

Advances in Process Intensification

Rakesh Sharma*

Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, India

Editorial

Received: 01-Mar-2025, **Manuscript No.** JCACE-25-170218; **Editor assigned:** 4-Mar-2025, Pre-QC No. JCACE-25-170218 (PQ); **Reviewed:** 20-Mar-2025, QC No. JCACE-25-170218; **Revised:** 26-Mar-2025, Manuscript No. JCACE-25-170218 (R); **Published:** 30-Mar-2025, DOI: 10.4172/Jcace.10000

***For Correspondence**

Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, India

E-mail: rakesh.sharma@iitd.ac.in

Citation: Rakesh Sharma, Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, India. *J Chem Appl Chem Engl* 9:1.

Copyright: © 2025 Rakesh Sharma, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

INTRODUCTION

Process intensification (PI) in chemical engineering aims to make industrial processes more efficient, sustainable, and cost-effective. It includes the design of equipment and methodologies that improve energy efficiency, reduce environmental impacts, and increase safety.

Key Research Areas

Microreactors: Enable fast reactions with high surface-to-volume ratios [1].
Reactive Distillation: Integrates reaction and separation to save energy [2].
Membrane Reactors: Couple chemical reaction with selective separation [3].
Intensified Heat Exchangers: Compact designs improve energy recovery [4].
Supercritical Fluid Processing: Provides greener solvents and improved yields [5].

REFERENCES

1. Hessel V. Novel process windows for chemical reaction engineering. *Chemical Engineering Science*. 2005; 60: 2479–2501.
2. Sundmacher K, Kienle A. *Reactive Distillation*. Wiley-VCH.2003.
3. Tsotsis TT. Catalytic membrane reactors. *Chemical Engineering Science*.1996; 51: 2745–2761.
4. Klemeš JJ. Process integration and heat recovery. *Applied Thermal Engineering*, 2010; 30: 2281–2290.
5. Brunner G. Supercritical fluids. *Journal of Supercritical Fluids*. 2005; 38: 213–220.