A Simpler Proof of the Characterization of Quadric CMC Hypersurfaces in S^{n+1}

Aquino CP* and De Lima HF

Abstract

In this short article, we present a new and simpler proof of a characterization of the quadric constant mean curvature hypersurfaces of the Euclidean sphere S^{n+1}, originally due to Alias, Brasil and Perdomo

Keywords

Euclidean sphere; Constant mean curvature hypersurfaces; Support functions; Totally umbilical hypersurfaces; Clifford torus

Introduction

In 2008, Alias, Brasil and Perdomo studied complete hypersurfaces immersed in the unit Euclidean sphere $S^{n+1} \subset \mathbb{R}^{n+2}$, whose height and angle functions with respect to a fixed nonzero vector of the Euclidean space \mathbb{R}^{n+2} are linearly related. Let us recall that, for a fixed arbitrary vector $\mathbf{a} \in \mathbb{R}^{n+2}$ the height and the angle functions naturally attached to a hypersurface $\varphi : \Sigma^n \to \mathbb{R}^{n+2}$ endowed with an orientation ν are defined, respectively, by $l_\varphi = \langle \varphi, \mathbf{a} \rangle$ and $f_\varphi = \langle \nu, \mathbf{a} \rangle$. In this setting, they showed the following characterization result concerning the quadric constant mean curvature hypersurfaces of S^{n+1} [1,2]:

Theorem 1

Let $\varphi : \Sigma^n \to S^{n+1} \subset \mathbb{R}^{n+2}$ be a complete hypersurface immersed in S^{n+1} with constant mean curvature $l_\varphi = l_0$ for some non-zero vector $\mathbf{a} \in \mathbb{R}^{n+2}$ and some real number λ, then Σ^n is either a totally umbilical hypersurface or a Clifford torus $S^k(\rho) \times S^{n-k}(\sqrt{1-\rho^2})$, for some $k = 0; 1; \ldots; n$ and some $\rho > 0$.

Later on, working with a different approach of that used in [2], the first and second authors characterized the totally umbilical and the hyperbolic cylinders of the hyperbolic space H^n as the only complete hypersurfaces with constant mean curvature and whose support functions with respect to a fixed nonzero vector \mathbf{a} of the Lorentz-Minkowski space are linearly related (see Theorem 4:1 of [3,4], for the case that \mathbf{a} is either space like or time like, and Theorem 4:2 of [5], for the case that \mathbf{a} is a nonzero null vector). In this short article, our purpose is just to use a similar approach of that in [4,5] in order to present a new and more simple proof of Theorem 1 (cf. Section 3). For this, in Section 2 we recall some preliminaries facts concerning hypersurfaces immersed in S^{n+1}.

Preliminaries

Let $\varphi : \Sigma^n \to S^{n+1} \subset \mathbb{R}^{n+2}$ be an orientable hypersurface immersed in the Euclidean sphere. We will denote by \mathbf{A} the Weingarten operator of Σ^n with respect to a globally defined unit normal vector ν.

In order to set up the notation, let us represent by ∇, \mathcal{A} and \mathcal{V} the Levi-Civita connections of \mathbb{R}^{n+2}, S^{n+1} and Σ^n respectively. Then the Gauss and Weingarten formulas for Σ^n in S^{n+1} are given, respectively, by

$$
\nabla_\varphi Y = \nabla_Y \varphi + \langle \mathcal{A}X, Y \rangle \nu - \langle X, Y \rangle \varphi
$$

and

$$
\mathcal{A}X = -\nabla_\mathcal{A}X = -\nabla_X \mathcal{A}X,
$$

for all tangent vector fields X,Y on $\varphi : \Sigma^n \to S^{n+1}$.

In what follows, we will work with the three symmetric elementary functions of the principal curvatures $\lambda_1, \ldots, \lambda_n$ of φ, namely:

$$
S_1 = \sum \lambda_i, \quad S_2 = \sum \lambda_i \lambda_j, \quad S_3 = \sum \lambda_i \lambda_j \lambda_k
$$

where $i, j, k \in \{1, \ldots, n\}$.

As before, for a fixed arbitrary vector $\mathbf{a} \in \mathbb{R}^{n+2}$ let us consider the height and the angle functions naturally attached to φ which are defined, respectively, by $l_\varphi = \langle \varphi, \mathbf{a} \rangle$ and $f_\varphi = \langle \nu, \mathbf{a} \rangle$. A direct computation allows us to conclude that the gradient of such functions are given by $\nabla l_\varphi = a^1$ and $\nabla f_\varphi = -a^1$, where a^1 is the orthogonal projection of \mathbf{a} onto the tangent bundle $T\Sigma^n$ that is,

$$
a^1 = a - f_\varphi \nu - l_\varphi \mathbf{A}.
$$

Taking into account that $\nabla a^l = 0$ and using Gauss and Weingarten formulas, we obtain $\nabla l_\varphi = f_\varphi \mathcal{A}X + l_\varphi X$ for all $X \in T\varphi(M)$. We use this previous identity jointly with Codazzi equation to deduce that

$$
\nabla_X a^1 = f_\varphi \mathcal{A}X + l_\varphi X + (\nabla_\varphi a^1)(X),
$$

for all $X \in T\varphi(M)$. Thus according to [6] (see also [3]), it follows from the last two identities that

$$
\begin{align*}
\nabla l_\varphi &= nh f_\varphi - n l_\varphi \quad (2.1) \\
\nabla f_\varphi &= -|a|^2 f_\varphi + nh f_\varphi - n \langle \nabla H, a^1 \rangle \\
\end{align*}
$$

where $H = (1/n) S_1$ is the mean curvature function of φ.

For what follows, it is convenient to consider the so-called Newton transformation

$$
P : \mathcal{A}(\Sigma) \to H(\Sigma)
$$

$$
P = S_1^{-1} \mathcal{A}
$$

where I is the identity operator. Naturally associated with the Newton transformation P, we have the Cheng-Yau’s square operator $[7]$, which is the second order linear differential operator $\mathcal{D}(\Sigma) \to D(\Sigma)$ given by

$$
\mathcal{D} \mathcal{D} = tr(P \circ \nabla^2 h)
$$

(2.4)
Here $\nabla^2 h : \mathcal{A}(\Sigma) \to \mathcal{A}(\Sigma)$ stands for the self-adjoint linear operator metrically equivalent to the hessian of h, and it is given by

$$\left\{ \nabla^2 h(X,Y) \right\} = \{ (\nabla_{\nabla_X Y} h) \}_{X \in \mathcal{A}(\Sigma), Y \in \mathcal{A}(\Sigma)}$$

For all $X, Y \in \mathcal{A}(\Sigma)$.

Based on Reilly’s seminal paper [8-10], Rosenberg [6] showed the following identifications related to the action of \square on the functions f_i and f_j:

$$\Box f_i = 2s_i f_i - (n-1)s_i f_i \tag{2.5}$$

And

$$\Box f_i = (s_i s_j - 3s_i) f_i + 2s_i f_i - \langle \nabla s_i, a_i^2 \rangle \tag{2.6}$$

To close this section, we quote a suitable Simons-type formula which can be found in [1] [11].

$$\Box s_i = \Delta s_i + \sum_{j=0}^{n} (s_j s_i - 3s_i) s_j + 3s_i s_j + (n-1)s_i^2 \tag{2.7}$$

Proof of Theorem

Now, we are in position to proceed with our alternative proof of Theorem 1.1. If $\lambda = 0$ then $l = 0$ and

$$\psi(x, a) = \frac{1}{|a|} \psi(x, a) = 0$$

for all $x \in \Sigma^*$ and, consequently, Σ^* is a totally umbilical sphere of S^{n+1}.

So, let us assume that $\lambda \neq 0$. We have $\Delta l = \Delta f_i$ and using the fact that H is constant, from (2.1) and (2.2) we conclude that

$$nH f_i = - \lambda \langle A \rangle f_i + \lambda nH f_i$$

Or equivalently,

$$S_i f_i = - \lambda S_i f_i - 2s_i f_i + \lambda S_i f_i = - \lambda S_i f_i + 2\lambda S_i f_i + \lambda S_i f_i$$

Hence, we get that

$$S_i f_i = - \lambda S_i f_i + 2\lambda S_i f_i + \lambda S_i f_i = 0 \tag{3.1}$$

By (3.1), we obtain

$$0 = \lambda (S_i f_i - n f_i + \lambda S_i^2 f_i - 2\lambda S_i f_i - \lambda S_i f_i)$$

$$S_i f_i - n f_i + \lambda S_i^2 f_i - 2\lambda S_i f_i - \lambda S_i f_i$$

$$S_i f_i - n f_i + \lambda S_i^2 f_i - 2\lambda S_i f_i$$

Thus,

$$(S_i - n \lambda + \lambda S_i^2 - 2\lambda S_i - \lambda^2 S_i) f_i = 0 \tag{3.2}$$

We define a function

$$h : \Sigma^* \to \mathbb{R}$$

$$h(p) = (S_i - n \lambda + \lambda S_i^2 - 2\lambda S_i - \lambda^2 S_i) f_i(p)$$

Suppose that $h(p) \neq 0$ for some $p \in \Sigma^*$. Since h is smooth, there exists a neighbourhood u of p in Σ^* in which $h(p) \neq 0$ for all $p \in u$. From (3.2) we conclude that $l = 0$ in u and, hence $f_i = 0$ in u, since $\lambda \neq 0$. We arrive at a contradiction because in Σ^* we have

$$|\nabla f_i|^2 + f_i^2 = |a|^2 \geq 0$$

Therefore, $h = 0$ on Σ^*, that is,

$$S_i - n \lambda + \lambda S_i^2 - 2\lambda S_i - \lambda^2 S_i = 0 \tag{3.3}$$

Consequently, S_i is constant on Σ^*. Repeating the previous argument for the operator L, and using the fact that S_i is constant, we also obtain that

$$2S_i - \lambda (n-1)S_i + \lambda S_i - 3\lambda S_i - 2\lambda S_i = 0 \tag{3.4}$$

We observe that the above equation shows that S_i is also constant on Σ^*. We also note that this argument shows, in fact, that S_i is a constant function on Σ^* for all $2s_i \leq n$. From (2.7) we get

$$|\nabla A|^2 + 2S_i (S_i - 2S_i - n) - S_i (S_i - 3S_i - (n-1)S_i) = 0 \tag{3.10}$$

More precisely,

$$|\nabla A|^2 + 2S_i (S_i - 2S_i - n) - S_i (S_i - 3S_i - (n-1)S_i) = 0 \tag{3.5}$$

We observe that if $H = 0$, then $S_i = 0$ and, consequently, $|A|^2 = 2s_i$. From (3.3), we have $2S_i = -n$ and $|A|^2 = n$. Therefore, since

$$\frac{1}{2} \Delta |A|^2 = n |A|^2 - |A|^4 - |
abla |A|^2|$$

We have that $|\nabla |A|^2| = 0$ and, hence, from Theorem 4 of [9], we conclude that Σ^* must be a Clifford torus.

$$S^i(p) \times S^{n-1}(\sqrt{1-p^2})$$

for some $k=0,1,\ldots,n$ and some $p>0$.

Now, suppose that $H \neq 0$. By equation (3.4) we get

$$2S_i S_i - \lambda(n-1)S_i + \lambda S_i S_i - 2\lambda S_i S_i = 0 \tag{3.6}$$

that is,

$$2S_i S_i - \lambda(n-1)S_i + \lambda S_i S_i - 2\lambda S_i S_i = 0 \tag{3.7}$$

From equation (3.5) we have

$$\lambda |\nabla A|^2 + \lambda S_i S_i - 4\lambda S_i S_i - 2n S_i S_i + 3\lambda S_i S_i + \lambda(n-1)S_i = 0 \tag{3.8}$$

Furthermore, from a straightforward computation we can verify that

$$\lambda |\nabla A|^2 + \lambda S_i S_i - 4\lambda S_i S_i - 2n S_i S_i + 3\lambda S_i S_i + \lambda(n-1)S_i = 0 \tag{3.9}$$

Hence, if $S_i = 0$ we obtain of (3.9) that $\lambda |\nabla A|^2 = 0$ consequently, $|\nabla |A|^2| = 0$ and, since Σ^* is complete, it follows once more from Theorem 4 of [9] that Σ^* must be a Clifford torus.

If $S_i = 0$ then $2S_i (S_i - n \lambda + \lambda S_i S_i - 2\lambda S_i - \lambda^2 S_i) = 0$ implies

$$2S_i = 2n S_i S_i + 2\lambda S_i S_i - 4\lambda S_i S_i - 2\lambda S_i S_i = 0 \tag{3.10}$$

We note that (3.10) and (3.9) imply $\lambda |\nabla A|^2 = 0$ and, hence, repeating the previous argument we also get that Σ^* is a Clifford torus. Therefore, we conclude the proof of Theorem 1.

References

Author Affiliation
1Department of Mathematics, Universidade Federal do Piauí, Teresina, Brazil
2Department of Mathematics, Universidade Federal de Campina Grande, Campina Grande, Paraíba, Brazil