2nd International Conference & Expo on Green Energy, Recycling & Environmental Microbiology

November 28-30, 2016 Atlanta, USA

Recycling CO2 as a sustainable source of energy for power plants

Mohammad Ali Takassi Petroleum University of Technology, Iran

E nvironment friendly energy and alternative energy are major area of research for sustainable energy development. CO_2 can convert into synthesis gas which it may be used as fuel in power plants. CO_2 reforming of methane and CO_2 hydrogenation reactions are shown in Equations: $CH_4+CO_2 \rightarrow 2CO+2H_2$ (1); and $CO_2+H_2 \leftrightarrow CO+H_2O$ (2). Most power plants are operated by fossil fuel; they produce millions of tons CO_2 annually. Combustion of fossil fuel is shown in as: Fuel+ nO_2 $\rightarrow mCO_2+pH_2O+energy$ (3). In present study iron-molybdenum/zirconia and cobalt-molybdenum/ γ -alumina catalysts were prepared. The activity of Fe-Mo/ZrO₂ nano catalyst was studied for CO_2 reforming of methane in a fixed bed reactor. The effect of reaction temperatures on CH_4 conversion was investigated with $CH_4:CO_2$ ratio of 1:1 and total feed rate 30000 mL.h-1(g cat)-1. The stability experiment for Fe-Mo/ZrO₂ catalyst was conducted at 873 °K for 30 hours. 82% conversion of methane was recorded at 1073 °K. The activity of Co-Mo/ γ -Al₂O₃ catalyst was studied for hydrogenation of carbon dioxide. Kinetic property of this catalyst was studied in a batch reactor at a temperature of 823 °K and at a pressure of 12 bar, with $CO_2: H_2$ in 1:3 ratio. The stability experiments were carried out in a fixed bed reactor. Using this catalyst, CO_2 was converted into CO (63%) and CH_4 less than 1% in twenty minutes of reaction time. These two reactions of CO_2 could recycle CO_2 as fuel for power plants.

Biography

Mohammad Ali Takassi has obtained his PhD in Physical Chemistry from the University of Mississippi, Oxford, Mississippi. He has worked as a Post-doctoral Research Associate for a year at Sothern Methodist University, Dallas, Texas. He is currently a Professor of Chemistry and Chair of the Department of Science, Petroleum University of Technology, Iran. His research interests include: CO2 conversion to fuel and other useful chemicals; and synthesis and evaluation of surfactants and especially environmentally friendly surfactants for petroleum industry.

takassi@put.ac.ir

Notes: