

International Conference on

NANOTECHNOLOGY AND NANOENGINEERING

July 16-18, 2018 | Paris, France

Evaluation of cure depth and geometrical overgrowth depending on Zirconia volume fraction using digital light processing

Sang-Won Park^{1,2}, Kyoung-Jun Jang¹, Jin-Ho Kang¹, Kumaresan Sakthiabirami¹, Hyun-Pil Lim¹, Kwi-Dug Yun¹, Eun-Kyung Yim¹, Gye-Jeong Oh², Hyun-Sam Yang³ and Kyung-Ku Lee⁴

¹Chonnam National University, Korea

²Chonnam National University, Korea

³Nambu University, Korea

⁴Gwangju Technology Park, Republic of Korea

The optical properties of zirconia photopolymer suspension for DLP (Digital Light Processing) were evaluated. The light source and intensity were set to 395 nm and 30 mW/cm². Experimental groups were divided into 48, 50, 52, 54, 56 and 58 vol% according to the zirconia volume fraction. The cure depth of all groups was at least

47.35um when cured for 1 sec, which was higher than layer parameter values of the 3d printer. The geometrical overgrowth showed 28.55% at 48vol% and 36.94% at 58vol%. As the volume fraction of zirconia increased, the geometrical overgrowth increased and the cure depth reduced.

Biography

Sang-Won Park has completed his PhD at the age of 30 years from Chonnam National University, Korea. He is the professor in the department of prosthodontics Chonnam National University dental hospital. He has published more than 50 papers in reputed journals and has registered several patents.

psw320@naver.com

Notes: