

4th Annual Conference on BRAIN DISORDERS, NEUROLOGY AND THERAPEUTICS & 2nd International Conference on ALZHEIMERS, DEMENTIA AND RELATED NEURODEGENERATIVE DISEASES June 10-11, 2019 | Dublin, Ireland

Aspirin prevents cell damage induced by A_β1-42 on astrocytes in primary culture

Aguirre-Rueda D University of Valencia, Spain

Introduction: Astrocytes increase neuronal viability and mitochondrial biogenesis, protecting from oxidative stress and inflammation induced by toxic amyloid peptide (Aguirre et al. 2015 a, b). Aspirin has been used as anti-inflammatory and anti-aggregate for decades but the precise mechanism(s) of action after the presence of the toxic peptide $A\beta$ 1-42 in cultured astrocytes remains poorly resolved. Here we use low-doses of aspirin (10-7 M) in astrocytes in primary culture in presence or absence of $A\beta$ 1-42 toxic peptide.

Results: It was observed an increase of cell viability and proliferation with or without $A\beta 1-42$ peptide presence in aspirin treated cells. In addition, a decrease in apoptosis, determined by Caspase 3 activity and the expression of Cyt c and Smac/Diablo, were detected. Also, aspirin diminished necrosis process (LDH levels).

Conclusions: Taken together, our results show that aspirin, at low doses increases astrocytes viability and proliferation, decreases apoptosis (Caspase 3, Cyt c and Smac/Diablo) and necrosis (LDH), in the presence or absence of $A\beta$ 1-42 peptide.