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Abstract
Objective: The aims of the study were:  

(1)  To assess the mutated CHIKV E1-A226V and DENV II infection 
and dissemination rates of an Ae. albopictus population established 
in Athens (Greece)  

(2) To assess the risk of outbreaks in four Greek localities based on 
Ae. albopictus population density whose estimate was based on the 
number of eggs laid in ovitraps. 

Methods: Under laboratory conditions females were offered blood 
meal infected with the CHIKV titer of 1X106 TCID 50/mL and DENV 
II titer of 1.76X106 TCID 50/mL; at day 11 after oral infection, 
females were sacrificed, legs were removed and processed for 
PCR analysis to assess the presence of viral replicates. In order 
to evaluate the risk of outbreak of CHIKV and DENV II, a pilot 
monitoring program was started in three Greek localities and in 
Chania (Crete), to estimate the adult female population density on 
the base of the number of eggs in the ovitraps. 

Results: We proved the vector competence of the Greek Ae. 
albopictus strain for E1-A226V mutated CHIKV and DENV II. 
Combining the data on the vector competence with those on the 
female population density, based on the egg density data, the 
estimated risk of outbreak was relatively low but not negligible.

Conclusion: As the vector competence estimated under laboratory 
conditions was obtained by offering females moderately low initial 
virus titers, it can be expected a higher vector competence in the 
field. This consideration, together with a possible increase of the 
mosquito population due to the global warming effects, make the 
quantitative ovitrap-based monitoring a necessary and useful tool 
to estimate the risk of outbreaks. 
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Introduction
Globalization of trade and travel has facilitated the spread of non-

native species across the earth. A proportion of these species become 
established and cause serious environmental, economic and human 
health impacts. These species are referred to as invasive, and several 

invasive mosquito species (IMS) were inadvertently introduced 
in Europe, where they found favorable environmental conditions 
enhanced by the climate change [1]. The predicted increases in 
temperature (1.4 to 5.8°C by 2100) and rainfall are likely to extend 
the distribution of mosquitoes and associated pathogens, in addition 
to shortening the development time of mosquito larvae and the 
extrinsic incubation period of pathogens [1,2]. Warmer and wetter 
weather is likely to result in longer seasonal activity of mosquitoes, 
while sea level rise will produce new wetland habitats suitable as 
breeding sites by gradually inundating coastal regions [1,3]. The 
related sanitary risks include the reappearance of mosquito-borne 
diseases such as chikungunya, dengue, and West Nile fevers which 
are currently emerging in different European countries, and the 
possible emergence of new diseases, like those caused by USUTU 
virus, circulating among Ae. albopictus populations in Northern 
Italy [4] and by the possible diffusion of the zika virus (ZIKV) [5], 
for which Ae.albopictus vector competence is under investigation 
(author’s unpublished data).

Aedes albopictus was first detected in Albania in 1979 [6] and its 
establishment has been reported in 13 further European countries 
to date: Croatia, France, Greece, Italy, Malta, Monaco, Montenegro, 
San Marino, Serbia, Slovenia, Spain, Switzerland and the Vatican 
City [7-9]. The species has also been detected in Belgium, Bosnia 
and Herzegovina, Germany and the Netherlands [8,9]. Distribution 
models predict that Ae. albopictus will continue to expand depending 
on transport, environmental and climatic changes [7,10,11]. After its 
first record in Northwest Greece in 2003-2004, Ae. albopictus occurs 
in many other Greek regions [12], with high populations detected 
in Athen’s urban areas [13]. This mosquito shows an aggressive 
nuisance behavior during the day and is considered competent to 
transmit at least 22 arboviruses [14]. The first chikungunya outbreak 
in a temperate region was reported from Northeastern Italy, with 
Ae. albopictus incriminated as the only vector [15]. Indigenous 
cases of chikungunya and dengue have been reported in France 
and Croatia in 2010 [16-18]. Up today, no chickungunya human 
case occurred in Greece, while in September 2012 the Hellenic 
Centre of Disease Control notified a case of dengue in an 84-year-
old patient, who died. The most serious documented dengue 
virus epidemic in Europe occurred during the summers of 1927 
and 1928, when about 90% of the population of Athens was 
infected and more than 1,000 persons died [19]. Aedes aegypti 
was responsible for those outbreaks, but in the last decades of 
the past century its presence had not been recorded in Europe. 
Now it is considered established in Madeira [20], Southern Russia, 
Abkhazia and Georgia [21]. Current models estimate some risk 
for dengue and chikungunya transmission in the Mediterranean 
basin related to climate change impact [22], as Ae. albopictus, 
whose vector competence has been demonstrated, could replace 
Ae. aegypti, being already present with abundant and increasing 
populations.

Primary aim of this study is the assessment of the infection and 
dissemination rates [23,24] of the Ae. albopictus Greek strain for DEN 
II virus and for the CHIK E1-A226V mutated virus and  the risk of 
outbreak depending on the vectorial capacity and on the density of 
Ae. albopictus population in Athens (Greece) and in Chania (Crete).
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Materials and Methods
Infection and dissemination rates 

Trials were performed in a BSL-3 laboratory (28 ± 1°C, 80% 
RH, 14:10 L:D) by using Ae. albopictus females obtained from field 
collected eggs in Athens, Greece. The CHIKV isolate (GenBank, 
access code EU244823.2) was provided by IZSLER of Brescia (5° 
P Vero cell, initial titer 1X106 TCID50/mL), while the DENV II 
isolate was provided by CRREM of Bologna (7° P, initial titer 1.76 
X 106 TCID50/mL). Three suspensions were prepared for each virus, 
as described in Table 1. At day 11 after oral infection, females were 
individually anesthetized on ice; legs were separated from body 
and separately stored into criovials containing 180 ul of PBS in liquid 
nitrogen. Details concerning rearing conditions, methods of females’ 
oral infection and quantitative virus analysis (QRT-real time PCR) are 
described in Bellini et al. [25]. The infection rate (proportion of females 
with virus positive bodies) and the dissemination rate (proportion of 
females with virus positive legs) were calculated. Paired comparisons 
(Fisher tests) were used to compare the number of positive/negative body 
samples (infection rate) and leg samples (dissemination rate) among the 
three virus titers of CHIKV and DENV II.

Field risk assessment

In order to estimate the risk of an outbreak to occur it is 
necessary to know the average number of bites per day per person 
and the vector competence for the specific pathogen. Statistically 
significant correlations were found between the mean number 
of eggs/ovitrap (which is the cheapest monitoring method for 
Ae. albopictus) [26] and the average number of bites per day 
per person estimated by Human Landing Collection (HLC). 
Therefore, the data obtained by an ovitrap-based monitoring 
system allow to estimate the number of biting females, a key factor 
for the calculation of the number of new cases which can arise 
from a singular case (R0), as follows [26].

         m a2 V Pn

R0 =    ---------------
     -loge P

m is the average number of bites per day per person based on the 
number of eggs per ovitrap; a2 indicates the propensity of the vector 
to bite humans; V is the vector competence; P is the daily survival 
rate of the vector; n is the length of the extrinsic cycle (the time from 
female infection to pathogen transmission). Epidemics occur when 
the calculated R0 value is higher than 1. In order to evaluate the risk 
of outbreak of CHIKV and DENV II, a pilot monitoring program was 
started in three Greek localities and in Chania (Crete), to estimate the 
adult female population density on the base of the number of eggs in 
the ovitraps.

Results
Infection and dissemination rates 

Figure 1 presents the rates of infection and dissemination obtained 
for the three CHIKV and DENV II titers. The infection rate for CHIKV 
decreased dramatically between C1 and either C2 or C3 (C1 vs C2, P = 
0.0001; C1 vs C3, P = 0.0017), while no statistically significant difference 
was found between C2 and C3 (P = 0.4369). The decrease of the 
dissemination rate was less noticeable (C1 vs C2, P = 0.0174; C1 vs C3, 
P = 0.0640; C2 vs C3, P = 0.4470). The infection rates for DENV II were 
much lower than those measured for CHIKV and decreased significantly 
between D1 and D3 (P < 0.0001), D2 and D3 (Fisher test P < 0.0001), but 

not between D1 and D2 (P = 0.1444). The dissemination rate was not 
different between D1 and D2 (P = 0.6487), while it slowed down to zero 
for D3 (D1 vs D3, P = 0.1476; D2 vs D3, P = 0.1729).

Field risk assessment 

Based on egg density data, no risk of outbreak for the mutated 
CHIKV was found both in the Piraeus harbor (Port) and in the 
Athens International Airport “Eleftherios Venizelos” (Airport), while 
in Rizoupoli area (Athens) a low risk was found in August, 2014 and 
in the period July-October, 2015. In Chania (Crete) a low risk level 
was estimated in August-September, 2015 (Figure 2). In 2014 and 
2015, no risk of outbreak was found for the DEN II virus in the four 
localities (Figure 3).

Conclusions
The laboratory trials confirmed the vector competence of 

Greek Ae. albopictus females for E1-A226V mutated CHIKV and 
DENV II. At 11 days post-infection, the CHIKV infection rate 
was consistent with the results obtained with an Ae. albopictus 
strain from the Alpes-Maritimes (Southern France) [23]. The 
mutated CHIKV dissemination rate was very similar to the 
value estimated for the strain collected in Romagna (Northern 
Italy) during the 2007 CHIKV outbreak [24] and for the strain 
collected in La Reunion [26]. The results obtained for DEN II 
were consistent with results obtained by Vega-Rua et al. [23] 
at 9 days post-infection. In our study, the infection and the 
dissemination rates were lower than those of CHIKV confirming 
that Ae. albopictus is more efficient vector for CHIKV (mutated 
strain) than for DEN II. The risk of outbreak calculated in the 
Greek localities, based on the vector competence estimated for 
the Greek Ae. albopictus strain was relatively low, but we were 
able to test relatively low virus titers, which are likely to be higher 
under field conditions. This consideration, together with the likely 
increase of the mosquito population due to the global warming 
effects, and to the arboviruses’mutation capacity [27],  make the 
quantitative ovitrap-based monitoring a necessary and useful tool 
to estimate the risk of outbreaks. Differences among virus titers, 
suspension preparation protocol, body parts used to estimate the 
dissemination rate, the day post-infection chosen for the tests may 
influence vector competence study results.  

Tr
ea

tm
en

t

In
tia

l v
iru

s 
tit

er
 T

C
ID

50
/m

L

Vo
lu

m
e 

em
pl

oy
ed

 (m
L)

D
-M

EM
 a

dd
ed

 (m
L)

Vi
ru

s 
su

sp
en

si
on

 
em

pl
oy

ed
 (m

L)
 

B
lo

od
 a

dd
ed

 (m
L)

Vi
ru

s 
tit

er
 o

bt
ai

ne
d 

TC
ID

50
/m

L

N
o.

 b
lo

od
 fe

d 
fe

m
al

es

C1 1.0×106 4 0 - 8 0.3×106 24
D1 1.8×106 4 0 - 8 0.6×106 38
C2 1.0×106 2 18 4 8 0.3×105 26
D2 1.8×106 2 18 4 8 0.6×105 24
C3 1.0×105 2 18 4 8 0.3×104 29
D3 1.8×105 2 18 4 8 0.6×104 33

Control 0 0 4 0 8 0 36

Table 1: CHIKV and DENV II titers, preparation details and number of tested 
females (C=mutated CHIKV, and D=DENV II). The virus suspension was 
obtained by diluting the initial virus titer with the D-MEM substrate.
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Figure 1: . CHIKV and DENV II infection and dissemination rates in virus-exposed Ae. albopictus females (bars represents 95% confidence limits).

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Port 0.23 0.41 0.43 0.50 0.35 0.22 0.11 0.08 0.07 0.11 0.23 0.30 0.65 0.49 0.47 0.26 0.10
Athens 0.22 0.34 0.82 1.42 0.56 0.38 0.11 0.07 0.07 0.11 0.24 0.63 1.78 1.66 1.87 1.21 0.18
Airport 0.46 0.46 0.34 0.20 0.08 0.06 0.04 0.05 0.09 0.19 0.26 0.46 0.67 0.35 0.30 0.10
Chania 0.19 0.21 0.55 1.41 1.06 0.20
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Figure 2: Risk of outbreak for the mutated CHIK virus in four Greek localities (bars represent 95% confidence limits).

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Port 0.03 0.06 0.06 0.07 0.05 0.02 0.01 0.01 0.01 0.01 0.03 0.04 0.10 0.07 0.07 0.03 0.01
Athens 0.03 0.05 0.12 0.21 0.07 0.04 0.01 0.00 0.00 0.01 0.03 0.09 0.26 0.25 0.26 0.13 0.02
Airport 0.06 0.07 0.05 0.02 0.01 0.00 0.00 0.00 0.01 0.02 0.03 0.07 0.10 0.05 0.04 0.01
Chania 0.02 0.03 0.07 0.19 0.14 0.02
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Figure 3: Risk of outbreak for the DEN II virus in four Greek localities (bars represent 95% confidence limits).
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