16th World Nano Conference

June 05-06, 2017 Milan, Italy

Reactions of radicals at nanoparticles surfaces

Tomer Zidki Ariel University, Israel

R adicals reactions are of importance due to their formation near surfaces in a variety of processes, e.g. in catalytic processes, in electrochemistry, in photo-catalytic processes, in environmental processes, etc. It was therefore decided to study the mechanisms and kinetics of reaction of M°-NPs, M=Ag; Au; Cu; Pt; Pd, Pt/Au-alloy-NPs and TiO₂-NPs with methyl radicals. (All the M°-NPs were prepared by reduction of the corresponding salts with NaBH₄). These reactions are very fast, approaching the diffusion-controlled limit, forming long-lived transients with (M°-NP)-(CH₃)_n σ bonds. These transients decompose yielding C₂H₆ for Ag°-, Au°- and TiO₂-NPs, CH₄ for Cu°-NPs, for Pt°- and Pd°-NPs most methyl remain bound to the NPs, and are released as methane when H₂ is added to the suspension, though some C₂H₆, C₂H₄ and oligomerization products are formed. The reaction of .C(CH₃)₂OH radicals with SiO₂ supported metal-NPs (M°-SiO₂-NCs, NCs=nanocomposites) is more complicated. At low [M°-SiO₂-NCs], the NCs catalyze the reduction of water by these radicals, for M=Pt the NCs are clearly a catalyst while the Pt°-NPs are not; For M=Ag the NCs catalyze the reduction of water but considerably less than the Ag°-NPs; for M=Au both the MPs and the NCs catalyze the reduction of water. At high [M°-SiO₂-NCs] the reduction of water by the considerably decreased and at high doses of radicals the Pt°- and Ag°-NCs do not catalyze the reduction of water by the .C(CH₃)₂OH radicals and induce their disproportionation, and their reduction by H₂, on the NCs surfaces. Thus, the SiO₂ support affects considerably the properties of the M°-NPs and the nature of this effect depends on the nature of the M°-NPs.

Biography

Tomer Zidki has completed his PhD in 2009 at Ben-Gurion University of the Negev and has his expertise in "Mechanistic studies of catalytic reactions at nanoparticles surfaces". His studies show that radicals react extremely fast with metal and supported metal nanoparticles. The products of these reactions are long-lived metalcarbon intermediates in which their lifetime depends on the metal nature. He also has interest in "Catalytic water splitting reactions" and developed very efficient water oxidation catalysts based on co-hydrous-oxide nanoparticles supported on SiO₂ nanoparticles. Recently, he developed new metal-alloys nanoparticles which show superior catalytic activity as well as TiO₂ based nanocomposites which will be used for various catalytic and photocatalytic reactions.

tomerzi@ariel.ac.il

Notes: