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Abstract
A new mathematical framework is presented for producing maps 
and large-scale averages of temperature changes from weather 
station thermometer data for the purposes of climate analysis. The 
method allows inclusion of short and discontinuous temperature 
records, so nearly all digitally archived thermometer data can be 
used. The framework uses the statistical method known as Kriging 
to interpolate data from stations to arbitrary locations on the Earth. 
Iterative weighting is used to reduce the influence of statistical 
outliers. Statistical uncertainties are calculated by subdividing 
the data and comparing the results from statistically independent 
subsamples using the Jackknife method. Spatial uncertainties 
from periods with sparse geographical sampling are estimated by 
calculating the error made when we analyze post-1960 data using 
similarly sparse spatial sampling. Rather than “homogenize” the 
raw data, an automated procedure identifies discontinuities in the 
data; the data are then broken into two parts at those times, and the 
parts treated as separate records. We apply this new framework to 
the Global Historical Climatology Network (GHCN) monthly land 
temperature dataset, and obtain a new global land temperature 
reconstruction from 1800 to the present. In so doing, we find results 
in close agreement with prior estimates made by the groups at 
NOAA, NASA, and at the Hadley Center/Climate Research Unit in 
the UK. We find that the global land mean temperature increased 
by 0.89 ± 0.06°C in the difference of the Jan 2000-Dec 2009 
average from the Jan 1950-Dec 1959 average (95% confidence 
for statistical and spatial uncertainties).
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Introduction
While there are many indicators of climate change, the long-

term evolution of global surface temperatures is perhaps the metric 
that is both the easiest to understand and most closely linked to the 
quantitative predictions of climate models. It is also backed by the 
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largest collection of raw data. According to the summary provided by 
the Intergovernmental Panel on Climate Change (IPCC), the mean 
global surface temperature (including land and oceans) has increased 
0.64 ± 0.13°C from 1956 to 2005 at 95% confidence [1]. In a review 
of temperature changes over land areas, the IPCC summarized four 
reconstructions of the global land average temperature as having 
trends ranging from 0.188 ± 0.069°C/decade to 0.315 ± 0.088°C/
decade over the time interval 1979 to 2005 [1]. However, some of this 
range reflects methodological differences in how “land average” was 
defined and over what regions it was computed. 

The three major groups that produce ongoing temperature 
reconstructions are the NASA Goddard Institute of Space Science 
(NASA GISS), the National Climate Data Center at the National 
Oceanic and Atmospheric Administration (NOAA NCDC), and 
the joint project of the UK Meteorological Office Climatic Research 
Unit and the Hadley Centre at the University of East Anglia (Hadley/
CRU). Their annual land-surface temperature histories are presented 
in Figure 1A, as well as the available uncertainties in Figure 1B. NASA 
GISS does not publish an uncertainty specific to their land-surface 
data product. In Figure 1A we show that these groups report a range 
of best values from 0.81 to 0.93°C when estimating the increase in 
land temperatures for the 2000s decade relative to the 1950s decade, 
with reported 95% uncertainties of roughly 0.15 to 0.2°C.

During the second half of the twentieth century weather 
monitoring instruments of good quality were widely deployed, yet the 
quoted uncertainty on temperature change during this time period 

Figure 1: (Top Panel) Comparison of annual land-surface average 
temperature anomalies for the three major research groups [2-4]. For this 
purpose, the Hadley / CRU simple average has been used rather than the 
more widely cited latitudinal-band weighted average, as the simple average 
is more similar in methodology and results to the other averages presented 
here. (Bottom Panel) The 95% percent uncertainty estimation on the 
annual values provided by Hadley/CRU and NOAA. NASA GISS does not 
appear to have ever published an uncertainty specific to their land-surface 
computation, and the most recent available NOAA uncertainty for land-only 
data terminates in the late 1990s [5].
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is still around 20%. Of the two domains, the uncertainties reported 
on land averages are often 20-100% larger than ocean uncertainties, 
though this is somewhat mitigated by the fact that land occupies 
only 29% of the Earth’s surface [2-5]. The present work will present a 
method of significantly reducing the spatial and statistical uncertainty 
associated with the land-surface temperature calculations.

The Berkeley Earth Surface Temperature project was created to 
develop a new framework for estimating the average Earth surface 
temperature, and to apply it to perform an independent estimate of 
the rate of recent global temperature change. 

Our goals included: 

A) increasing the size of the data set used to study global climate 
change, 

B) bringing different statistical techniques to bear on the problem 
with a goal of minimizing uncertainties in the resulting 
averages, and 

C) reanalyzing systematic effects, including data selection bias, 
urban heat island effects, and the limitations of poor station 
siting. 

The current paper focuses on refinements in the averaging process 
itself and does not introduce any new data; rather, we describe the 
framework that we have developed, apply it to a well-known large 
data set - that of the Global Historical Climate Network (GHCN), 
compiled and merged by NOAA NCDC. We calculate a new estimate 
of the Earth’s land surface temperature, and then compare our results 
to those of the prior groups that have done such analysis. We chose to 
analyze the GHCN dataset largely as a test of our analysis framework 
that allows us to make a direct comparison with a prior analysis 
without introducing issues of data selection effects. The Berkeley 
Earth Surface Temperature Project has also developed, merged and 
analyzed a much larger data set of temperature records [6].

Methods and Materials
The global average temperature is a simple descriptive statistic 

that aims to characterize the Earth. Operationally, the global average 
may be defined as the integral average of the temperatures over the 
surface of the Earth as would be measured by an ideal weather station 
sampling the air at every location. As the true Earth has neither 
ideal temperature stations nor infinitely dense spatial coverage, one 
can never capture the ideal global average temperature completely; 
however, the available data can be used to tightly constrain its value. 
The land surface temperature average is calculated by including only 
land points in the average. It is important to note that these averages 
count every square kilometer of land equally; the average is not a 
station average but a land-area weighted average.

In this paper we will give a description of the approach that 
we use to estimate the global land surface temperature average. In 
order to be clear and concise, we will be somewhat qualitative in 
our description; the precise terms and the detailed equations will 
be provided in the mathematical supplement that accompanies 
this paper. That supplement also adopts a more standard statistical 
language, for example, clearly separating estimated values from 
the true values using the standard “hat” notation of statistics. The 
details in the supplement will be helpful to those who wish to adopt 
our methods or reproduce or modify our model. In addition, the 
computer program that actually implements the model and the 

parameter calculations has been placed online at BerkeleyEarth.org. 
It is written in the computer language Matlab, one that we believe is 
relatively transparent to read even for those who are not familiar with 
its detailed syntax.

A conceptually simple approach for estimating the land 
surface temperature average Tavg  would be to begin by estimating 
the temperature at every land point on the Earth by using an 
interpolation based on the existing thermometer data and then 
averaging the interpolated field to generate the large-scale average. 
There are many ways to interpolate, but an attractive method is the 
linear least-squares estimation algorithm known as Gaussian process 
regression or Kriging [7,8]. Kriging uses the covariance between 
stations to assure that close-packed temperature stations (which can 
be highly correlated with each other) do not unduly influence the 
interpolation. Kriging is widely used in both academia and industry, 
in fields as diverse as geophysical exploration to Real Estate appraisal. 
If its underlying assumptions are satisfied (e.g. the true field contains 
normally distributed random variations about a common mean) 
then Kriging is probably the best linear unbiased estimator of an 
underlying spatial field. 

Let T(x,t) be an estimate for the temperature field at an arbitrary 
location x on the surface of the Earth, based on an interpolation from 
the existing thermometer data for time t. In the simplest approach 
the average surface land temperature estimate  Tavg (t) is calculated by 
integrating over the land area:

( ) 1 ( , )avgT t T x t dA
A

 ≡  
 ∫ 		                                                   (1)

where A is the total land area. Note that the average is not 
an average of stations, but an average over the surface using an 
interpolation to determine the temperature at every land point. In 
this approach, there are two other quantities of interest that we call 
the local climate and the local weather. We define the local climate 
C(x)by 

( ) ( ), ( )avg tC x T x t T t≡ − 		                                                    (2)

where the subscript t to the brackets indicates that the average 
is done for a given location over time. Note that the climate consists 
of all the variation that depends on location (latitude and longitude) 
but not on time. The fundamental difference in mean temperature 
between the North Pole and the Equator will be contained in C(x).

The local weather W(x,t) is defined as the remainder, that is, the 
difference between the actual temperature record at a given location 
and what you would estimate from Tavg (t) and C(x) alone:

( ) ( ), , ( ) ( )avgW x t T x t T t C x≡ − − 		                                     (3)

In this formulation, the weather is the residual, the temperature 
behavior that one can’t account for using a simple model that 
combining only global temperature changes with stable local climate. 
However, if properly described, the weather includes variability from 
a variety of true regional scale effects such as moving weather fronts 
and the influence of El Nino. 

This will prove to be a useful decomposition. Put in a more 
straightforward way, we say that the land temperature is the sum of 
the average temperature change plus the local (but temporally stable) 
climate plus the local weather:

( ) ( ) ( ), ( ) ,avgT x t T t C x W x t= + + 		                                  (4)
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The individual terms by virtue of their definitions satisfy the 
following important constraints:

( ) 0xC x = 		                                                                       (5)

( , ) 0xW x t = 		                                                                       (6)

( , ) 0tW x t = 		                                                                        (7)

One approach to construct the interpolated field would be to 
use Kriging directly on the station data to define T(x,t). Although 
outwardly attractive, this simple approach has several problems. The 
assumption that all the points contributing to the Kriging interpolation 
have the same mean is not satisfied with the raw data. To address this, 
we introduce a baseline temperature bi for every temperature station 
i; this baseline temperature is calculated in our optimization routine 
and then subtracted from each station prior to Kriging. This converts 
the temperature observations to a set of anomaly observations with 
an expected mean of zero. This baseline parameter is essential our 
representation for C(xi). But because the baseline temperatures are 
calculated solutions to the procedure, and yet are needed to estimate 
the Kriging coefficients, the approach must be iterative. 

Another problem is unreliability of stations; some stations 
show large differences from nearby stations that are not plausibly 
related to weather or climate; they could be measurement error or 
local systematic effects (such poor station sitting, or excess heating 
in an urban environment). To reduce the effects of such stations, 
we apply an iterative weighting procedure. Weights are applied to 
the station contributions that affect the Kriging averages, i.e. the 
contributions made by individual stations towards the estimate of the 
temperature at a given location. To calculate the weights, we first treat 
all stations as equal and calculate an initial Tavg. Then an automated 
routine identifies outliers, and a weight is applied to each station that 
determines how much it contributes to the Kriging average at (x,y), 
and the Kriging calculation is repeated. The process is iterated until 
the weights applied to each station converge. No station is omitted, 
but a poor station could receive a weight as low as 1/26 that of a trusted 
station (more on this later). Note again that although the weights 
affect the interpolated temperature estimate for a given location, all 
square kilometers of land temperature contribute equally to Tavg.

In addition to persistent disagreements with nearby stations (as 
discussed in the previous paragraph), we incorporate a procedure 
that detects large discontinuities in time in a single station record. 
These could be caused by undocumented station moves, changes 
in instrumentation, or just the construction of a building nearby. 
These discontinuities are identified prior to the determination of the 
temperature parameters by an automated procedure. Once located, 
they are treated by separating the data from that record into two 
sections at the discontinuity time, creating effectively two stations out 
of one; we call this process the scalpel, and we’ll discuss it in more detail 
later in this paper. Other groups typically adjust the two segments 
to remove the discontinuity; they call this process homogenization. 
We apply no explicit homogenization; other than splitting, the data 
are left untouched. Any adjustment needed between the stations will 
be done automatically as part of the computation of the optimum 
temperature baseline parameters.

We break the local climate function into a three sub functions:

( ) ( )( ) latitude elevation ( )C x h G xλ= + +                                            (8)

The functions λ and h are adjusted to describe the average behavior 

of temperature with latitude and elevation. G(x) is the “geographic 
anomaly”, i.e. the spatial variations in mean climatology that can’t 
be explained solely by latitude and elevation.  The G(x) will include 
many large-scale climate patterns, such as the effects on the land of 
the Gulf Stream and Jet Stream. With appropriate functions chosen 
for λ and h it is possible to account for about 95% of the variance 
in annual mean temperatures over the surface of the Earth in terms 
of just latitude and elevation. The functional forms of λ, are simple 
functions (polynomials and splines), and are given in the supplement. 
They include free parameters that are adjusted to give the best fit.

The mathematical model that we use to estimate Tavg is the 
following. We wish to obtain an estimate j

avgT of the average Earth’s 
land surface temperature at time tj. For the period 1800 to 2010, there 
are 2532 monthly values of j

avgT ; these areal adjustable parameters 
that we will fit to the data. In addition, for every temperature station 
i we have a parameter bi, the baseline temperature for that station; 
these too are adjusted to obtain the best fit. These parameters allows 
for each station to depart from its expected local mean climatology 
(the function of latitude and elevation described above). For the 
GHCN network discussed in this paper, the number of initial stations 
was 7,280; after scalpeling, they had been broken into 44,840 effective 
stations that we treated in our analysis as completely independent. 
Add those to the 2532 values to be determined for j

avgT is, and about 
18 for the C(x) term, and we have 47,388 parameters. These do not 
include the weights for each station used to reduce the effects of 
outliers. Fortunately we are able to apply a mathematical shortcut 
that allowed us to handle this large number of parameters.

Our conceptual approach is this: the weather term W(x,t) in the 
temperature expansion Eq. (4) can be interpreted as the residual, 
the part of the record that is not fit by a simple model of global land 
temperature change Tavg(t)  and locally stable climate C(x). W(x,t) 
represents the mismatch, a measure of the failure to account for 
the data with the parameters alone. To get the best estimates of the 
parameters, the values that give the fullest explanation of the data, 
we can adjust them to minimize the square of the residuals; in other 
words, we minimize

2( , )W x t dA∫ 			                                                        (9)

We emphasize again that the integral is over the land area, and 
not just over the temperature stations. We obtain the weather for the 
required global land coverage through Kriging interpolation.

To solve this equation we can employ a shortcut. Mathematically, 
it can be shown that minimizing the above term is equivalent to 
solving the following equation:

( ) ( ), , 0W x t F x t dA =∫ 			                              (10)

where F is a linear combination of the Kriging coefficients; the 
precise definition of F is given in the mathematical supplement. 
Its physical interpretation is that it F represents the fraction of the 
weather field that has been effectively constrained by the data. The 
important features of F are the following: 0 ≤ F ≤ 1 everywhere; F 
approaches 1 in the limit of dense sampling (many samples within a 
correlation length); and when F is small, the weather term W(x,t) is 
also small. Given these properties, in the limit of dense sampling we 
can approximate the equation as:

( ), 0W x t dA =∫ 			                                   (11)

Note that this equation is also true for sparse sampling if the 
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field W(x,t) were to represent the actual weather field rather than our 
estimate of the field! That’s because it is identical to Equation (6).Thus 
this equation appears to have a robustness that we can exploit. Rather 
than minimize the term (9), we choose to solve Equation (11). This 
has the important computational advantage that it isolates the Kriging 
coefficients so that the integrals can be performed independently for 
each station (see the supplement). This makes the solution much 
faster to calculate. It has the disadvantage that it might not give the 
precise optimal minimization of (9), but it does maintain the natural 
physical interpretation of the parameters. The added error should 
be very small in the modern era (post 1960) when the coverage F is 
nearly complete.

In addition to this procedure, once we have a solution (a set of 
parameters that satisfies Equation 10) we examine that solution to see 
if there are spurious contributions, temperature records for particular 
stations that are unreasonably poor fits to that solution. This is a way of 
spotting “outliers”, records that might derive from poor instruments 
or mistakes in record keeping. According to the methods of robust 
data analysis developed by Tukey such data points should identified 
and then either discarded or deweighted [9]. We choose to deweight, 
and we do that in the manner that will be described in our section on 
outlier weighting. Once the weights are applied to the outlier stations, 
such stations contribute less to the Kriging estimate; that estimate is 
redone, and then Equation (10) is solved once more. The process is 
iterated until the parameters converge. 

In our approach, we derive not only the Earth’s average 
temperature record j

avgT , but also the best values for the station 
baseline temperatures bi. Note, however, that there is an ambiguity; 
we could arbitrarily add a number to all the j

avgT values as long as 
we subtracted the same number all the baseline temperatures bi. 
To remove this ambiguity, in addition to minimizing the weather 
function W(x,t), we also minimize the integral of the square of the 
core climate term G(x) that appears in Equation (8). To do this 
involves modifying the functions that describe latitude and elevation 
effects, and that means adjusting the 18 parameters that define λ and 
h, as described in the supplement. This process does not affect in any 
way our calculations of the temperature anomaly, that is, temperature 
differences compared to those in a base period (e.g. 1950 to 1980). 
It does, however, allow us to calculate from the fit the absolute 
temperature of the Earth land average at any given time, a value that is 
not determined by methods that work only with anomalies by initially 
normalizing all data to a baseline period. Note, however, that the 
uncertainty associated with the absolute temperature value is larger 
than the uncertainty associated with the changes, i.e. the anomalies. 
The increased error results from the large range of variations in bi 
from roughly 30°C at the tropics to about -50°C in Antarctica, as 
well as the rapid spatial changes associated with variations in surface 
elevation. For temperature differences, the C(x) term cancels (it 
doesn’t depend on time) and that leads to much smaller uncertainties 
for anomaly estimates than for the absolute temperatures. 

We make the following additional approximations. Rather 
than use covariance functions in the Kriging calculation, we use 
correlation function; this is a good approximation as long as the 
variance is changing slowly with time. We also assume that the 
correlation function depends solely on distance, and we estimate it by 
fitting an empirical function to the correlations observed in the data. 
The details are described in the mathematical supplement.

Homogenization and the scalpel 

Temperature time series may be subject to many measurement 
artifacts and microclimate effects [2,10-13]. Measurement biases often 
manifest themselves as abrupt discontinuities arising from changes in 
instrumentation, site location, nearby environmental changes (e.g. 
construction), and similar artifacts. They can also derive from gradual 
changes in instrument quality or calibration, for example, fouling of 
a station due to accumulated dirt or leaves can change the station’s 
thermal or air flow characteristics. In addition to measurement 
problems, even an accurately recorded temperature history may not 
provide a useful depiction of regional scale temperature changes due 
to microclimate effects at the station site that are not representative of 
large-scale climate patterns. The most widely discussed microclimate 
effect is the potential for “urban heat islands” to cause spuriously 
large temperature trends at sites in regions that have undergone 
urban development [4,14,15]. We estimate that on average 13% of the 
non-seasonal variance in a typical monthly temperature time series 
is caused by local noise of one kind or another. All of the existing 
temperature analysis groups use processes designed to detect various 
discontinuities in a temperature time series and “correct” them 
by introducing adjustments that make the presumptively biased 
time series look more like neighboring time series and/or regional 
averages [12,16,17]. This data correction process is generally called 
homogenization.

Rather than correcting data, we rely on a philosophically different 
approach. Our method has two components: 

1) Break time series into independent fragments at times when 
there is evidence of abrupt discontinuities, and 

2) Adjust the weights within the fitting equations to account for 
differences in reliability. 

The first step, cutting records at times of apparent discontinuities, 
is a natural extension of our fitting procedure that determines the 
relative offsets between stations, expressed via bi, as an intrinsic 
part of our analysis. We call this cutting procedure the scalpel. 
Provided that we can identify appropriate breakpoints, the necessary 
adjustment will be made automatically as part of the fitting process. 
We are able to use the scalpel approach because our analysis method 
can use very short records, whereas the methods employed by other 
groups generally require their time series be long enough to contain a 
significant reference or overlap interval.

The addition of breakpoints will generally improve the quality 
of fit provided they occur at times of actual discontinuities in the 
record. The addition of unnecessary breakpoints (i.e. adding breaks 
at time points which lack any real discontinuity), should be trend 
neutral in the fit as both halves of the record would then be expected 
to tend towards the same bi value; however, unnecessary breakpoints 
introduce unnecessary parameters, and that necessarily increases the 
overall uncertainty. 

There are in general two kinds of evidence that can lead to an 
expectation of a discontinuity in the data. The first is an examination 
of station metadata, such as documented station moves or 
instrumentation changes. For the current paper, the only metadata-
based cut we use is based on gaps in the record; if a station failed to 
report temperature data for a year or more, then we consider that 
gap as evidence of a change in station conditions and break the time 
series into separate records at either side of the gap. In the future, we 
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will extend the use of the scalpel to processes such as station moves 
and instrumentation changes; however, the analysis presented below 
is based on the GHCN dataset which does not provide the necessary 
metadata to make those cuts. The second kind of evidence leading to 
the assumption of a breakpoint is an apparent shift in the statistical 
properties of the data itself (e.g. mean, variance) when compared to 
neighboring time series that are expected to be highly correlated. 
When such a shift is detected, we can break the time series into two 
segments at that point, making what we call an “empirical breakpoint”. 
The detection of empirical breakpoints is a well-developed field in 
statistics, though the case appropriate for weather records, where 
spatially correlated data are widely available, has generally been of 
a more specialized interest [18-21]. As a result, the existing groups 
have each developed their own approach to empirical change point 
detection [12,16,17]. In the present paper, we use a simple empirical 
criterion that is not intended to be a complete study of the issue. Like 
prior work, the present criterion is applied prior to any averaging. 
(In principle, change point detection could be incorporated into 
an iterative averaging process that uses the immediately preceding 
average to help determine a set of breakpoints for the next iteration; 
however, no such work has been done at present.) For the present 
paper, we follow NOAA in considering the neighborhood of each 
station and identifying the most highly correlated adjacent stations. 
A local reference series is then constructed using an average of 
the neighboring stations weighted by the square of the correlation 
coefficient with the target station. This is compared to the station’s 
time series, and a breakpoint is introduced at places where there is 
an abrupt shift in mean larger than 4 times the standard error of the 
mean. This empirical technique results in approximately 1 cut for 
every13.5 years of record, which is somewhat more often than the 
change point occurrence rate of one every 15-20 years reported by 
Menne [12]. Future work will explore alternative cut criteria, but the 
present effort is meant merely to incorporate the most obvious change 
points and show how our averaging technique can incorporate the 
discontinuity adjustment process in a natural way.

Outlier weighting

The next potential problem to consider is the effect of outliers, 
i.e. single data points that vary greatly from the expected value as 
determined by the local average. We identify outliers by defining the 
difference, ( ),i jt∆ between a temperature station’s reported data j

iT
and the expected value at that same site from our avgT  solution:

( ) j j A
i j i i avg ijt T b T W∆ = − − − 		                                   (12)

where, A
ijW  approximates the effect of constructing the weather 

field without the influence of the i-th station. (See the Appendix for 
the details). The root-mean-square deviation from average of ( )i jt∆  

for our analysis with the GHCN data set turns out to be e = 0.62 °C. 

An outlier is now defined as a data point for which ( ) 2.5i jt e∆ ≥ . 

For the Kriging process, we then apply a deweighting factor to such 
outliers:

2.5
( )ij

i j

ew
t

=
∆

	 for outliers		                                  (13)

1ijw = 	 otherwise		

Equation (13) thus specifies a downweighting term to be applied 
for point outliers (single temperature measurements at a single 

site) that are more than 2.5e from the expected value, based on the 
interpolated field. This choice of target threshold was selected with 
the expectation that it would leave most of the data unweighted. If 
the underlying data fluctuations were normally distributed, we would 
expect this process to deweight 1.25% of the data. In practice, we 
observe that the data fluctuation distribution tends to be intermediate 
between a normal distribution and a Laplace distribution. In the 
Laplace limit, we would expect to deweight 2.9% of the data, so the 
actual weight adjustment rate can be expected to be intermediate 
between 1.25% and 2.9% for the typical station time series. Of course 
the goal is not to suppress legitimate data, but rather to limit the 
impact of erroneous outliers. In defining the weighting function, we 
downweight data rather than eliminate it; this choice helps to ensure 
numerical stability.

Reliability weighting

In addition to point outliers, climate records often vary for 
other reasons that can affect an individual record’s reliability at the 
level of long-term trends. For example, we also need to consider the 
possibility of gradual biases that lead to spurious trends. In this case 
we assess the overall “reliability” of the record by measuring each 
record’s average level of agreement with the expected field at the same 
location.

For each station, the average misfit for the entire time series can 
be expressed as:

( )( )22 21 min{ ,25 }i i j
j

t e
N

ε = ∆∑                                                      (15)

Here, the “min” is introduced to avoid giving too great a weight 
to the most extreme outliers when judging the average reliability of 
the series; N is the number of terms in the sum. A metric of relative 
reliability is then defined as:

2

2 2
2

i
i

e
e

ϕ
ε

=
+

                                                                                        (16)

This metric φi is used as an additional deweighting factor for each 
station I. Due to the limits on outliers imposed in the outlier equation 
(15); this metric has a range between 2 and 1/13, effectively allowing 
a “perfect” station to receive up to 26 times the score of a “terrible” 
station. This functional form was chosen due to several desirable 
qualities. First, the typical record is expected to have a reliability 
factor near 1, with poor records being more severely downweighted 
than good records are enhanced. Using an expression that limits the 
potential upweighting of good records was found to be necessary 
in order to ensure efficient convergence and numerical stability. 
A number of alternative functional forms with similar properties 
were also considered, and we found that the construction of global 
temperature time series was largely insensitive to the details of how 
the downweighting of inconsistent records was handled.

After defining this reliability factor, it is necessary to incorporate 
this information into the spatial averaging process, i.e. by adjusting 
the Kriging coefficients. We did this in a way (described in more detail 
in the Appendix) that assures that if all of the records in a given region 
have a similar value of the reliability factor φi, then they will all receive 
a similar weight, regardless of the actual numerical value of φi. This 
behavior is important as some regions of the Earth, such as Siberia, 
tend to have broadly lower values of φi due to the high variability of 
local weather conditions. However, as long as all of the records in 
a region have similar values for φi, then the individual stations will 
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still receive approximately equal and appropriate weight in the global 
average. This avoids a potential problem that high variability regions 
could be underrepresented in the construction the global time series 
Tavg.

The determination of the weighting factors is accomplished via 
an iterative process that seeks convergence. The iterative process 
generally requires between 10 and 60 iterations to reach the chosen 
convergence threshold of having no changes greater than 0.001°C in 
Tavg between consecutive iterations. 

Implicit in the discussion of station reliability considerations are 
several assumptions. Firstly, the local weather field constructed from 
many station records is assumed be a better estimate of the underlying 
temperature field than any individual record was. This assumption 
is generally characteristic of all averaging techniques; however, we 
can’t rule out the possibility of large-scale systematic biases. Our 
reliability adjustment techniques can work well when one or a few 
records are noticeably inconsistent with their neighbors, but large-
scale biases affecting many stations could cause the local comparison 
methods to fail. Secondly, it is assumed that the reliability of a station 
is largely invariant over time. This will in general be false; however, 
the scalpel procedure discussed previously will help here. By breaking 
records into multiple pieces on the basis of metadata changes and/
or empirical discontinuities, it creates the opportunity to assess the 
reliability of each fragment individually. A detailed comparison and 
contrast of our results with those obtained using other approaches 
that deal with inhomogeneous data will be presented elsewhere.

Uncertainty analysis 

There are two essential forms of quantifiable uncertainty in the 
Berkeley Earth averaging process:

Statistical/Data-Driven Uncertainty: This is the error made 
in estimating the parameters bi and j

avgT , and due to the fact that 
the data points j

iT  may not be an accurate reflections of the true 
temperature changes at location xi. 

Spatial Incompleteness Uncertainty: This is the expected error 
made in estimating the true land-surface average temperature due to 
the network of stations having incomplete spatial coverage.

In addition, there is “structural” or “model-design” uncertainty, 
which describes the error a statistical model makes compared to the 
real-world due to the design of the model. Given that it is impossible 
to know absolute truth, model limitations are generally assessed 
by attempting to validate the underlying assumptions that a model 
makes and comparing those assumptions to other approaches used 
by different models. For example, we use a site reliability weighting 
procedure to reduce the impact of anomalous trends (such as those 
associated with urban heat islands), while other models (such as those 
developed by GISS) attempt to remove anomalous trends by applying 
various corrections. Such differences are an important aspect of model 
design. In general, it is impossible to directly quantify structural 
uncertainties, and so they are not a factor in our standard uncertainty 
model. However, one may be able to identify model limitations by 
drawing comparisons between the results of the Berkeley Average and 
the results of other groups. Discussion of our results and comparison 
to those produced by other groups will be provided below.

Another technique for identifying structural uncertainty is to 
run the same averaging approach on multiple data sets that differ in 

a way that helps isolate the factors that one suspects may give rise 
to unaccounted for model errors. For example, one can perform an 
analysis of rural data and compare it to an analysis of urban data 
to look for urbanization biases. Such comparisons tend to be non-
trivial to execute since it is rare that one can easily construct data 
sets that isolate the experimental variables without introducing other 
confounding variations, such as changes in spatial coverage. We will 
not provide any such analysis of such experiments in this paper.

The other analysis groups generally discuss a concept of “bias 
error” associated with systematic biases in the underlying data [2,5]. 
To a degree these concepts overlap with the discussion of “structural 
error” in that the prior authors tend to add extra uncertainty to 
account for factors such as urban heat islands and instrumental 
changes in cases when they do not directly model them. Based on 
graphs produced by the Hadley/CRU team, such “bias error” was 
considered to be a negligible portion of total error during the critical 
1950-2010 period of modern warming, but leads to an increase in 
total error up to 100% circa 1900 [2]. In the current presentation we 
do not attempt to consider these additional proposed uncertainties, 
which will be discussed once future papers have examined the various 
contributing factors individually.

Statistical uncertainty

The statistical uncertainty calculation in the current averaging 
process is intended to capture the portion of uncertainty introduced 
into due to the noise and other factors that may prevent the basic data 
from being an accurate reflection of the climate at the measurement 
site. In order to empirically estimate the statistical uncertainties on 
the global mean temperature time series Tavg, we apply a systematic 
resampling method known as the “jackknife” method [22-24]. In this 
section we give a qualitative overview; more mathematical details are 
given in the supplement.

This approach is different from the approaches that have been 
commonly used in the past for historic temperature estimation. Prior 
groups generally assess uncertainly from the bottom-up by assigning 
uncertainty to the initial data and all of the intermediate processing 
steps. This is a complicated process due to the possibility of correlated 
errors and the risk that those uncertainties may interact in unexpected 
ways. Further, one commonly applies a similar amount of data 
uncertainty to all measurements, even though we would expect that 
in practice some time series are more accurate than others.

The approach presented here considers the statistical uncertainty 
quantification from a top-down direction. At its core, this means 
measuring how sensitive the result is to changes in the available 
data, by creating subsets of the data and reproducing the analysis 
on each subset. This allows us to assess the impact of data noise in a 
way that bypasses concerns over correlated error and varying record 
uncertainty. For a complex analysis system this will generally provide 
a more accurate measure of the statistical uncertainty, though there 
are some additional nuances. It also helps avoids the possible tendency 
of scientists to be overly “conservative” in their error estimates, and 
thereby overestimating the uncertainty in their final result.

The “jackknife “method in statistics is a well-known approach for 
empirical estimation of uncertainties that can minimize bias in that 
estimate that might otherwise occur from a small number of events 
[23,24]. For climate analysis this feature is important because there 
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exist regions of the world that are poorly sampled during interesting 
time periods (e.g. much of the world during much of the 19th century).

The jackknife method is applied in the following way. From the 
population of stations, we construct eight overlapping subsets, each 
consisting of 7/8th of the stations, with a different and independent 
1/8th removed from each group. The data from each of these subsets 
is then run through the entire Berkeley Average machinery to create 

8 new estimates, ( )k
avg jT t  of the average global land temperature vs. 

time. Following Quenoille [24] and Tukey [23], we then create a new 

set of 8 “effectively independent” temperature records ( )†k
avg jT t by 

the jackknife formula

( ) ( ) ( )† 8 7k k
avg j avg j avg jT t T t T t= −                                                          (17)

where Tavg(tj) is the reconstructed temperature record from the 
full (100%) sample? Then the uncertainty estimate for the full sample 
is the standard deviation of the effectively independent samples:

( )
( ) ( )( )2† †k k

avg j avg jk
jackknife j

T t T t
t

N

−
=

∑
                                   (18)

For our example, N = 8. The typical statistical uncertainties 
estimated using the jackknife are consistent with expectations 
based on Monte Carlo tests (which we will describe shortly).As the 
jackknife constructs each temperature average in its sample using 
a station network that is nearly complete, it is much more robust 
against spatial distribution biases than simpler sampling techniques 
where only a small fraction of the stations might be used. 

A brief comment should be made here that in computing the 

subsampled temperature series, ( ),k
avg jT t the outlier and reliability 

adjustment factors are recomputed for each sample. This means the 
process of generating ( )k

avg jT t is not entirely linear, and consequently 
the jackknife estimate in equation (18) is not analytically guaranteed 
to be effective. However, in the present construction the deviations 
from linearity are expected to be small since most adjustment factors 
are approximately 1. These observations, plus the validation by 
Monte Carlo tests, appear sufficient to justify the use of the jackknife 
technique. One could ensure linearity by holding outlier and 
reliability adjustment factors fixed; however, this would necessarily 
lead to an underestimate of the statistical uncertainty and require 
a separate estimate be made of the uncertainty associated with the 
weighting procedures.

We performed over 10,000 Monte Carlo simulations in order to 
investigate the relative reliability of the jackknife method as well as 
other sampling techniques not ultimately used here. For each of these 
simulations, a toy temperature model of the Earth was constructed 
consisting of 100 independent climate regions. We simulated noisy 
data for each region, using a spatial sampling distribution that was 
chosen to mimic the distribution of the real data. So, for example, 
some regions had many sites, while other regions had only 1 or 2. 
The calculation showed that the jackknife method gave a consistently 
accurate measure of the true error (known since in toy model by 
construction) while simpler sampling processes that used non-
overlapping subsets tended to consistently underestimated the true 
error due to spatial biasing.

A practical disadvantage of the jackknife method is that it requires 
that 7/8 of the data be analyzed in 8 different groups. Since the time 

to run the program is roughly proportional to the square of the data 
set size, this means that calculating the uncertainties takes roughly 8 x 
(7/8)2 = 6 times as long as to calculate the initial time series.

Spatial uncertainty

Spatial uncertainty measures the error likely to occur due to 
incomplete sampling of land surface areas. The primary technique 
we applied to estimate this uncertainty is empirical. The sampled 
area available at past times is superimposed over recent time periods, 
and we calculate the error that would be incurred in measuring the 
modern temperature field given only that limited sample area. For 
example, if we knew only the temperature anomalies for Europe 
and North America, how much error would be incurred by using 
that measurement as an estimate of the global average temperature 
anomaly? The process for making this estimate involves applying the 
coverage field, that exists at each time and superimposing it on the 
nearly complete temperature anomaly fields that exist at later times, 
specifically 1960 2010jt≤ ≤  when spatial land coverage approached 
100%. Our uncertainty estimate is then the root-mean-square 
deviation of the difference. The details are given in the mathematical 
supplement, as are some of the alternatives we tried.

GHCN Results
As a test of our framework, we applied it to a relatively large set of 

data that had previously been analyzed by NOAA, the 7280 weather 
stations in the Global Historical Climatology Network (GHCN) 
monthly average temperature data set [11,25]. Our analysis used the 
non-homogenized data set, with none of the NOAA corrections for 
in homogeneities included; rather, the scalpel method was applied to 
break records at the discontinuities. Using the scalpel, the original 
7,280 data records were broken into 44,840 record fragments. Of the 
37,561 cuts, 6,115 were based on gaps in record continuity longer 
than 1 year and the rest were found by our empirical method. As the 
raw data was used, a pre-filtering process was also used to remove a 
small number of nonsense data points in the raw data. These include 
values exceeding 60°C, records filled with zeros, extremely abrupt 
swings in temperature, and a few other indicators of presumptively 
bad data. In total 1.1% of the data points were eliminated for such 
reasons. The NOAA analysis process uses their own pre-filtering in 
their homogenization and averaging processes, but in the present 
paper, a decision was made to avoid such pre-existing corrections and 
examine the ability of the full technique to work with data that was 
not previously homogenized. A further 0.2% of data was eliminated 
after cutting and filtering because the resulting record fragment was 
either too short to process (record length less than 6 months) or it 
occurred at a time with fewer than 5 total stations active.

The median length of a temperature time series processed by the 
Berkeley Average was only 5.9 years. Further, the inner 50% range for 
station record lengths was 2.3 to 10.8 years, and only 4.5% of records 
were longer than 30 years. This compares to GHCN data before the 
scalpel was applied where 72% of the time series are longer than 30 
years and the median length is nearly 50 years. As already stated, the 
current climate change analysis framework is designed to be very 
tolerant of short and discontinuous records which will allow it to 
work with a wide variety of data.

Figure 2 shows the station locations used by GHCN, the number 
of active stations vs. time, and the land area sampled vs. time. The 
sudden drop in the number of stations around 1990 is largely a result 
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of the methodology used in compiling the GHCN dataset. The present 
GHCN monthly dataset generally only accepts records from stations 
that explicitly issue a monthly summary report; however, many 
stations have stopped reporting monthly results and only report 
daily ones. Despite this drop, Figure 2(c) shows that the coverage of 
the Earth’s land surface remained around 94%, reflecting the broad 
distribution of the stations that did remain.

The results from applying the Berkeley Average methodology 
to the GHCN monthly data are shown in Figure 3. The upper plot 
shows the 12-month land-only moving average and its associated 
95% uncertainty; the lower plot shows the result of applying a 10-year 
moving average. Applying the methods described here, we find that 
the average land temperature from Jan 1950 to Dec 1959 was 9.290 
± 0.032°C, and temperature average during the most recent decade 
(Jan 2000 to Dec 2009) was 10.183 ± 0.047°C, an increase of 0.893 ± 
0.063°C. The trend line for the 20th century as a whole is calculated to 
be 0.696 ± 0.099°C/century, well below the 2.74 ± 0.24°C/century rate 
of global land-surface warming that we observe during the interval Jan 
1970 to Nov 2011. All uncertainties quoted here and in the following 
discussion are 95% confidence intervals for the combined statistical 
and spatial uncertainty. In addition, the uncertainty associated 
with the absolute normalization, discussed below, is omitted unless 
explicitly stated otherwise. 

In Figure 4, the land reconstruction is compared to land 
reconstructions published by the three other groups [2-4]. Overall 
the Berkeley Earth global land average is consistent with the results 
obtained by these prior efforts. The differences apparent in Figure 
4 may partially reflect differences in source data, but they probably 
primarily reflect differences in methodology.

The GHCN dataset used in the current analysis overlaps strongly 
with the data used by the other groups. The GHCN was developed by 
NOAA and is the sole source of the land-based weather station data 
in their temperature reconstructions (but does not include the ocean 
data also used in their global temperature analyses). In addition, 

NASA GISS uses GHCN as the source for ~85% of the time series in 
their analysis. The remaining 15% of NASA GISS stations are almost 
exclusively US and Antarctic sites that they have added/updated, and 
hence would be expected to have somewhat limited impact due to 
their limited geographic coverage. The Hadley/CRU collaboration 
maintains a separate data set from GHCN for their climate analysis 
work though approximately 60% of the GHCN stations also appear 
in their data set. 

Figure 2: (Upper) Station locations for the 7280 temperature stations in 
the Global Historical Climatology Network (GHCN) Monthly dataset. (Lower 
Left) Number of active stations over time. (Lower Right) Percentage of the 
Earth’s land area sampled by the available stations versus time, calculated 
as explained in the text. The sudden rise in land area sampled during the 
mid 1950s corresponds to the appearance of the first temperature records 
on Antarctica.

Figure 3: Result of the Berkeley Average Methodology applied to the GHCN 
monthly data. Top plot shows a 12-month land-only moving average and 
associated 95% uncertainty from statistical and spatial factors. The lower 
plot shows a corresponding 10-year land-only moving average and 95% 
uncertainty. Our plotting convention is to place each value at the middle of 
the time interval it represents. For example, the 1991-2000 average in the 
decadal plot is shown at 1995.5.

Figure 4: Comparison of the Berkeley Average based on the GHCN data 
set to existing land-only averages reported by the three major temperature 
groups. The upper panel shows 12-month moving averages for the four 
reconstructions, and a gray band corresponding to the 95% uncertainty 
range on the Berkeley average. The lower panel shows each of the prior 
averages minus the Berkeley average, as well as the Berkeley average 
uncertainty. Hadley/CRU collaboration has a systematically lower trend 
than the other groups for the most recent portion of the land-only average. 
Berkeley is very similar to the prior results during most of the range. After 
considering the uncertainties associated with the other reconstructions (not 
shown) it is likely that the Berkeley result is consistent with the other results 
nearly everywhere.
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The uncertainty limits we obtained are plotted on the results 
shown in the preceding figures by the grey bands. The uncertainties 
are remarkably small, particularly in the recent past, but remain 
relatively small even in the interval 1800 to 1850, a time period that 
was not previously reported by other groups. Recall that the statistical 
uncertainties are estimated by subdividing the data into smaller 
groups and then inter-comparing them, and the spatial sampling 
uncertainties are estimated by re-running the data set for the modern 
era with the same limited sampling available for the earlier data. Thus 
our uncertainties are empirical, estimated by the behavior of the data, 
rather than theoretical based on estimates of initial uncertainties. 
If our analysis technique had severe biases (e.g. ignoring data that 
should have been included, or failing to deweight spurious data) then 
the uncertainties estimated using our empirical method would be 
larger. 

Because of the relatively small values on the uncertainties, it is 
worthwhile to look in some detail at the actual empirical calculation 
of these uncertainties. We described how a determination of statistical 
uncertainties can be made by using the jackknife method. Figure 
5 shows the results of applying a conceptually simpler subsample 
approach for the GHCN data set. Five completely independent 
subsamples were constructed each containing a random 20% of the 
stations, and these were then processed via the Berkeley Average 
methodology. The agreement in Figure 5 of the averages constructed 
from these independent subsamples make it clear that the current 
averaging procedure is robust against noise on individual data and the 
inclusion/exclusion of individual stations, and provides a reasonable 
estimate of the uncertainty arising from these factors.

To understand the spatial uncertainty, we show in the top panels 
of Figure 6 the sampled regions available in the years 1800 and 1860. 
At future times, it is possible to compare the apparent average over 
these sampled regions with the average calculated over all land areas. 
In the middle panels of Figure 6, time series capturing this difference 

are shown. In the case of the year 1800 sample region, the global 
average quickly diverges as new stations are added, but nonetheless 
it remains within a characteristic difference of the estimated global 
mean during the entire record. The difference trend for the sample 
region from the year 1860 is slower to diverge since the expansion in 
coverage does not occur as quickly. However, it also remains within a 
characteristic bound. Evidence such as this is used as described in the 
supplement to estimate the spatial uncertainty.

As is shown in Figure 3, the current record is extended all the 
way back to 1800, including 50 more years than Hadley/CRU 
group and 80 more years than NOAA and NASA GISS. We feel this 
extension is justifiable; although the uncertainties are large, there 
is interesting and statistically significant structure that can be seen. 
The analysis technique suggests that temperatures during the 19th 
century were approximately constant (trend 0.18 ± 0.45 °C/century) 
and on average 1.27 ± 0.21°C cooler than the interval 2000-2009. 
Circa 1815 there is a negative temperature excursion that happens to 
roughly coincide with both a period of major volcanism as well as the 
Dalton Minimum in solar activity. Two very large volcanic eruptions 
occurred about this time: a large unidentified event in 1809 [26] and 
the Tambora eruption in 1815 - the largest eruption in the historical 
era, blamed for creating the “year without a summer” [27,28]. The 
Dalton Minimum in solar activity from circa 1790 to 1830 includes 
the lowest 25 year period of solar activity during the last 280 years, 
but this is considered to have produced only minor cooling during 
this period, while volcanism was the dominant source of cooling [26]. 
Though the uncertainties are very large, the fact that this temperature 
excursion is well-established in the historical record and motivated by 

Figure 5: Five independent temperature reconstructions each derived 
from a separate 20% of the GHCN stations. These stations are statistically 
independent, although they ultimately sample the same global climate. The 
upper figure shows the calculation of the temperature record based on five 
independent subsamples. The lower plot shows their difference from the 
100% result, and the expected 95% uncertainty envelope relative to zero 
difference. The uncertainty envelope used here is scaled by 5  times the 
jackknife calculated statistical uncertainty. This reflects the larger variance 
expected for the 20% samples.

Figure 6: Panels A and D shows the spatial coverage available in 1800 
and 1860 respectively. Red indicates greater than 80% local completeness, 
while blue indicates greater than 40% to 80% completeness. The metric 
for measuring sample coverage is explained in the supplement. These 
coverage patterns are applied to the temperature field at latter times to 
estimate the effect of incomplete spatial sampling. Panels B and E show the 
difference between the full land average at each latter time and the average 
that would obtained by using only the coverage regions indicated in Panels 
A and C, respectively. This difference is shown here using the 12-month 
moving average, and horizontal bars indicate the 95% uncertainty level. 
Panels C and F shows histograms of the fluctuations in panels B and E 
over the interval 1960 to 2010. Only about 5% of months exceed the 95% 
threshold, as expected.
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known climate forcing gives us confidence than the ~1820 excursion 
is a reflection of a true climate event. However, we will note that our 
early data is heavily biased towards North America and Europe, so 
we cannot draw conclusions about the regional versus global nature 
of the excursion.

Our empirical uncertainty estimates are remarkably small in the 
period 1800 to 1850, a time when there were often no measurements 
whatsoever in the Southern Hemisphere. Our calculation assumes 
that the regional fluctuations in the Earth’s climate system during 
the entire study interval have been similar in scale to those observed 
in the reference period 1960 to 2010. For example, we note that the 
combined temperature anomaly over Eastern North America and 
Europe stayed within 0.5°C of the global land average anomaly 95% of 
the time during the 20th century. The temperature time series presented 
here should adequately capture the temperature fluctuations at early 
times in the well-sampled regions (i.e. Europe and Eastern North 
America); however, we rely on the spatial uncertainty calculation to 
further estimate of how different the sample region may have been 
from the whole globe.

To look for possible changes in the structure with time, we show 
the spatial structure of the climate change during the last century 
Figure 7. The structure is fairly uniform, though with greater warming 
over the high latitudes of North America and Asia, consistent with 
prior results [4]. We also show the pattern of warming since the 
1960s, as this is the period during which anthropogenic effects are 
believed to have been the most significant. Warming is observed to 
have occurred over all continents, though parts of South America are 
consistent with no change. No part of the Earth’s land surface shows 
appreciable cooling.

Discussion of Relative Uncertainty Estimates
As discussed above, the uncertainty in the current results are 

conceptually divided into two parts, the statistical uncertainty which 
measures how well the temperature field was constrained by data in 
regions and times where data is available, and the “spatial uncertainty” 
which measures how much uncertainty has been introduced into 
the temperature average due to the fact that some regions are not 
effectively sampled. These uncertainties for the GHCN analysis are 
presented in Figure 8.

Note that the two types of uncertainty tend to co-vary. This 
reflects the reality that station networks historically developed 
in a way that increasing station density (which helps statistical 
uncertainties) tended to happen at similar times to increasing spatial 
coverage (which helps spatial uncertainties). The step change in 
spatial uncertainty in the middle 1950s is driven by the introduction 
of the first weather stations to Antarctica. Though the introduction of 
weather stations to Antarctica eliminated the largest source of spatial 
uncertainty, it coincidentally increased the statistical uncertainty 
during the post-1950 period. The Antarctic continent represents 
nearly 9% of the Earth’s land area and yet GHCN provides fewer 
than 40 stations from Antarctica, and only 3 from the interior. To the 
extent that these few available records disagree with each other they 
can serve as a relatively large source of statistical noise.

Since the 1950s, the GHCN has maintained a diverse and extensive 
spatial coverage, and as a result the inferred spatial uncertainty is 
low. However, we do note that GHCN station counts have decreased 
precipitously from a high of 5883 in 1969 to about 2500 at the present 

day. This decrease has primarily affected the density of overlapping 
stations while maintaining broad spatial coverage. As a result, the 
statistical uncertainty has increased somewhat since the 1960s. Again 
the decrease in station counts is essentially an artifact of the way the 
GHCN monthly data set has been constructed. In fact, once one 

Figure 7: Maps showing the decadal average changes in the land 
temperature field. In the upper plot, the comparison is drawn between the 
average temperature in 1900 to 1910 and the average temperature in 2000 
to 2010. In the lower plot, the same comparison is made but using the 
interval 1960 to 1970 as the starting point. We observe warming over all 
continents with the greatest warming at high latitudes and the least warming 
in southern South America. 

Figure 8: The 95% uncertainty on the Berkeley Average (red line) and the 
component spatial (blue) and jackknife statistical (green) uncertainties for 
12-month moving land averages. From 1900 to 1950, the spatial uncertainty 
is dominated by the complete lack of any stations on the Antarctic continent. 
From 1960 to present, the largest contribution to the statistical uncertainty 
is fluctuations in the small number of Antarctic temperature stations. For 
comparison, the land-only 95% uncertainties for Hadley/CRU collaboration 
and NOAA are presented. As discussed in the text, in addition to spatial and 
statistical considerations, the Hadley/CRU collaboration and NOAA curves 
include additional estimates of “bias error” associated with urbanization 
and station instrumentation changes that we do not currently consider. 
The added “bias error” contributions are small to negligible during the post 
1950 era, but this added uncertainty is a large component of the previously 
reported uncertainties circa 1900.
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includes daily as well as monthly monitoring reports, the true density 
of weather stations has remained nearly constant since the 1960s, and 
that should allow the “excess” statistical uncertainties shown here to 
be eliminated once a larger number of stations are considered in a 
future paper.

Over much of the record, the Berkeley uncertainty calculation 
yields a value 50-75% lower than that reported by other groups. As 
the sampling curves demonstrate (Figure 5), the reproducibility of the 
temperature time series on independent data is extremely high which 
justifies concluding that the statistical uncertainty is very low. This 
should be sufficient to estimate the uncertainty associated with any 
unbiased sources of random noise affecting the data.

In comparing the results one must note that curves by prior 
groups in Figure 8 include an extra factor they refer to as “bias error” 
by which they add extra uncertainty associated with urban heat 
islands and systematic changes in instrumentation [2,5]. As Berkeley 
Earth does not include comparable factors, this could explain some 
of the difference. However, the “bias” corrections being used cannot 
explain the bulk of the difference in estimated uncertainty. The 
Hadley/CRU collaboration reports that the inclusion of “bias error” 
in their land average provides a negligible portion of the total error 
during the period 1950-2010. This increases to about 50% of the 
total error circa 1900, and then declines again to about 25% of the 
total error around 1850 [2]. These amounts, though substantial, are 
still less than the difference between the Berkeley Earth uncertainty 
estimates and the prior estimates. The present techniques estimate the 
global land-based temperature with considerably less apparent spatial 
and statistical uncertainty than prior efforts.

A large portion of the difference in uncertainty may be related 
to systematic overstatement of the uncertainty present in the prior 
work, as a result of the prior groups being conservative in their 
error estimates. For example, when grid cells are missing in the 
Hadley/CRU collaboration reconstruction, they are assumed to be 
completely unknown (and hence contribute large uncertainty), even 
though populated cells may exist nearby. Ignoring the relationships 
between grid cells make the calculations easy to understand but 
can lead to overstating the uncertainties. Similarly, processes that 
consider each grid cell individually are likely to do a poorer job of 
identifying homogeneity breaks or establishing relative alignments 
amongst records. Such factors will also increase the apparent 
uncertainty. The results of prior groups actually agree significantly 
more closely than would be expected given their stated uncertainties 
and different averaging approaches. This could be evidence that prior 
uncertainties were overstated, though some of the similarity in results 
is undoubtedly also attributable to the overlapping datasets being 
used.

In considering the Berkeley Earth uncertainties, it must be 
acknowledged that adding some degree of bias error may ultimately 
be necessary. The integrated reliability assessment procedures and the 
use of the scalpel are expected to significant reduce the potential impact 
of many forms of bias by detecting local stations that are inconsistent 
with regional averages, and allowing iterative adjustments to be made. 
The effectiveness of these procedures will be addressed via further 
publications. Finally, we note that as the number of stations gets low 
there is an increased potential for systematic bias, as could occur if a 
large fraction of the records erroneously move in the same direction 
at the same time. As the number of available records becomes small, 
the odds of this occurring can increase.

Climatology
In Equation 4, we defined the local temperature at position and 

time ,i jx t  to be given by

( ) ( ) ( ) ( ), ,avgT x t T t C x W x t= + +

where, ( )iC x  is the approximately time-invariant long-term 
mean temperature of a given location, sometimes referred to as the 
climatology. A map of the ( )iC x  that we obtain from our fit is shown 
in Figure 9. The global land average from 1900 to 2000 is 9.35 ± 1.45°C, 
broadly consistent with the estimate of 8.5°C provided by Peterson 
[29]. This large uncertainty in the normalization is not included in 
the shaded bands that we put on our Tavg plots, as it only affects the 
absolute scale and doesn’t affect relative comparisons. In addition, 
most of this uncertainty is due to the presence of only three GHCN 
sites in the interior of Antarctica, which leads the algorithm to regard 
the absolute normalization for much of the Antarctic continent as 
poorly constrained. Preliminary work with more complete data from 
Antarctica and elsewhere suggests that additional data can reduce 
this normalization uncertainty by an order of magnitude without 
changing the underlying algorithm. The Berkeley Average analysis 
process is somewhat unique in that it produces a global climatology 
and estimate of the global mean temperature as part of its natural 
operations.

The temperature field is nearly symmetric with latitude, though 
with a positive excess around the Sahara, and asymmetry between 
the Arctic and Antarctic. The change of surface temperature with 
elevation is found to be almost exactly linear, even though our fit 
included a quadratic term. The cumulative effect is that one can 
predict the mean temperature of the typical station based solely on its 
location to within ±1.6°C at 95% confidence. However, there are also 
long outliers on both sides of the fit, which may indicate stations that 
are inaccurately located in either latitude or altitude. A comparison 
of these results to climatology maps produced by ERA40 find these 
results to be very similar, except in regions of rapidly changing 
topography such as the Andes or Himalaya, where differences of 
several degrees can occur [30]. Given that neither the current method 
nor the ERA40 climate models can fully resolve rapidly varying 
topography, it isn’t immediately clear which system is likely to be 
more accurate in those regions.

Discussion
This paper describes a new approach to global temperature 

reconstruction. Spatially and temporally diverse weather data 

Figure 9: A map of the derived Climatology term, ( ).C xi
 95% of the variation 

is accounted for by altitude and latitude. Departure from this is evident in 
Europe and in parts of Antarctica.
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exhibiting varying levels of quality were used to construct an estimate 
of the mean land-surface temperature of the Earth. We employ an 
iteratively reweighted method that simultaneously determines the 
history of global mean land-surface temperatures and the baseline 
condition for each station, as well as making adjustments based on 
internal estimates of the reliability of each record. The approach uses 
variants of a large number of well-established statistical techniques, 
including a generalized fitting procedure, Kriging, and the jackknife 
method of error analysis. Rather than simply avoiding short records, as 
is necessary for most prior temperature analysis groups, we designed 
a system that allows short records to be used with appropriate- but 
non-zero- weighting whenever it is practical to do so. This method 
also allows us to exploit discontinuous and inhomogeneous station 
records without prior “adjustment”, by breaking them into shorter 
segments at the points of discontinuity. 

It is an important feature of this method that the entire discussion 
of spatial interpolation has been conducted with no reference to a 
grid. This fact allows us, in principle; avoid a variety of noise and 
bias effects that can be introduced by gridding. There are no sudden 
discontinuities, for example, depending on whether a station is on 
one side of a grid point or another, and no trade-offs must be made 
between grid resolution and statistical precision.

That said, the integrals required to compute Tavg will in general 
need to be computed numerically, and computation of the Kriging 
coefficients require the solution of a large number of matrix inverse 
problems. In the current paper, the numerical integrals were 
computed based on a 15,984 element equal-area array. Note that 
using an array for a numerical integration is qualitatively different 
from the gridding used by other groups. The fact that the resolution 
of our calculation can be expanded without excess smoothing or trade 
offs for bias correction allows us to avoid this problem and reduce 
overall uncertainties. In addition, our approach could be extended 
in a natural way to accommodate variations in station density; for 
example, high data density regions (such as the United States) could 
be mapped at higher resolution without introducing artifacts into the 
overall solution.

We tested the method by applying it to the GHCN dataset created 
by the NOAA group, using the raw data without the homogenization 
procedures that were applied by NOAA (which included adjustments 
for documented station moves, instrument changes, and time of 
measurement bias, and urban heat island effects, for station moves). 
Instead, we simply cut the record at time series gaps and places that 
suggested shifts in the mean level. Nevertheless, the results that we 
obtained were very close to those obtained by prior groups, who used 
the same or similar data and full homogenization procedures. In 
the older periods (1860 to 1940), our statistical methods allow us to 
significantly reduce both the statistical and spatial uncertainties in the 
result, and they allow us to suggest meaningful results back to 1800. 
The temperature variability on the decadal time scale is lower now 
than it was in the early 1800s. One large negative swing, between1810 
and 1820, is coincident with both volcanic eruptions at that time 
(including Mt. Tambora) and the Dalton Minimum in solar activity.

We chose to analyze the NOAA dataset largely as a test that 
allows us to make a direct comparison with a prior analysis, without 
introducing issues of data selection effects. In another paper, we 
will report on the results of analyzing a much larger data set based 
on a merging of most of the world’s openly available digitized data, 

consisting of data taken at over 35,000 stations, more than 5 times 
larger than the data set used by NOAA.
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