FontRi�R�Table Normal�4�
l4�a�(k �(
No List@��@�� List Paragraph	^��m$j��j�7��
Table Grid7:V�04 @4	�{�0Footer
���!.��!.�{�0Footer Char.)@�1.	�{�0Page Number6U@�A6	-0	Hyperlink>*B*ph�H�RH	�bZ0Balloon TextCJOJQJ^JaJN��aN�bZ0Balloon Text CharCJOJQJ^JaJPK!���[Content_Types].xml���j�0���u$Nwc$�a�n�s�@8Jb���VK��S��(��.Y��$��8���<Uz�Z!Y�8�*��y��J��	+}�����M�9LJ�)U�gO�$��)�I2��#���3�th��XO��O�.W��v`����Dڵz>�MV��g��LYS��]��"��(U�����֎�_��o[g��v;
f>K���H����|;\XV�!]�օ	O�ȥs�h�]Hg3߶���PK!�֧�6_rels/.rels���j�0���}Q��%v/��C/�}�(h"���O�
����=������ ����C?�h�v=��Ʌ��%[xp��{۵_�Pѣ<�1�H�0���O�R�Bd���JE�4b$��q_����6L�R�7`������0̞O��,�En7�Li�b��/�S���e��е�����PK!ky���theme/theme/themeManager.xml�M
� @�}�w��7c�(Eb�ˮ��C�AǠҟ����7��՛K
Y,�
�e�.���|,���H�,l����xɴ��I�sQ}#Ր���� ֵ+�!�,�^�$j=�GW��)�E�+&
8���PK!�\���theme/theme/theme1.xml�YOoE�#�F{o'N�Du�ر	�i��-�q�;�N3���'�
�G$$DA�č*���iEP�~���w�q�4��;�{o��?�g�^;N:$BR�6�����4�M���v�si-@R�4Œ�����m���U��b���� V*�XX�!cy�g$�w.��Q"��@o��WL��8����*��By��c����j�đ0�蠦r,[L�C���9VbX*x��_��yuo�BL͐��u�_.�DKfN1엓�:��+ۥ~`j�n�[�Z��p��֖��zg��,tV@������b��W�/Oټ�l6W�s[�R�?�S����֒�7 �_��כ[�֪�7 �_��w����]�Ō�Sh�N'�^B��x�k_[��dC�]z�Oլ\K�=.:�@�M�gd�C��f�/��o\yc�B95��B24S��CEL�|���gO���'�<y���V�#���aU��7����#�_<�܏�U�/���O���P>s��ק����o�>��W�=��n�#��p̰�ZN��|�Ӫ�V:�8�z������1f؃k��;ڇ���cp7#�����z�8�]�Y�/�\�{�t�\���}�}s�p�ķ=ʠoR��VL3�N��(���B<|ݥ��u���K>P�.EML���h�ɦ��M .c��o���;�ə��mr�"�*0��#̡�=<R8���U	��U�3�;aז
"=$��vD�����o%�סu�þ�Ɖ���t��W����$�a�4�����(F{\��ܭ�q���pߡ�	����6:&MD�	Kh�NNh��v�@7�ݹ�v
�W�<���6�- �W	;���,����"�o~��ƣt�@�O/<o[�ۖ��[�z���Nz+�]����b�ENf����3rC�M��u"��3�CR���~�}�
62Hp�!Uq7�l�k�V2���D�p�3�^��te��+��`���j�GvxY�R�Ym���YL���;��\)��:�մQs�V3��V��V�1�v
K6a�`�,��\O
�H�y�ko��'D��֑GĆ���Y3�+R�\@JyBw>6Kր���0i1;�$�P0!Y�ݩjbi��X������J�B�5�I�g�AФ޲a6�{�P	��g֢)҉����-Ì�q�8Rmc��Wy�X�g��/��u�]�6Q_Ê�5H��
�Z2�PU�]���Ǽ�"�GG��FbC��S�OD%�,���p
��6��ޚw����q̲��R_�g��J�S�<��k�q�芿(W�i�?sE/p�_�tB���zm\��C�bv���w@��U*���.�/ȡ��֜�a��kj������X�m�d��j��cU�\�ɨ��2�f��!a=�WuP�n�I��t���y��z�R�7���K���z�b��:���[�_��Y���/�Ȫ#��d�T/��Y����^ӄy��Zk;֔�K+�q�i�a���dp]��?��Q2�aA/�=���w������d�n��W�=v�&�Ve��w>��b���j9�)��e���d��(w:�/��a�k;6�j�����Aq1�1_���x�z��G�~F�<�:��ɮ>��O&�k�N�a4���d�ht\�?J&l	�O�٠��N�Rp�whps���e)�t�p)af��]
�2����7n}��m��k]\S,�+��a��2��g^��A�z
���)˙�>E
G��鿰��L7)��'��PK!
ѐ��'theme/theme/_rels/themeManager.xml.rels��M
�0���wooӺ�&݈Э���5
6?$Q��
�,.�a��i����c2�1h�:�q��m��@RN��;d�`��o7�g�K(M&$R(.1�r'J��ЊT���8��V�"��AȻ�H�u}��|�$�b{��P����8�g/]�QAsم(����#��L�[������PK-!���[Content_Types].xmlPK-!�֧�6/_rels/.relsPK-!ky���theme/theme/themeManager.xmlPK-!�\����theme/theme/theme1.xmlPK-!
ѐ��'
theme/theme/_rels/themeManager.xml.relsPK]<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<a:clrMap xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main" bg1="lt1" tx1="dk1" bg2="lt2" tx2="dk2" accent1="accent1" accent2="accent2" accent3="accent3" accent4="accent4" accent5="accent5" accent6="accent6" hlink="hlink" folHlink="folHlink"/>R����	%%%(���$Azg<������I�)������<���������������������[�99������������%
}�����?Cf"�����!!&!K%P%f%,
,&,!0&0�2�6�6K7�:�:8<9@>@@�D�D�D.J2J,KO	O&O�Q�QDT�Y�Y�Z�]�]majdodSf"i'i�i$m)m�muu,u�{�{�|��Ї������������הf�j����Ÿ����J�E�J�O�Z�_���]�b�#�3�I�J�R�ѵ$�)�h�p�t�G�E�J������������H�������#�(�������F�Y�9X4���Q���QQ�@���Q���Q���QQ�@���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���Q���QQ�@���Q���Q���Q���Q���Q���Q���Q���QQ�@���Q���Q���Q���Q���Q���Q���Q���Q���Q���!(!�!�����H�(@���������H ��0�(	��
����0�(	��<
��B
�S����	?���
'/pxpz����������NR��					!	(	)	5	F	W	z	�	�	�	�	�	 
,
A
M
^
k
()08?@L���������
V`EP^k�������������S%T%\%]%e%,,,,%,�1�122
2|2}2�2�2�277 7!7)7;;%;1;�;�;�;�;�;�;�;(<)<.</<7<M@N@S@T@\@h@o@t@RJSJXJYJ`J�J�J�QR�R�R�R�R�R�R�S�S�S�S�S�STTZ Z"Z5Z:ZBZCZIZuZZ�Z�Z�]�]�]�]�]�]�]�]�^�^
__T_^_�_�_�_�_�`�`�`a$a-axeze�e�e�i�i��^�l�X�e�y������������������@�A�F�G�O�e�f�k�l�s���� �'�Éɉ%�+�]�`�u�z���������=�D�`�e�גa�ܴ���3�J�*�,�.�/�H�����Ѿ۾f�s�}������l�r�����������	�����������������)�+�-�.�6�7����������������!�"�0�������������������������	�
�����6��������������������#�E��
�
�
%w�
xt'1���&����Kdejkz��������������������������	67�		X	

O

3��������1�1
27)7�:m;�;�;P@\@�J-�g�s��}�q�u�C�O����	��������
�M����Ӫڪ3�J�,�q�s�ߺl�q�������w�����D�������{���I�?�o�w�������������5�6�A�i������6�i�r������
�����@�L�v�B�]���,����������\������*�H�Q����S�_�a���P�Q���cT_a�Pu��-19�Kgz��Y���������������	:::::::::::::::::::::::::::::::::::::::::�t+	 #�����������"|�N���������j.�q̼���������3J1 \l����������7�g�Ğ����������IOkB�D����������;�lbhVf��������������^��`���OJQJo(�������^��`���OJQJo(o��p���^�p`���OJQJo(����@���^�@`���OJQJo(�������^�`���OJQJo(o������^��`���OJQJo(��������^��`���OJQJo(��������^��`���OJQJo(o��P���^�P`���OJQJo(�������^��`���OJQJo(��������^��`���OJQJo(o��p���^�p`���OJQJo(����@���^�@`���OJQJo(�������^�`���OJQJo(o������^��`���OJQJo(��������^��`���OJQJo(��������^��`���OJQJo(o��P���^�P`���OJQJo(�������^��`���OJQJo(�������^��`���OJQJo(o��p���^�p`���OJQJo(����@���^�@`���OJQJo(�������^�`���OJQJo(o������^��`���OJQJo(��������^��`���OJQJo(��������^��`���OJQJo(o��P���^�P`���OJQJo(�������^��`���OJQJo(����p���^�p`���OJQJo(o��@���^�@`���OJQJo(�������^�`���OJQJo(��������^��`���OJQJo(o������^��`���OJQJo(��������^��`���OJQJo(����P���^�P`���OJQJo(o�� ���^� `���OJQJo(�������^��`���OJQJo(o������^��`���OJQJo(o��p���^�p`���OJQJo(����@���^�@`���OJQJo(�������^�`���OJQJo(o������^��`���OJQJo(��������^��`���OJQJo(��������^��`���OJQJo(o��P���^�P`���OJQJo(�������^��`���OJQJo(��������^��`���OJQJo(o��p���^�p`���OJQJo(����@���^�@`���OJQJo(�������^�`���OJQJo(o������^��`���OJQJo(��������^��`���OJQJo(��������^��`���OJQJo(o��P���^�P`���OJQJo(�������^��`���OJQJo(��������^��`���OJQJo(o��p���^�p`���OJQJo(����@���^�@`���OJQJo(�������^�`���OJQJo(o������^��`���OJQJo(��������^��`���OJQJo(��������^��`���OJQJo(o��P���^�P`���OJQJo(��IOk��"�t+	j.3J1;�l�7�g��������������������������������																																																															�z�'�E#�n�'�E#<Z�'�E#'�E��G��������EN.InstantFormatX�%	EN.LayoutaEN.LibrariesX�%w<ENInstantFormat><Enabled>0</Enabled><ScanUnformatted>1</ScanUnformatted><ScanChanges>1</ScanChanges></ENInstantFormat>b<ENLayout><Style>Molecular Imaging and Bilology</Style><LeftDelim>{</LeftDelim><RightDelim>}</RightDelim><FontName>Cambria</FontName><FontSize>12</FontSize><ReflistTitle></ReflistTitle><StartingRefnum>1</StartingRefnum><FirstLineIndent>0</FirstLineIndent><HangingIndent>720</HangingIndent><LineSpacing>0</LineSpacing><SpaceAfter>0</SpaceAfter></ENLayout>S<ENLibraries><Libraries><item>MTR601_MD_Review.enl</item></Libraries></ENLibraries>�@�@��Unknown������������	G�Times New Roman5��Symbol3�Arial3�TimesU�	Times New Roman Italic7�Cambria5��usmffoTahoma?�	Courier New;��Wingdings 1���hd�d����(R�t�����hh��4dd�J#���HP�?'���������������������pE�0"��Moses DarpolorMoses Darpolor(��
��Oh��+'��0��������	
0<H
T`hpx'Moses DarpolorNormal.dotmMoses Darpolor2Microsoft Macintosh Word@@r��0c�@�[El`�@�[El`�(R���
��՜.��+,��D��՜.��+,��Php��������
��'(Stanford University / Medical School�tdTitle� 8@_PID_HLINKS'ApYdmailto:mdarpolor@gmail.com:	

 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Root Entry��������	�F]��Yl`��Data
�������������H1Table����������DWordDocument����$RSummaryInformation(�������������DocumentSummaryInformation8���������CompObj����`ObjectPool������������ѣ�Yl`�ѣ�Yl`�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������	�F Microsoft Word 97-2004 Document����NB6WWord.Document.8

Youez - 2016 - github.com/yon3zu
LinuXploit