

6th Edition of European Conference on

## Water, Waste and Energy Management

May 13-14, 2019 Stockholm, Sweden

Aijun Teng et al., Expert Opin Environ Biol 2019, Volume:8 DOI: 10.4172/2325-9655-C4-053

## A NOVEL ROASTING METHOD FOR TREATING HIGH-CHROMIUM VANADIUM SLAG

## Aijun Teng<sup>1,2</sup> and Xiangxin Xue<sup>1,2</sup>

<sup>1</sup>Department of resource and environment, Northeastern University, PR China <sup>2</sup>Liaoning Key Laboratory of Recycling Science for Metallurgical Resources-Northeastern University, PR China

In this study, a novel clean roasting process for extracting vanadium from vanadium slag has been developed. The high-chromium vanadium slag was treated by NaOH-Na $_2$ CO $_3$  binary sodium salts in the roasting process, and the effect of related parameters on the roasting was investigated. During the NaOH-Na $_2$ CO $_3$  binary roasting process, the roasting temperature, roasting time and NaOH-Na $_2$ CO $_3$  mass ratio took a significant role in the extraction rate of vanadium and chromium. The ferriferous oxide (Fe $_3$ O $_4$ ) was oxidized to ferric oxide (Fe $_2$ O $_3$ ), V $_2$ O $_5$  and Cr $_2$ O $_3$  were converted to the  $\beta$ -natrium-vanadate type structure of Na $_3$ VO $_4$  and orthorhombic-type crystal structure of Na $_2$ CrO $_4$ respectively. Under the optimum roasting conditions (roasting temperature of 600 , roasting time of 60 min, and NaOH to Na $_2$ CO $_3$  mass ratio of 1.5:1), the extraction rates of vanadium and chromium were 98.66% and 83.57%. The major metal element in the leaching residue was Fe.

## **Biography**

Aijun Teng was the Doctoral student from Department of Resource and Environment of Northeastern University. He worked on the Metallurgical Resources Recycling and Waste Treatment Field.

wdtaj2008@163.com