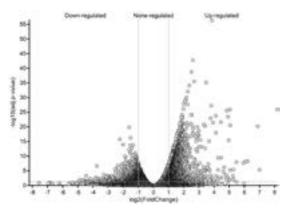


2nd International Conference on

AQUACULTURE & MARINE BIOLOGY


March 25-26, 2019 | Paris, France

Transcriptomic analysis of immunity in rainbow trout (*Oncorhynchus mykiss*) gills infected by *Ichthyophthirius multifiliis*

Khairul Syahputra¹, Per W Kania¹, Azmi Al-Jubury¹, Rzgar M Jafaar¹, Ron P Dirks² and Kurt Buchmann¹
¹University of Copenhagen, Denmark

²Future Genomics Technologies BV, The Netherlands

he parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3,352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1,796 genes were upregulated and 1,556 genes were down-regulated. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, and CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that *I. multifiliis* induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.

Biography

Khairul Syahputra is enrolled PhD at Department of Veterinary and Animal Science, University of Copenhagen, Denmark. He is a researcher at Research Institute for Fish Breeding, Subang, Indonesia. He has published more than 5 papers in reputed journals.

khairul@sund.ku.dk

Notes: