On the frequency function for stronger squeezing degree and the exact algebraic solution for the quantum harmonic oscillator with variable frequency

D M Tibaduiza1, L Pires1, C Farina1, C A D Zarro1, D Szilard2 and A L C Rego3

1Federal University of Rio de Janeiro, Brazil
2The Brazilian Center for Research in Physics, Brazil
3State University of Rio de Janeiro, Brazil

We obtained an exact algebraic solution for the quantum harmonic oscillator with variable frequency in a closed form. This allows us to implement a numerical calculation to study the dynamics of the system. It is shown that for any frequency function, the instantaneous state of the system is a squeezed one of the initial Hamiltonian. Once the final state is found, is mandatory to analyse the models that maximize the squeezing degree. We present a discussion by comparison the Janszky-Adam scheme, where the frequency modulation accounts through sudden changes between two stable frequencies, and the parametric resonance model, where the frequency modulation accounts through a harmonic function. In such analyses new aspects of the problem are elucidated.

danielmartinezt@gmail.com