Upper Semicontinuous Representability of Maximal Elements for Non total Preorders on Compact Spaces

Gianni Bosi**, Paolo Bevilacqua and Magali Zuanon

Abstract
We discuss the possibility of determining all the maximal elements of a preorder on a compact topological space by maximizing all the functions in a suitable family of upper semicontinuous order-preserving functions.

Keywords
Preorder; Order-preserving function; Weak utility; Maximal element; Upper semicontinuous function

Introduction

White’s theorem [1] is important since, for every maximal element \(x \) relative to a preorder \(\preceq \) on set \(X \), it guarantees the existence of an order-preserving function \(u \) on the preorder set \((X, \preceq)\) attaining its maximum at \(x \), provided that an order-preserving function \(u \) on \((X, \preceq)\) exists. So, at least theoretically, every maximal element is obtained by maximizing a real-valued order-preserving function. When this happens, it is clear that every maximal element is potentially optimal in the sense of Podinovski et al. [2] (i.e., for every maximal element there exists a total preorder extending the original preorder with respect to which such maximal element is best preferred).

In this paper, we generalize White’s theorem to the upper semicontinuous case. This means that we present conditions on a preorder \(\preceq \) on a topological space \((X, \tau)\) under which, for every maximal element \(x \) relative to \(\preceq \), there exists an upper semicontinuous order-preserving function \(u \) on the preorder topological space \((X, \tau, \preceq)\) attaining its maximum at \(x \), provided that an upper semicontinuous order-preserving function \(u \) on \((X, \tau, \preceq)\) exists. It should be noted that Bevilacqua et al. [3] already characterized the property according to which every maximal element relative to a preorder on a compact topological space can be obtained by maximizing a transfer weakly upper continuous weak utility for its strict part (see the generalization of Weierstrass Theorem presented by Tian et al. [4]).

It is clear that these results are important due to the well-known fact that every upper semicontinuous (more generally transfer weakly upper continuous) function attains its maximum on a compact topological space, and the nearly obvious consideration that a point \(x \), at which an order-preserving function \(u \) for a preorder (or, more generally, a weak utility for its strict part) attains its maximum is also a maximal element for \(\preceq \).

Notation and preliminaries

Let \(X \) be a nonempty set (decision space). A binary relation \(\preceq \) on \(X \) is interpreted as a weak preference relation, and therefore, for any two elements \(x, y \in X \), the scripture \("x \preceq y" \) has to be thought of as “the alternative \(y \) is at least as preferable as \(x \).” As usual, \(\prec \) denotes the strict part of a binary relation \(\preceq \) (i.e., for all \(x, y \in X \), \(x \prec y \) if and only if \((x \preceq y) \) and not \((y \preceq x) \). A preorder is a reflexive and transitive binary relation. An anti-symmetric preorder \(\preceq \) is referred to as an order. Furthermore, \(\sim \) stands for the indifference relation (i.e., for all \(x, y \in X \), \(x \sim y \) if and only if \((x \sim y) \) and \((y \sim x) \)). We have that \(\sim \) is an equivalence relation on \(X \) whenever \(\preceq \) is a preorder.

For every \(x \in X \), we set
\[l(x) = \{ z \in X : z \prec x \} \]
\[l(x) = \{ z \in X : x \prec z \} \]

Given a preordered set \((X, \preceq)\), a point \(x \in X \) is said to be a maximal element for \(\preceq \) if for no \(z \in X \) it occurs that \(x \preceq z \). In the sequel we denote by \(X_{\preceq}^\alpha \) the set of all the maximal elements of a preordered set \((X, \preceq)\). Please observe that \(X_{\preceq}^\alpha \) can be empty.

We recall that a function \(u : (X, \preceq) \rightarrow (R, \leq) \) is said to be
i. isotonic or increasing if, for all \(x, y \in X \), \(x \preceq y \Rightarrow u(x) \leq u(y) \);
ii. a weak utility for \(\prec \) if, for all \(x, y \in X \), \(x \prec y \Rightarrow u(x) < u(y) \);
iii. strictly isotonic or order-preserving if it is both isotonic and a weak utility for \(\prec \).

Strictly isotonic functions on \((X, \preceq)\) are also called Richter-Peleg representations of \(\preceq \) in the economic literature (see e.g. Richter et al. [5] and Peleg et al. [6]).

A preorder \(\preceq \) on a topological space \((X, \tau)\) is said to be
i. upper semicontinuous if, for all \(x, y \in X \), \(l(x) = \{ z \in X : x \preceq z \} \) is a closed subset of \(X \) for every \(x \in X \);
ii. quasi upper semicontinuous if there exists an upper semicontinuous preorder \(\preceq_0 \) on \((X, \tau)\) such that \(\prec \subset \prec_0 \).

An upper semicontinuous preorder Ward et al. [7] or more generally a quasi-upper semicontinuous preorder Bosi et al. [8, Theorem 3.1] \(\prec \) on a compact topological space \((X, \tau)\) admits a maximal element. As usual, for a real-valued function \(u \) on \(X \), we denote by \(\text{arg max } u \) the set of all the points \(x \in X \) such that \(u \) attains its maximum at \(x \) (i.e., \(x \in \text{arg max } u = \{ z \in X : (u(z) = u(x)) \% \forall z \in X \} \).

If \(\tau \) is a topology on a set \(X \), and \(\preceq \) is a preorder on \(X \), then the triplet \((X, \tau, \preceq)\) will be referred to as a topological preordered space. The (natural) (interval) topology on the real line \(\mathbb{R} \) will be denoted by \(\tau_{\mathbb{R}_{\text{nat}}} \).

Finally, we recall that a real-valued function \(u \) on a topological space \((X, \tau)\) is said to be upper semicontinuous if \(u(\{x \in X : \} = \{x \in X : \}

*Corresponding author: Gianni Bosi, Bruno de Finetti Department of Economics, Business, Mathematics and Statistics (DEAMS), University of Trieste, Italy, Tel: +39-040-558-7115; E-mail: gianni.bosi@deams.units.it

Received: October 20, 2017 Accepted: January 02, 2018 Published: January 08, 2018
Maximal elements of preorders from maximization of upper semicontinuous functions

The following theorem was proved by White et al. [1]. Given any maximal element \(x \) relative to a preorder \(\prec \) on a set \(X \), it guarantees the existence of some order-preserving function \(u \) attaining its maximum at \(x \), provided that an order-preserving function \(u : (X, \preceq) \rightarrow (R, \leq) \) exists. Therefore, in order to determine all the maximal elements of a preorder \(\preceq \) on a set \(X \), the agent maximizes all the functions \(u \) in a family \(U \) of bounded order-preserving functions for \(\preceq \). Needless to say, this is a very important opportunity, at least theoretically.

Theorem: (White et al. [1]): Let \((X, \preceq) \) be a preordered set and assume that there exists an order-preserving function \(u : (X, \preceq) \rightarrow (R, \leq) \). If \(X_u \) is nonempty, then for every \(x \in X_u \) there exists an order-preserving function \(u : (X, \preceq) \rightarrow (R, \leq) \) such that \(\max u = u(x) = \sum \epsilon X : x \prec \).

We now present a generalization of the above theorem to the "upper semicontinuous case".

Theorem: Let \((X, \tau, \preceq) \) be a topological preordered space, and assume that \(X_u \) is nonempty. Consider an element \(x \in X_u \). Then the following conditions are equivalent:

i. There exists an upper semicontinuous order-preserving function \(u : (X, \tau, \preceq) \rightarrow (R, \leq) \) and \(\{x \in R \epsilon X : x \prec \} = \sum \epsilon \).

ii. There exists an upper semicontinuous order-preserving function \(u : (X, \tau, \preceq) \rightarrow (R, \leq) \) such that \(\max u = u(x) \).

Proof: Consider a topological preordered space \((X, \tau, \preceq) \).

\(i \Rightarrow ii \): Let \(u \) be an upper semicontinuous order-preserving function on \((X, \tau, \preceq) \). Without loss of generality, we can assume \(u \) to be bounded. Consider a point \(x \in X_u \), and define the real-valued function \(u \) on \(X \) as follows for any choice of a positive real \(\delta \):

\[
\begin{align*}
u(x) &= \begin{cases} u(x) - \delta, & \text{if } x < a \in u(x) \\ u(x), & \text{if } x = a \in u(x) \\ u(x) + \delta, & \text{if } x > a \in u(x) \end{cases} \\
sup u(x) + \delta &= \begin{cases} u(x) - \delta, & \text{if } x < a \in u(x) \\ u(x), & \text{if } x = a \in u(x) \\ u(x) + \delta, & \text{if } x > a \in u(x) \end{cases}
\end{align*}
\]

White et al. [1, Theorem 1] proved that the above function \(u \) is order-preserving for \(\preceq \) as soon as \(u \) is order-preserving for \(\preceq \). For the sake of completeness, let us recall here the arguments supporting this consideration. It is clear that \(u \preceq \) as \(x \in X \). In order to show that \(u \) is increasing with respect to \(\preceq \), consider any two points \(x, y \in X \) such that \(x \preceq y \). Then it must be also not\(x \prec y \), since \(x \preceq y \) implies that \(x \preceq y \) (a contradiction, since \(x \) is assumed to be a maximal element for \(\preceq \)). Therefore, from the definition of \(u \) and the fact that \(u \) is a weak utility for \(\preceq \), we have that \(u(x) = u(x) \leq u(y) = u(y) \) from the definition of \(u \) and the fact that \(u \) is increasing with respect to \(\preceq \). In order to show that \(u \) is a weak utility for \(\preceq \), consider any two points \(x, y \in X \) such that \(x \preceq y \). Then we have

\[u(x) < a \leq u(y) \] is an open set for all \(a \in R \). A very well known result guarantees that every upper semicontinuous real-valued function \(u \) on a compact topological space \((X, \tau) \) attains its maximum.

Since in order to determine a maximal element relative to preorder \(\preceq \) on a set \(X \) it suffices to maximize a weak utility for the strict part \(\prec \) of \(\preceq \), the following corollary can be considered as useful. Indeed, the reader can easily verify that the implication "(i) \Rightarrow (ii)" in Theorem 3.2 is still valid if one considers weak utilities for \(\prec \) instead of order-preserving functions \(u \) for \(\preceq \).

Corollary: Let \((X, \tau, \preceq) \) be a topological preordered space with \(\tau \) a compact topology. If there exists an upper semicontinuous weak utility \(u \) for \(\preceq \), and \(\{x \in \tau X : x \prec \} \) is a closed set for every \(x \in X_u \), then for every \(x \in X_u \) there exists an upper semicontinuous weak utility \(u \) for \(\prec \) such that \(\max u = \sum \epsilon X : x \prec \).

Bosi et al. [8, Theorem 2.11] proved that there exists an upper semicontinuous weak utility \(u \) for \(\preceq \), and \(\{x \in \tau X : x \prec \} \) is a closed set for every \(x \in X_u \), then for every \(x \in X_u \) there exists an upper semicontinuous weak utility \(u \) for \(\prec \) such that \(\max u = \sum \epsilon X : x \prec \).

Conclusion

In this paper, following the spirit of a theorem of White et al. [1], we have presented some results concerning the representation of the set of all maximal elements of a preorder on a compact topological space by means of the maximization of all functions in a suitable family of bounded upper semicontinuous order-preserving functions. The more delicate problem of characterizing the possibility
of representing all the maximal elements for a preorder on a compact topological space by means of the maximization of finitely many upper semicontinuous order-preserving functions will be hopefully considered in a future paper.

Reference

Author Affiliation

1Bruno de Finetti Department of Economics, Business, Mathematics and Statistics (DEAMS), University of Trieste, Italy
2Department of Engineering and Architecture, University of Trieste, Italy
3Department of Economy and management, University of Brescia, Italy