

3rd International Conference on Earth Science & Climate Change July 28-30, 2014 DoubleTree by Hilton Hotel San Francisco Airport, USA

CO₂ Sequestration of real mine tailings by accelerated carbonation for CCUS technologies

Ji-Whan Ahn, Thenepalli Thriveni and Seong Young Nam

Korea Institute of Geoscience and Mineral Resources (KIGAM), South Korea

R ecently, the global researchers focussed on CO_2 sequestration through mineral carbonation because of increasing severe atmospheric CO_2 levels that can be emitted from several resources and has lead to concerns about global warming. The possible emerging technology can contribute to the reduction of CO_2 emissions is CO_2 sequestration by mineral carbonation. Atmospheric CO_2 is sequestered with real mine tailings via accelerated carbonation of Mg-bearing minerals. The rate of carbon sequestration at some mine sites appears to be limited by the rate of CO_2 supply. If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO_2 annually, offsetting mine emissions. Some case studies, the possibilities for the integration of CO_2 mineral sequestration in real mine tailings by accelerated carbonation for CO_2 capture storage and utilization (CCUS) technologies will be presented.

ahnjw@kigam.re.kr