Abstract

The existence of single-wall C-nanocones (SWNCs), especially nanohorns (SWNHs) and BC\(_N\)/boron nitride (BN) analogues is discussed in organic solvents in cluster form. A theory is developed based on the *bundlet* model, describing distribution function by size. The phenomena present unified explanation in the model, in which free energy of (BC\(_N\)/BN-)SWNCs involved in cluster, is combined from two components: volume one proportional to the number of molecules \(n\) in cluster and surface one, to \(n^{-\alpha}\). The model enables describing distribution function of (BC\(_N\)/BN-)SWNC clusters by size. From geometrical differences, bundlet [(BC\(_N\)/BN-)SWNCs]/droplet (C\(_\text{N}2\)/B\(_\text{N}3\))/B\(_\text{N}3\)/B\(_\text{N}3\)/B\(_\text{N}3\) models predict dissimilar behaviours. Various disclination (BC\(_N\)/BN-)SWNCs are studied via energetic/structural analyses. Several (BC\(_N\)/BN-)SWNC’s ends are studied, which are different because of closing structure and arrangement type. Packing efficiencies and interaction-energy parameters of (BC\(_N\)/BN-)SWNCs/SWNHs are intermediate between C\(_2\)/B\(_3\)/C\(_\text{N}2\)/N\(_2\)/B\(_\text{N}3\) and (BC\(_N\)/BN)-single-wall C-nanotube (SWNT) clusters: in-between behaviour is expected; however, properties of (BC\(_N\)/BN-)SWNCs, especially (BC\(_N\)/BN-)SWNHs, are calculated closer to (BC\(_N\)/BN)-SWNTs. Structural asymmetry in different (BC\(_N\)/BN-)SWNCs, characterized by cone angle, distinguishes properties of types: P2, BC\(_N\)/BN, especially species isoelectronic with C-analogues, may be stable.

Keywords

Nanostructure; Solubility of carbon Nanocone; Bundlet model for cluster; Droplet model for cluster; Nanohorn; Nanotube; Fulleren; Polymeric boron nitride; Fullerite

Introduction

The interest in nanoparticles arose from the shape-dependent physical properties of nanoscale materials [1,2]. Single-wall C-nanocones (SWNCs) were used to study the nucleation and growth of curved C-structures, suggesting pentagon role. When a pentagonal defect is introduced into a graphitic sheet (graphene) via extraction of a 60° sector from the piece, a cone leaf is formed. The presence of pentagons in an SWNC apex is analogue of single-wall C-nanotube (SWNT) tip topology. Klein group analyzed the eight classes of isolated pentagon

\[
\theta \approx 113^\circ
\]

Isolated Pentagon theory for conjugated C-nanostructures [6-10]. The SWNT ends predicted electronic states related to topological defects in graphite lattice [11]. Resonant picks in the density of states were observed in SWNTs [12], and Multiple-wall C-nanotubes (MWNNTs) [13].

The SWNCs with discrete opening angles \(\theta\) of ca. 19°, 39°, 60°, 85° and 113° were observed in C-sample generated by hydrocarbon pyrolysis [14]. Observation was explained by a cone wall model composed of wrapped graphene sheets, where geometrical requirement for seamless connection naturally accounted for semi-discrete character and absolute angles \(\theta\). Total disclinations are multiples of 60°, corresponding to number \(P\) of pentagons in SWNC apices. Considering graphene-sheet symmetry and the Euler theorem, five SWNC types are obtained from continue graphene sheet, matching to \(P\) values in 1–5. Angle \(\theta\) is given by \(\sin(\theta/2) = 1/P\), leading to flat discs and caped SWNTs, corresponding to \(P=0.6\), respectively; the most abundant SWNC with \(P=5\) pentagons (\(\theta = 19^\circ\)) is single-wall C-nanohorn (SWNH). Several configurations exist for given SWNC angle, depending on pentagon arrangement: \(\theta = 113^\circ\) SWNC contains one pentagon in tip centre and one configuration; other structures show isomers. According to the *Isolated Pentagon Rule* (IPR), those configurations containing isolated pentagons lead to isomers that are more stable than those including grouped ones [15]; another rules were derived form *ab initio* calculations [16].

Covalent functionalization of SWNCs with NH\(_2\) improved solubility [17], which was achieved by SWNC skeleton [18-20]/cone-end [21] functionalization and supramolecular \(\pi-\pi\) stacking interactions [22-24], with pyrenes and porphyrins. An MNDO calculation of BN substitution in \(C_60\) showed that analogous one gave B\(_3\)N\(_{30}\) [25]. C-atom substitution in diamond by alternating B/N atoms provided BN-cubic [26]. BN-hexagonal (h) resembles graphite, since it consists of fused planar six-membered BN\(_n\) rings; however, interlayer B–N interactions exist. BN nanotubes were visualized [27-29]. BN-h was proposed [30]. BN nanocones were observed [31-33], and calculated [34-39]; the most abundant ones presented 240 and 300° disclinations. BN/AIN nanotube junction was computed [40]. Theoretical studies on BC\(_N\) tubes [41], and graphite-like onion/nanotube production using layered materials, e.g. WS\(_2\) [42], MoS\(_2\) [43], BC\(_N\)/BC\(_2\) [44] and BN [45], allowed structures with resistance to oxidation and low thermal/electronic conductivities. The nanostructures of pyrolytically grown B\(_3\)C\(_N\) were studied: concentration profiles along and across tubes revealed that B, C and N are separated into C/BN domains; compound provides materials that are useful as robust nanocomposites, and semiconductor devices enhanced towards oxidation [46-48]. Dense periodic packings [49,50] of tetrahedra [51], and Platonic solids [52], were examined.

In earlier publications, SWNT [53-58] and (BC\(_N\)/BN-)SWNC [59-61] cluster *bundlet* model was presented. The aim of the present report is to perform a comparative study of different structures, where electrons are globally delocalized. A wide class of phenomena accompanying solution behaviour is analyzed from a unique point of view, taking into account cluster formation. Based on droplet model, (BC\(_N\)/BN-)SWNCs bundlet is examined. The following section describes the computational method. The next section discusses the calculation results. The last section summarizes our conclusions.

*Corresponding author: Francisco Torrens, Institut Universitari de Ciència Molecular, Universitat de València, Edifici d’Instituts de Paterna, P. O. Box 22085, E-46071 València, Spain, Tel: +34 963 544 431; Fax: +34 963 543 274; E mail: francisco.torrens@uv.es

Received: November 26, 2012 Accepted: January 16, 2013 Published: January 21, 2013
Computational Method

Solubility mechanism is based on SWNC cluster formation in solution. Aggregation changes SWNC thermodynamic parameters, which displays phase equilibrium and changes solubility. Bundlet model is valid when characteristic SWNC number in cluster \(n \gg 1 \). In saturated SWNC solution, chemical potentials per SWNC for dissolved substance and crystal, match. Equality is valid for SWNC clusters. Cluster free energy is made up of two parts: volume one proportional to number of SWNCs \(n \) in cluster and surface one, to \(n^{1/2} \) [62-66]. The model assumes that clusters, consisting of \(n \gg 1 \) particle, present bundlet shape and permits Gibbs energy \(G_n \) for cluster of size \(n \) to be:

\[
G_n = G_{1n} - G_{1} n^{1/2}
\]

(1)

where \(G_{1n} \) are responsible for contribution to Gibbs energy of molecules, placed inside volume, and on surface of cluster. Chemical potential \(\mu_n \) of cluster of size \(n \) is:

\[
\mu_n = G_n + T \ln C_n
\]

(2)

where \(T \) is absolute temperature. With (1), it results:

\[
\mu_n = G_{1n} - G_{1} n^{1/2} + T \ln C_n
\]

(3)

where \(G_{1n} \) are expressed in temperature units. In saturated SWNC solution, cluster-size distribution function is determined via equilibrium condition, linking clusters of specified size with solid phase, which corresponds to equality between chemical potentials for SWNTs incorporated into clusters of any size and crystal, resulting in expression for distribution function in saturated solution:

\[
f(n) = g_n \exp \left(\frac{-An + Bn^{1/2}}{T}\right)
\]

(4)

where \(A \) is equilibrium difference between SWNC interaction energies with its surroundings in solid phase, and cluster volume, \(B \), similar difference for SWNCs located on cluster surface and \(g_n \) statistical weight of cluster of size \(n \). One neglects \(f(n,T) \) dependencies in comparison with exponential (4). Normalization for distribution function (4):

\[
\sum_{n=1}^{\infty} f(n) n = C
\]

(5)

requires \(A > 0 \), and \(C \) is solubility in relative units. As \(n \gg 1 \), normalization (5) results:

\[
C = \bar{C}_n \int_{n=1}^{\infty} n \exp \left(\frac{-An + Bn^{1/2}}{T}\right) dn = C_0 \int_{n=1}^{\infty} n \exp \left(\frac{-An + Bn^{1/2}}{T}\right) dn
\]

(6)

where \(\bar{C}_n \) is statistical weight of cluster averaged over range of \(n \) that makes major contribution to integral (6), and \(C_0 \) SWNC molar fraction. The \(A \), \(B \) and \(C_0 \) were taken equal to those for \(C_{1n} \) in hexane, toluene and CS2: \(A=320 \) K, \(B=970 \) K and \(C_0=5\times10^{-8} \) (T>260 K). For polymeric (poly)BN, \(A \) and \(B \) were renormalized with regard to \(B_{SB} N_{SB}/C_{SB} \) energies: \(A=350 \) K and \(B=1062 \) K. Correction takes into account different packing efficiencies of \(C_{SB}/\text{SWNTs} \) and \(C_{SB}/\text{SWNCs} \):

\[
A' = \frac{\eta_{cy} A}{\eta_{ph}} \quad \text{and} \quad B' = \frac{\eta_{cy} A}{\eta_{ph}} \quad \text{(SWNTs)}
\]

(7)

\[
A' = \frac{\eta_{con} A}{\eta_{ph}} \quad \text{and} \quad B' = \frac{\eta_{con} A}{\eta_{ph}} \quad \text{(SWNCs)}
\]

Where \(\eta_{cy} = \pi/2(3)^{1/2} \) is cylinder packing efficiency in space (equal to that of circles on plane), \(\eta_{ph} = \pi (3)^{1/2} \), that of spheres (Face-centred Cubic, FCC) and \(\eta_{con} \), that of cones. As \(\eta_{ph} < \eta_{con} < \eta_{cy} \), SWNC behaviour is expected to be intermediate between that of spherical fullerences and cylindrical SWNTs. Dependences of cluster-size distribution function on concentration and temperature lead to those of thermodynamic and kinetic parameters, characterizing SWNT. For an unsaturated solution, distribution function is determined by clusters equilibrium condition. From Equation (3) one can obtain distribution function vs. concentration:

\[
f_{\lambda}(C) = \lambda^* \exp \left(\frac{-An + Bn^{1/2}}{T}\right)
\]

(8)

where \(\lambda \) depends on concentration, and is determined by normalization condition:

\[
C = C_0 \int_{n=1}^{\infty} n \lambda^* \exp \left(\frac{-An + Bn^{1/2}}{T}\right) dn = \sum_{n=1}^{\infty} n \lambda^* \exp \left(\frac{-An + Bn^{1/2}}{T}\right) N_n
\]

(9)

Where \(\lambda \) depends on the solution total concentration by normalization condition (9). Equations (1)-(11) are modelled in a home-built program available from authors. Droplet cluster model of \(C_{1n} \) is proposed following modified Equations (1)-(11).

\[
G_n = G_{1n} - G_{1} n^{1/2}
\]

(1)

\[
\mu_n = G_n - G_{1} n^{1/2} + T \ln C_n
\]

(3)

\[
f(n) = g_n \exp \left(\frac{-An + Bn^{1/2}}{T}\right)
\]

(4)

\[
f_{\lambda}(C) = \lambda^* \exp \left(\frac{-An + Bn^{1/2}}{T}\right)
\]

(8)

\[
E_n = n \left(An - Bn^{1/2} \right)
\]

(10)

Using the cluster-size distribution function, one obtains a formula governing the thermal effect of SWNT solution per mole of dissolved substance:

\[
H = \sum_{n=1}^{\infty} n E_n f_{\lambda}(C) N_n = \sum_{n=1}^{\infty} n \lambda^* \exp \left(\frac{-An + Bn^{1/2}}{T}\right) N_n
\]

(11)

doi: http://dx.doi.org/10.4172/2324-8777.1000107
Calculation Results and Discussion

Table 1 lists the number of pentagons \(P \), disclination angles \(D \), cone apex angles \(\theta \), solid angles \(\Omega \), number of cones in a sphere, and solid-angle/sphere-covering efficiencies in a graphene hexagonal network. A given disclination, e.g. \(300^\circ \) (\(P=5 \)), is usually built by the extraction of one segment generating one distinct cone type (horn). Cone angle decays as the number of pentagons increases from flat discs (\(P=0 \)) to cones (\(P=1-5 \), e.g. SWNHs \(P=5 \)) to tubes (\(P=6 \)). The solid angle results: \(\Omega=2\pi (1-\cos(\theta/2)) \). The maximum corresponds to the sphere (\(P=12 \)); \(\Omega_{\text{sph}}=4\pi \). The solid-angle-covering efficiency discards uncomplete SWNCs; sphere-covering efficiency corrects it by packing efficiency of parallel cylinders \(\eta_{\text{adj}} \): both drop as the number of pentagons increases from discs (\(P=0 \)) to cones (\(P=1-5 \)).

Table 2 collects the packing efficiencies, \(\eta \), correction factors, and parameters \(A', B' \) and \(C' \) determining molecule interaction energy. As \(\eta_{\text{swnc}} < \eta_{\text{sph}} < \eta_{\text{adj}} \), cone parameters are intermediate between spheres (\(P=12 \)) and cylinders (\(P=6 \)); e.g. the SWNH (\(P=5 \)) parameters are closest to SWNT's (\(P=6 \)).

Table 3 lists the packing parameters: closest, dimension \(D \) and efficiency \(\eta \) of equal objects for atom clusters with short-range interaction [67-69].

For closest, not closest, and extremely low packings, packing efficiency, \(\eta \) variations vs. packing dimension \(D \) (Figure 1), show many superimposed points. On going from \(D=2-3 \), \(\eta_{\text{extremely low}} \) decays quicker than \(\eta_{\text{not closest/distant}} \). For all cases, the packing objects with lower packing dimension show best fits. The regressions turn out to be:

\[
\eta_{\text{closest}} = 1.00 + 0.0334D - 0.0400D^2
\]

(12)

\[
\eta_{\text{not closest}} = 1.00 + 0.0125D - 0.0463D^2, \ n=16 \ r=0.833, s=0.093, F=14.8
\]

(13)

Where \(n \) is the number of points, \(r \), correlation coefficient, \(s \), standard deviation, and \(F \), Fischer ratio. Results are improved if data for tetrahedra I-IV and truncated tetrahedron I are suppressed:

\[
\eta_{\text{not closest}} = 1.00 + 0.0192D - 0.0497D^2, \ n=11 \ r=0.942, s=0.054, F=31.3
\]

(14)

For extremely low packing:

\[
\eta_{\text{extremely low}} = 1.00 - 0.317D
\]

(15)

The parabolic nature of Equations (12)-(14) suggests that linearization would be achieved, if the reciprocal packing dimension \(D^{-1} \) is used as abscissa instead of \(D \). For closest, not closest, and extremely low packings, the packing efficiency \(\eta \) vs. \(D^{-1} \) (Figure 2) show many superimposed points. The \(\eta_{\text{extremely low}} \) raises quicker than \(\eta_{\text{not closest}} \) than \(\eta_{\text{closest}} \).

Again the packing objects with lower packing dimension \(D \) present best fits, which result:

\[
\eta_{\text{closest}} = 0.408 + 0.999 D^{-1}
\]

(16)

\[
\eta_{\text{not closest}} = 0.182 + 1.31 D^{-1}
\]

(17)

\(n=15 \ r=0.780, S=0.093, F=20.2 \ MAPE=9.10 \% \ AEV=0.3916 \)

Table 1: Numbers of pentagons (\(P \)) and cones, angles and covering efficiencies in graphene hexagonal network.

<table>
<thead>
<tr>
<th>(P)</th>
<th>Disclination angle (\theta)</th>
<th>Cone angle (\theta)</th>
<th>Solid angle (sr)</th>
<th>No. of cones</th>
<th>Solid-angle-covering efficiency</th>
<th>Sphere-covering efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>180.00</td>
<td>6.28319</td>
<td>2</td>
<td>1.00000</td>
<td>0.90690</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>112.89</td>
<td>2.81002</td>
<td>4</td>
<td>0.89446</td>
<td>0.81118</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>83.62</td>
<td>1.59998</td>
<td>7</td>
<td>0.89125</td>
<td>0.80828</td>
</tr>
<tr>
<td>3</td>
<td>180</td>
<td>60.00</td>
<td>0.84179</td>
<td>14</td>
<td>0.93782</td>
<td>0.85051</td>
</tr>
<tr>
<td>4</td>
<td>240</td>
<td>38.94</td>
<td>0.35934</td>
<td>34</td>
<td>0.97225</td>
<td>0.88173</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>19.19</td>
<td>0.08788</td>
<td>142</td>
<td>0.99306</td>
<td>0.90600</td>
</tr>
<tr>
<td>6</td>
<td>360</td>
<td>0.00</td>
<td>0.00000</td>
<td>-</td>
<td>1.00000</td>
<td>0.90690</td>
</tr>
<tr>
<td>12</td>
<td>720</td>
<td>360.00</td>
<td>12.56837</td>
<td>1</td>
<td>1.00000</td>
<td>0.90690</td>
</tr>
</tbody>
</table>

*\(P=0 \) (disc), 1–5 (cone), 5 (horn), 6 (tube), 12 (sphere).

Table 2: Packing-efficiencies and parameters determining molecule interaction energy; \(C_p=\times 10^{-4} \) (molar fraction).

<table>
<thead>
<tr>
<th>Molecule</th>
<th>No. of pentagons</th>
<th>Packing efficiency</th>
<th>(\eta)-correction factor</th>
<th>(A') [K]</th>
<th>(B') [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWNC</td>
<td>0</td>
<td>0.90690</td>
<td>1.22474</td>
<td>392</td>
<td>1188</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.81118</td>
<td>1.09548</td>
<td>351</td>
<td>1063</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.80828</td>
<td>1.09156</td>
<td>349</td>
<td>1059</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.85051</td>
<td>1.14859</td>
<td>368</td>
<td>1114</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.88173</td>
<td>1.19075</td>
<td>381</td>
<td>1155</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.90600</td>
<td>1.21624</td>
<td>389</td>
<td>1180</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.90690</td>
<td>1.22474</td>
<td>392</td>
<td>1188</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.74048</td>
<td>1.00000</td>
<td>320</td>
<td>970</td>
</tr>
</tbody>
</table>

*\(P=0 \) (disc), 1–5 (cone), 5 (horn), 6 (tube), 12 (sphere).

SWNC: Single-wall Carbon Nanocone.

For \(T>260 \) K.

doi:http://dx.doi.org/10.4172/2324-8777.1000107
<table>
<thead>
<tr>
<th>Objects</th>
<th>Closeness</th>
<th>D</th>
<th>Packing efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-density Sphere (LDS) I</td>
<td>Extremely low</td>
<td>3</td>
<td>0.042</td>
</tr>
<tr>
<td>Low-density Sphere (LDS) II</td>
<td>Extremely low</td>
<td>3</td>
<td>0.045</td>
</tr>
<tr>
<td>Low-density Sphere (LDS) III</td>
<td>Extremely low</td>
<td>3</td>
<td>0.056</td>
</tr>
<tr>
<td>Tetrahedron I</td>
<td>Not closest</td>
<td>3</td>
<td>18/49 = 0.36735</td>
</tr>
<tr>
<td>Sphere Simple Cubic (SC)</td>
<td>Not closest</td>
<td>3</td>
<td>$\frac{\pi \sqrt{2}}{6} = 0.52360$</td>
</tr>
<tr>
<td>Sphere Random Loose (RL)</td>
<td>Not closest</td>
<td>3</td>
<td>0.601 ± 0.005</td>
</tr>
<tr>
<td>Sphere Random Close (RC)</td>
<td>Not closest</td>
<td>3</td>
<td>0.6366 ± 0.0005</td>
</tr>
<tr>
<td>Tetrahedron II</td>
<td>Not closest</td>
<td>3</td>
<td>2/3 = 0.66667</td>
</tr>
<tr>
<td>Sphere body-centred cubic (BCC)</td>
<td>Not closest</td>
<td>3</td>
<td>$\frac{\pi \sqrt{2}}{6} = 0.68017$</td>
</tr>
<tr>
<td>Truncated tetrahedron I</td>
<td>Not closest</td>
<td>3</td>
<td>207/304 = 0.68092</td>
</tr>
<tr>
<td>Tetrahedron III</td>
<td>Not closest</td>
<td>3</td>
<td>17/24 = 0.70833</td>
</tr>
<tr>
<td>Tetrahedron IV</td>
<td>Not closest</td>
<td>3</td>
<td>$\frac{139 + 40 \sqrt{10}}{369} = 0.71949$</td>
</tr>
<tr>
<td>Sphere (FCC alias cubic closest packing, CCP or hexagonal closest packing, HCP)</td>
<td>Closest</td>
<td>3</td>
<td>$\frac{\pi \sqrt{2}}{6} = 0.74048$</td>
</tr>
<tr>
<td>Tetrahedron V</td>
<td>–</td>
<td>3</td>
<td>0.7786</td>
</tr>
<tr>
<td>Tetrahedron VI</td>
<td>–</td>
<td>3</td>
<td>0.7820</td>
</tr>
<tr>
<td>Truncated icosahedron</td>
<td>–</td>
<td>3</td>
<td>0.78499</td>
</tr>
<tr>
<td>Snub cube</td>
<td>–</td>
<td>3</td>
<td>0.78770</td>
</tr>
<tr>
<td>Snub dodecahedron</td>
<td>–</td>
<td>3</td>
<td>0.78864</td>
</tr>
<tr>
<td>Rhombic icosidodecahedron</td>
<td>–</td>
<td>3</td>
<td>0.80471</td>
</tr>
<tr>
<td>Tetrahedron VII</td>
<td>–</td>
<td>3</td>
<td>0.8226</td>
</tr>
<tr>
<td>Truncated icosidodecahedron</td>
<td>–</td>
<td>3</td>
<td>0.82721</td>
</tr>
<tr>
<td>Icosahedron</td>
<td>–</td>
<td>3</td>
<td>0.83636</td>
</tr>
<tr>
<td>Truncated cubeoctahedron</td>
<td>–</td>
<td>3</td>
<td>$\frac{99}{992} \approx 0.098779$</td>
</tr>
<tr>
<td>Tetrahedron VIII</td>
<td>–</td>
<td>3</td>
<td>0.85027</td>
</tr>
<tr>
<td>Tetrahedron IX</td>
<td>–</td>
<td>3</td>
<td>100/117 = 0.85470</td>
</tr>
<tr>
<td>Tetrahedron X</td>
<td>–</td>
<td>3</td>
<td>4000/4671 = 0.85635</td>
</tr>
<tr>
<td>Icosidodecahedron</td>
<td>–</td>
<td>3</td>
<td>0.86472</td>
</tr>
<tr>
<td>Rhombic cubeoctahedron</td>
<td>–</td>
<td>3</td>
<td>$\frac{16\sqrt{3} - 20}{3} = 0.87581$</td>
</tr>
<tr>
<td>Truncated dodecahedron</td>
<td>–</td>
<td>3</td>
<td>0.89779</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td>–</td>
<td>3</td>
<td>0.90451</td>
</tr>
<tr>
<td>Cubeoctahedron</td>
<td>–</td>
<td>3</td>
<td>45/49 = 0.91837</td>
</tr>
<tr>
<td>Octahedron</td>
<td>–</td>
<td>3</td>
<td>18/19 = 0.94737</td>
</tr>
<tr>
<td>Truncated tetrahedron II</td>
<td>–</td>
<td>3</td>
<td>23/24 = 0.95833</td>
</tr>
<tr>
<td>Truncated cube</td>
<td>–</td>
<td>3</td>
<td>$\frac{9}{5 \sqrt{2}} = 0.97375$</td>
</tr>
<tr>
<td>Truncated tetrahedron III</td>
<td>–</td>
<td>3</td>
<td>207/208 = 0.99519</td>
</tr>
<tr>
<td>Cube</td>
<td>Closest</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>Truncated octahedron</td>
<td>Closest</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>Cylinder in space as square packing (SP) of circles on a plane</td>
<td>Not closest</td>
<td>2</td>
<td>$\frac{\pi}{4} = 0.78540$</td>
</tr>
<tr>
<td>Cone ($P=2$)</td>
<td>Not closest</td>
<td>2</td>
<td>0.80828</td>
</tr>
<tr>
<td>Cone ($P=1$)</td>
<td>Not closest</td>
<td>2</td>
<td>0.81118</td>
</tr>
<tr>
<td>Cone ($P=3$)</td>
<td>Not closest</td>
<td>2</td>
<td>0.85051</td>
</tr>
<tr>
<td>Cone ($P=4$)</td>
<td>Not closest</td>
<td>2</td>
<td>0.88173</td>
</tr>
<tr>
<td>Cone ($P=5$, horn)</td>
<td>Not closest</td>
<td>2</td>
<td>0.90060</td>
</tr>
<tr>
<td>Cylinder (as hexagonal packing of circles on a plane)</td>
<td>Closest</td>
<td>2</td>
<td>$\frac{\pi}{3 \sqrt{2}} = 0.90690$</td>
</tr>
</tbody>
</table>
where Mean Absolute Percentage Error (MAPE) is 9.10% and Approximation Error Variance (AEV), 0.3916. Results are improved if data for tetrahedra I-IV and truncated tetrahedron I are suppressed:

\[\eta_{\text{not closest}} = 0.152 + 1.38D^{-1} \]
\[n = 10, r = 0.918, S = 0.054, F = 42.9 \text{ MAPE}=6.38\% \text{ AEV}=0.2366 \]

And AEV decays by 40%. For extremely low packing:

\[\eta_{\text{extremely low}} = -0.589 + 1.91D^{-1} \]
\[n = 12, r = 0.924, S = 0.053, F = 26.5 \text{ MAPE}=5.17\% \text{ AEV}=0.1453 \]
\[n = 12, r = 0.924, S = 0.053, F = 26.5 \text{ MAPE}=5.17\% \text{ AEV}=0.1453 \]
\[n = 13, r = 0.946, S = 0.051, F = 25.6 \text{ MAPE}=4.34\% \text{ AEV}=0.1050 \]

Results are improved if the data for tetrahedra I-IV and truncated tetrahedron I are suppressed:

\[\eta = 1.00 + 0.0151D + 0.0402closeness \cdot D - 0.0481D^2 \]
\[n = 13, r = 0.946, S = 0.051, F = 25.6 \text{ MAPE}=4.34\% \text{ AEV}=0.1050 \]

And AEV decreases by 73%. Once more the packing objects with lower packing dimension present the best fit. Quadratic Equations (21)/(22) perform better than linear equation (17) for extrapolation. Predictions for packing objects with lower packing dimension show an improvement; e.g., for sphere (C_{20})/cylinder (SWNT), the results are quite good.

Table 4 reports the disclination angles \(D_{\theta} \), numbers of 2-membered rings (2MR), squares \(S \) and pentagons \(P \), and cone apex angles \(\theta \) in a poly(BN) hexagonal network. A given disclination, e.g. 240°, can be built by extraction of one segment generating one distinct cone type (2MR=S=P=0); however, the same disclination can be derived by extraction of two separated segments of 120° each (S=1, P=2), or four unconnected segments of 60° each (S=0, P=4). The cone angles decay as numbers of 2MR, squares or pentagons increase from flat discs (2MR=0, 2MR=5) to cones (2MR=60, 2MR=0, S=0–2, P=0–5) to tubes (2MR=360, 2MR=0, S=0–3, P=6–0). The structures observed in BN cones are attributed to lower energy of squares, compared with pentagons; indeed, B–N present higher stability than B–B than N–N bonds, e.g., the line defect \(D_{\theta}=300 \) and 2MR=S=P would consist of B–B bonds.

The equilibrium difference between Gibbs free energies of interaction of an SWNC with its surroundings, in solid phase and cluster volume/on surface (Figure 3), shows that results for B_{C_{20}}N_{15}/B_{N_{30}} are superimposed on C_{opt} and (B_{C_{20}}/BN-)SWNC/SWNT on SWNT. On going from C_{opt} (droplet) to SWNT (bundle), minimum is less marked (68% of C_{opt}), which causes lesser number of units in (B_{C_{20}}/BN-)SWNT/SWNCs (\(n_{\text{min}}=2 \)), than in C_{opt}/B_{C_{20}}N_{15}/B_{N_{30}}, clusters (\(\approx 8 \)). Moreover, abscissa is longer in C_{opt}/B_{C_{20}}N_{15}/B_{N_{30}} (\(\approx 260 \)), than in (B_{C_{20}}/BN-)SWNT/SWNCs (\(\approx 9 \)). When going from C_{opt} to B_{C_{20}}N_{15} to B_{N_{30}} (or from SWNT to BCN- to BN-SNWT, or from SWNCs to BCN-/BN-SWNCs), the minimum is increasingly emphasized (4.6% and 9.5%, respectively), while it contains the same number of units. In the SWNCs/BN-SWNCs/BN-SWNCs (bundle), the minima result 61–67% of C_{opt}/B_{C_{20}}N_{15}/B_{N_{30}}, similar to those in (B_{C_{20}}/BN-)SWNT.

The temperature dependence of SWNC solubility, figure 4 shows that results for (B_{C_{20}}/BN-)SWNT/SWNT are superimposed on SWNT. Solubility decays with temperature because of cluster formation. At \(T=260 \) K, C_{opt}-crystal presents an orientation disorder phase transition from FCC to Simple Cubic (SC). The solubility decays are less marked for (BC_{20}/BN-)SWNT/SWNC, in agreement with lesser numbers of units in clusters (Figure 3). In particular, at \(T=260 \) K, on going from C_{opt} to B_{C_{20}}N_{15} to B_{N_{30}} (droplet), solubility rises by 22.8% and 52.5%, respectively. When going from C_{opt} (droplet) to SWNT, solubility decays to 2.6% of C_{opt}; SWNCs (bundlet) solubility drops to 2.0–2.5% of C_{opt}. On going from B_{C_{20}}N_{15} (droplet) to BCN-SWNT (bundlet), solubility decreases to 2.4% of B_{C_{20}}N_{15}; from B_{N_{30}} to BN-SWNT (bundlet), solubility diminishes to 2.2% of B_{N_{30}}; BCN/BN-SWNCs solubilities decay to 1.8–2.3% of B_{C_{20}}N_{15} and 1.6–2.1% of B_{N_{30}}.

The cluster distribution function by size in SWNC solution in
Table 4: Angles, numbers of 2-membered rings (2MR), squares S and pentagons P in a poly(BN) hexagonal network.

<table>
<thead>
<tr>
<th>Disclination angle [º]</th>
<th>2MR</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>180</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>180</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>240</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>360</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>360</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>720</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

C$_{60}$, calculated for saturation concentration at solvent temperature $T=298.15$ K (Figure 5), shows that the results for B$_{15}$C$_{30}$N$_{15}$/B$_{30}$N$_{30}$ are superimposed on C$_{60}$ and (BC$_2$N/BN)-SWNC/SWNT on SWNT. On going from C$_{60}$/B$_{15}$C$_{30}$N$_{15}$/B$_{30}$N$_{30}$ (droplet) to (BC$_2$N/BN)-SWNT/ SWNCs (bundlet), the maximum cluster size decays from $n_{max} \approx 8$ to ≈ 2, and distribution is narrowed in agreement with lesser number of units in clusters (Figure 3).

The concentration dependence of the heat of solution in toluene, benzene and CS$_2$, calculated at solvent temperature $T=298.15$ K (Figure 6), shows that the results for SWNH are superimposed on SWNT, BC$_2$N-SWNH on BC$_2$N-SWNT, and BN–SWNH on BN–SWNT. For C$_{60}$ (droplet), on going from $C<0.1\%$ of saturated ($<\%>\approx 1$) to $C=15\%$ ($<\%>\approx 7$), the heat of solution decays by 73%. In turn for SWNT (bundlet), the heat of solution increases by 54% in the same range, in agreement with lesser number of units in clusters (Figures 3 and 5). In SWNCs (bundlet), the heat of solution augments by 55–80%, in accordance with smaller aggregations. In B$_{15}$C$_{30}$N$_{15}$ (droplet), the heat of solution drops by 74%; in turn for BC$_2$N-SWNT

Figure 3: C$_{60}$/B$_{15}$C$_{30}$N$_{15}$/B$_{30}$N$_{30}$–(BC$_2$N/BN)-SWNT–SWMH interaction energy with surroundings in cluster volume/surface.

Figure 4: Temperature dependence of solubility of C$_{60}$/B$_{15}$C$_{30}$N$_{15}$/B$_{30}$N$_{30}$–(BC$_2$N/BN)-SWNT/SWMH.
(bundlet), the heat of solution rises by 49% in agreement with smaller clusters. In BC\(_N\)-SWNCs (bundlet), the heat of solution enlarges by 50–63%, in accordance with smaller aggregations. In BC\(_N\)-SWNC (droplet), the heat of solution decays by 73%; in turn for BN-SWNT (bundlet), the heat of solution increases by 44% in agreement with smaller clusters. In BN-SWNCs (bundlet), the heat of solution enlarges by 45–57%, in accordance with smaller aggregations. The discrepancy between the various experimental data of the heat of solution of fullerenes, poly(BC\(_N\)/BN) and (BC\(_N\)/BN)-SWNT/ SWNCs may be ascribed to the sharp concentration dependence of the heat of solution. The effect of different number of pentagons \(P\) on concentration dependence shows that the results for SWNC P2 are superimposed on P1, and SWNH on SWNT. The heat of solution varies: P2> P1> P3> P4> SWNH=SWNT >> C\(_{30}\).

Figure 7 displays the temperature dependence of the heat of solution in toluene, benzene and CS\(_2\) calculated for the saturation concentration. The results for SWNH are superimposed on SWNT, BC\(_N\)-SWNH on BC\(_N\)-SWNT, and BN-SWNH on BN-SWNT. The data of C\(_{26}\), etc. are plotted for \(T>260\) K after FCC/SC transition. For C\(_{30}\) (droplet) on going from \(T=260\) K to \(T=400\) K, the heat of solution increases 2.7 \(\text{kJ mol}^{-1}\). For SWNT and SWNCs (bundlet), the heat of solution augments 10.4 and 10.4–10.9 \(\text{kJ mol}^{-1}\), respectively, in the same range. For BC\(_{30}\)-NC\(_{30}\), (droplet), the heat of solution rises to 2.5 \(\text{kJ mol}^{-1}\). For BC\(_N\)-SWNT and BC\(_N\)-SWNCs (bundlet), the heat of solution augments 10.2 and 10.2–10.7 \(\text{kJ mol}^{-1}\). For BN-SWNC (droplet), the heat of solution enlarges 2.3 \(\text{kJ mol}^{-1}\). For BN-SWNT and BN-SWNCs (bundlet), the heat of solution rises 9.9 and 10.0–10.5 \(\text{kJ mol}^{-1}\).

The results for the dependence of diffusion coefficient on concentration in toluene, at \(T=298.15\) K (Figure 6), show that the data for SWNH are superimposed on SWNT, BC\(_N\)-SWNH on BC\(_N\)-SWNT, and BN-SWNH on BN-SWNT. The cluster formation in a solution close to saturation decreases diffusion coefficients by 56%, 69% and 67–71% for C\(_{26}\), SWNT and SWNCs, respectively, as compared with that for C\(_{30}\) molecule. For SWNT (bundlet) diffusion coefficient drops by 29% and for SWNCs (bundlet) diffusion coefficients, by 29–33%, with regard to C\(_{30}\) (droplet). Cluster formation close to saturation diminishes diffusion coefficients by 56%, 68% and 68–70% for BC\(_N\)-SWNC, BC\(_N\)-SWNT and BC\(_N\)-SWNCs, as compared with that for BC\(_{30}\)-NC\(_{30}\) molecule. For BC\(_N\)-SWNT (bundlet), diffusion coefficient decays by 28%, and for BC\(_N\)-SWNCs (bundlet) by 28–31%, with regard to BC\(_N\)-NC\(_{30}\) (droplet). Cluster formation close to saturation decreases diffusion coefficients by 56%, 67% and 67–69% for BC\(_N\)-SWNC, BN-SWNT and BN-SWNCs, as compared with that for BC\(_N\)-NC\(_{30}\) molecule. For BN-SWNT (bundlet), diffusion coefficient decays by 26%, and for BN-SWNCs (bundlet), by 26–29% with regard to BN-SWNCs (droplet).

Conclusion

From the discussion of the present results, the following conclusions can be drawn.

1. The packing structures were deduced by fitting the voids between close-packed spheres. Several criteria reduced the analysis to a manageable quantity of properties: packing closeness, dimension, and efficiency. A model predicted packing properties. A non-computationally intensive approach, object clustering plus property prediction, allowed assessing calculation reliability, solving problem, and presenting applications.
2. The packing efficiencies and interaction-energy parameters of nanocones are intermediate between those of C$_{60}$ and tubes; therefore, an in-between behaviour was expected for cones; however, cones result closer to tubes. The tube-like behaviour is observed in cones, whose properties are calculated closer to tubes. The packing efficiency and interaction-energy parameters of horns are closest to those of tubes: most tube-like behaviour is observed and properties are calculated closest to tubes. Large structural asymmetry in different types of cones, characterized by the number of pentagons (1–5), distinguished the calculated properties, especially for cones with two pentagons P$_2$; e.g. the heat of solution varied: P$_2$=P1>P3>P4>SWNH=SWNT >> C$_{60}$.

3. BC$_3$N and BN will be stable, especially species that are isoelectronic with C-analogues. Specific morphologies were observed for tube ends, which are suggested to result from B–N units. The chemical strain that 60 disconnections introduce in B$_8$N$_{15}$ governs its structural difference with C tubes.

4. Some systems are dominated by the isolated-pentagon-rule structures while some others, by the non-isolated-pentagon-rule ones.

Further work will explore similar nanostructure nature: possible generalization of conclusions to more complex systems: (1) there is way of bypassing weak homonuclear bonding in closed B$_n$N$_m$, involving replacement of 5-membered rings by 4-membered B$_n$N$_m$ annuli, ensuring perfect heteroatom alternation, and (2) BN/AIN tubes/heterojunctions.

Acknowledgments

The authors want to dedicate this manuscript to Dr. Luis Serrano-Andrés, who was greatly interested in this research, and would have loved to see its conclusion. Francisco Torrens thanks support from the Spanish Ministerio de Ciencia e Innovación (Project No. BFU2010-19118).

References

of amorphous boron nitride from the reaction of haloborazines with alkali metals and formation of a novel tubular morphology by thermal annealing. Chem Mater 7: 111-117.

