23rd International Conference on

Nanomaterials and Nanotechnology

March 15-16, 2018 | London, UK

Yan Jun LI

Osaka University, Japan

The study of local dipole moment and contact potential difference on TiO2 (110) surface by AFM

 $A_{emerging}$ (110) surfaces display extremely high catalytic reactivity. There are many representative models that explain the emerging catalytic activity of Au nanoclusters. It is widely accepted that the perimeter interface of Au/TiO₂ is the reaction site for CO oxidation. However, the injection/extraction mechanism of electrons and the reaction process are not clarified by a comprehensive experimental description. In this study, we proposed a new method to simultaneously measuring topography, local contact potential difference (LCPD) and dipole moment distribution on TiO₂(110) surface. In the experiment, the DC bias added with AC bias voltage is applied between the tip and sample. Three lock-in amplifiers are used to detect frequency shift of f_m , f_{2m} and f_{3m} . The contact potential difference is numerically calculated from the divided result of f_m and f_{2m} signals and dipole moment is obtained from frequency shift of f_{3m} . Figure 1 shows the simultaneously measurement result of topography, LCPD and dipole moment images on TiO₂ (110) surface.

Recent Publications

- 1. M Haruta (1997) Size- and support-dependency in the catalysis of gold Catalysis Today. 36(1997):153-166.
- 2. L L Kou, Y J Li, and Y Sugawara (2015) Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback. Nanotechnology 26:195701.
- 3. Takeuchi and H Shigekawa (2007) Kelvin probe force microscopy without bias-voltage feedback. Japanese Journal of Applied Physics 46, 8B.
- Wen Huan Fei, Y J Li, Arima Eiji, Naitoh Yoshitaka, Sugawara Yasuhiro, Xu Rui and Cheng Zhi Hai (2017) Investigation of tunneling current and local contact potential difference on the TiO2(110) surface by AFM/KPFM at 78 K. Nanotechnology 28, 105704.

Biography

Yan Jun LI is currently working as an Associate Professor at Osaka University, Japan..

liyanjun@ap.eng.osaka-u.ac.jp