

International Conference on

NANOTECHNOLOGY AND NANOENGINEERING

July 16-18, 2018 | Paris, France

Modeling of nanoscale gallium nitride (GaN) HFET with gate field-plated heterostructure

Mourad Kaddeche¹, Azzedine Telia² and Ali Soltani³

¹Université de Djilali Bounaâma- Khemis miliana, Algeria

²Université Mentouri de Constantine, Alegria

³Université des Sciences et Technologie de Lille, France

The excellent microwave power performance demonstrated in AlGaN/GaN HEMTs (high-electron mobility transistors) results from the combination of high current density with high voltage operation [1], which benefits from the high sheet charge density in these heterostructures (1013 cm^2), the high carrier mobility ($1500 \text{ cm}^2/\text{Vs}$) and saturation velocity ($1.5 \times 10^7 \text{ cm/s}$) in the channel and the high breakdown voltage inherent in the GaN material. However, their reliability still limits their applications in today's electronic systems. The newly developed Gate Field-Plated AlGaN/GaN high electron mobility transistors

show improved performance due to the electric field reduction in the device channel and surface modification [2, 3]. We report on two dimensional numerical simulations of Gate-Recessed and Field-Plated AlGaN/GaN HFETs where all the important device parameters have been defined, the insulator thickness and permittivity under the Gate Field-Plated is also an important design parameter to attain higher breakdown voltage, thus an improvement of the performances of HFETs

kaddeche@gmail.com