
Handwritten Digit Recognition
Shubhangi* and Ravi Shankar Pandey
Department of Computer Science and Engineering, Birla Institute of Technology 
Mesra, Jharkhand, India

*Corresponding author: Shubhangi, Department of Computer Science and 
Engineering, Birla Institute of Technology Mesra, Jharkhand, India, Tel: 
08102428844; E-mail: shubhangisingh453@gmail.com
Received date: 25 November, 2022, Manuscript No. JCEIT-23-81425;
Editor assigned date: 30 November, 2022, PreQC No. JCEIT-23-81425 (PQ); 
Reviewed date: 14 December, 2022, QC No. JCEIT-23-81425;
Revised date: 02 January, 2023, Manuscript No. JCEIT-23-81425 (R); 
Published date: 30 January, 2023, DOI: 10.4172/2324-9307.1000254

Abstract

Handwritten Digit Recognition (HDR) is the process of 
converting images of handwritten digit into digital format. A lot of 
money is wasted on converting the information that is in paper 
to digital format. This problem can be solved by using HDR. The 
heart of our project lies within the ability to develop an efficient 
algorithm that can recognize the handwritten digits which are 
scanned and sent as input by the user. The goal of this paper is 
to observe the variation of different algorithms that can classify 
the handwritten digits using different hidden layers, various 
numbers of epochs and to make a comparison based on the 
accuracy. This experiment is performed using the Modified 
National Institute of Standards and Technology (MNIST) 
dataset.

Keywords: Handwritten digit recognition; Algorithm; Machine 
learning; Language model; Convolutional neural network

Introduction
Developers are using different machine learning and deep learning 

techniques to make machines more intelligent. In deep learning, 
Convolutional Neural Networking (CNN) is being used in many fields 
like object detection, face recognition, spam detection, image 
classification. Handwritten digit recognition has not only professional 
and commercial applications, but also has practical application in our 
daily life and can be of great help to the visually impaired [1]. It also 
helps us to solve complex problems easily thus making our lives 
easier. Many algorithms have been developed for hand written digit 
recognition. But due to infinite variation in writing styles they are still 
not up to mark. Poor contrast, image text vagueness, disrupted text 
stroke, unwanted objects, deformation, disoriented patterns and also 
interclass and intraclass similarity also cause misclassification in 
handwritten numeral recognition system.

The goal of this project was to recognize handwritten digit and give 
the best output. A set of training data will be used for this purpose. 
The objective is to design and implement digit recognition in java that 
will detect handwritten digits drawn on screen similar to the training 
data. The problem of digit recognition has been studied extensively. A 
wide spectrum of techniques will be used including, template

matching, neural networks, maximal rejection classification and
model-based detection [2].

Materials and Methods

Early scanners
The first driving force behind handwritten text classification was

for digit classification for postal mail. Jacob Rabinows early postal
readers incorporated scanning equipment and hardwired logic to
recognize mono-spaced fonts. By making a sophisticated scanner
which allowed for more variations in how the text was written as well
as encoding the information onto a bar code that was printed directly
on the letter [3].

To the digital age
The first prominent piece of OCR software was invented by Ray

Kurzweil in 1974 as the software allowed for recognition for any font.
This software used a more developed use of the matrix method
(pattern matching). Essentially, this would compare bitmaps of the
template character with the bitmaps of the read character and would
compare them to determine which character it most closely matched
with. The downside was this software was sensitive to variations in
sizing and the distinctions between each individual’s ways of writing.
To improve on the templating, OCR software began using feature
extraction rather than templating. For each character, software would
look for features like projection histograms, zoning, and geometric
moments.

Future works
Firstly, to have more compelling and robust training, we could

apply additional preprocessing techniques such as jittering. We could
also divide each pixel by its corresponding standard deviation to
normalize the data. Next, given time and budget constraints, we were
limited to 20 training examples for each given word in order to
efficiently evaluate and revise our model. Another method of
improving our character segmentation model would be to move
beyond a greedy search for the most likely solution.

We would approach this by considering a more exhaustive but still
efficient decoding algorithm such as beam search. We can use a
character/word-based language-based model to add a penalty/benefit
score to each of the possible final beam search candidate paths, along
with their combined individual softmax probabilities, representing the
probability of the sequence of characters/words. If the language model
indicates perhaps the most likely candidate word according to the
softmax layer and beam search is very unlikely given the context so
far as opposed to some other likely candidate words, then our model
can correct itself accordingly [4].

Proposed method
The aim of proposed method is to develop a system of improved

facilities. The proposed method can overcome few limitations of the
existing system. The system provides proper accuracy and reduces
manual work.

• Accuracy
• High Speed

Shubhangi et al., J Comput Eng Inf Technol 2023, 12:1 Journal of Computer
Engineering &
Information Technology

Research Article A SCITECHNOL JOURNAL

All articles published in Journal of Computer Engineering & Information Technology are the property of SciTechnol and 
is protected by copyright laws. Copyright © 2023, SciTechnol, All Rights Reserved.



• Increased Performance
• Reduced Error

The proposed model contains four stages to classify and detect the
digits:

Pre-processing: Pre-processing is a part of HDR. If there are some
rules like a box for each digit then, it will be much easier to detect the
boundaries. The fundamental motivation behind pre-processing is to
take off noise filtering, smoothing, and standardization. Binarization
converts a Greyscale image into a binary image.

Feature extraction: Different type of algorithms used for feature
extraction has different types of error rate. The errors made by each
separate algorithm does not overlap, so combining all these methods
lead to a perfect recognition rate and also helps to reject the
ambiguous digits recognition and improve the recognition rate of
misclassified digits that can be recognized by humans.

Classification and recognition: In the classification and
recognition step, the extracted feature vectors are given as single input
values to each classifier. CNN Convolution layer and the subsampling
layer can have various different layers. The down sampling layer is
also known as pooling layer. The image is divided into small segments
of small areas, and a value is calculated for each area. Then the
calculated values are rearranged in sequence to form a new image [5].

Results and Discussion

Training and testing
Finally, to evaluate a model, the test dataset is used. Training is less

complex because each module is designed to handle a specific sub
problem. It is expected that each module can tackle the specific
problem more efficiently and accurately because each module is
trained independently which is easy to add and delete modules.

Three different layer on which convolution neural network are
performed: There are three types of layers in a convolutional neural
network: Convolutional layer, pooling layer, and fully connected layer.
Each of these layers has different parameters that can be optimized
and performs different tasks on the input data. Convolutional layers
are the layers where filters are applied to the original image, or to
other feature maps in a deep CNN. This is where most of the user
specified parameters are in the network. The most important
parameters are the number of kernels and the size of the kernels.
Pooling layers are similar to convolutional layers, but they perform a
specific function such as max pooling, which takes the maximum
value in a certain filter region, or average pooling, which takes the
average value in a filter region. These are typically used to reduce the
dimensionality of the network. Fully connected layers/dense layer are
placed before the classification output of a CNN and are used to
flatten the results before classification. This is similar to the output
layer of an MLP (Figure 1) [6].

Figure 1: An example CNN with two convolutional layers, two
pooling layers, and a fully connected layer which decides the final
classification of the image into one of several categories.

Algorithm
Different processes performed for generating final model by

applying Convolution neural network process are:

Loaded dataset: We know that the images are all pre-aligned (e.g.
each image only contains a hand-drawn digit), that the images all have
the same square size of 28 × 28 pixels, and that the images are gray
scale. Therefore, I have loaded the images and reshape the data arrays
to have a single color channel. I have used load dataset function which
implements these behaviors and can be used to load the dataset.

Prepared pixel data: We know that the pixel values for each image
in the dataset are unsigned integers in the range between black and
white, or 0 and 255. But we know that some scaling will be required.
A good starting point is to normalize the pixel values of grayscale
images, e.g. rescale them to the range (0,1). This involves first
converting the data type from unsigned integers to floats, then
dividing the pixel values by the maximum value. I have converted
integer to float and then normalized it to range 0-1.

Created tensor flow model: The model has two main aspects: The
feature extraction front end comprised of convolutional and pooling
layers, and the classifier backend that has made a prediction. For the
convolutional front-end, I started with a single convolutional layer
with a small filter size (3,3) and a modest number of filters followed
by a max pooling layer. The filter maps are then be flattened to
provide features to the classifier. Given that the problem is a multi-
class classification task, I knew that I will require an output layer with
10 nodes in order to predict the probability distribution of an image
belonging to each of the 10 classes. I also used softmax activation
function. Between the feature extractor and the output layer, I added
dense layer to interpret the features, in this case with 100 nodes. All
layers have used the ReLU activation function and the He weight
initialization scheme. I have used a conservative configuration for the
stochastic gradient descent optimizer with a learning rate of 0.01 and a
momentum of 0.9. The sparse categorical cross-entropy loss function
was optimized, suitable for multi-class classification, and monitored
the classification accuracy metric, which was appropriate given we
had the same number of examples in each of the 10 classes.

Evaluate model: The model was then evaluated using Keras
evaluate function. Each test set was the 20% of the training dataset, or
about 12,000 examples, close to the size of the actual test set for this
problem. The training dataset was shuffled prior to being split, and the
sample shuffling was performed each time, so that any model I
evaluated was having the same train and test datasets in each fold,

Citation: Shubhangi, Pandey RS (2023) Handwritten Digit Recognition. J Comput Eng Inf Technol 12:1.

Volume 12 • Issue 1 • 1000254 • Page 2 of 5 •



providing an end to end comparison between models. The model was
evaluated using five-fold cross-validation. The value of k=5 was
chosen to provide a baseline for both repeated evaluation and to not be
so large as to require a long running time. I have trained the baseline
model for a modest 10 training epochs with a default batch size of 32
examples. The test set for each fold was used to evaluate the model
both during each epoch of the training run, so that we can later create
learning curves, and at the end of the run, so that we estimated the
performance of the model. As such, we kept track of the resulting
history from each run, as well as the classification accuracy of the
fold. A summary of the model performance was calculated. The model
was having an estimated skill of about 98.6%, which is reasonable [7].

Visualized training process: Training process was visualized by
plotting graph of accuracy vs. epoch number to see the difference
between trained model and validation model.

Predicted result: At last I saved evaluated model, I used my saved
model to make a prediction on new images. The model assumes that
new images are grayscale, that they have been aligned so that one
image contains one centered handwritten digit, and that the size of the
image is square with the size 28 × 28 pixels (Figures 2 and 3).

Citation: Shubhangi, Pandey RS (2023) Handwritten Digit Recognition. J Comput Eng Inf Technol 12:1.

Volume 12 • Issue 1 • 1000254 • Page 3 of 5 •

Figure 2: CNN model.

Figure 3: Architecture.



Feasibility study
There is a nice intersection between machine learning and front-end 

development, but we often find overwhelming to gain knowledge in 
both areas and get them to play together. My intention is to solve that 
with my project where I will dive into the basics of creating an ML 
model and how can I apply it to a mobile app built in Flutter.

The project work is a practical experience of the knowledge one 
has. This project entitled “hand written digit recognition application” 
will be practical project based on some trends of computer science. 
Every day the world is searching new techniques in the field of 
computer science to upgrade the human limitations into machines to 
get more and more accurate and meaningful data. The way of machine 
learning and artificial intelligence has no negative slop it has only the 
slop having positive direction. This project is a very basic idea of 
those concepts. This project deals with the very popular learning 
process called Neural Network. There are various ways by which one 
can achieve the goal to a desired output, but in machine learning 
Neural network gives a way that machine learns the way to reach the 
output. This project has come through the concepts of statistical 
modeling, the computer vision and machine learning libraries which

includes a lot of study about these concepts. This project will be good
explanation (Figures 4 and 5) [8,9].

Figure 4: Accuracy learning curves for the baseline model during
validation.

Figure 5: Prediction model.

Conclusion
Convolutional Neural Network gets trained from the real-time data

and makes the model very simple by reducing the number of variables
and gives relevant accuracy. In our project, we used CNN with some
libraries like Keras, Matplotlib, CV2, Tensor flow to get the maximum
accuracy. A comparison on different Machine Learning algorithms
like random forest classifier, convolutional neural network, linear
regression, K-nearest neighbors, and support vector machine is done,
in which the accuracy for CNN is 99.63%.

• Taking huge datasets
• Adopting many suitable algorithms
• Hyper-parameter tuning
• Compile the model with a greater number of epochs

Citation: Shubhangi, Pandey RS (2023) Handwritten Digit Recognition. J Comput Eng Inf Technol 12:1.

Volume 12 • Issue 1 • 1000254 • Page 4 of 5 •



Acknowledgment
I would like to take this opportunity to thank the people who have

made the implementation of this project possible. Completion of this
Project without any guidance would not be possible which was led by
our professor and teaching staff. I express our sincere gratitude to our
beloved guide Dr. Ravi Shankar Pandey Sir, Assistant professor, who
provided valuable guidance, suggestions and hand in hand cooperation
throughout the completion of this project. I also wish to extend our
sincere gratitude towards the teaching and non-teaching staff of the
Department of Computer Science and Engineering for their technical
support.

References
1. LeCun Y, Boser B, Denker J, Henderson D, Howard R (1989)

Handwritten digit recognition with a back-propagation network.
Adv Neural Informat Proces Syst 2: 396-404.

2. Han X, Li Y (2015) The application of convolution neural
networks in handwritten numeral recognition. Int J Database
Theor Appl 8: 367-376.

3. Krevat E, Cuzzillo E (2006) Improving off-line handwritten
character recognition with hidden markov models. Transact
Pattern Analys Machine Learn 33.

4. Tschopp F, Martel JN, Turaga SC, Cook M, Funke J (2016)
Efficient convolutional neural networks for pixelwise
classification on heterogeneous hardware systems. IEEE 13th
International Symposium on Biomedical Imaging, pp.
1225-1228.

5. Ciresan DC, Meier U, Gambardella LM, Schmidhuber J (2010)
Deep, big, simple neural nets for handwritten digit recognition.
Neural Comput 22: 3207-3220.

6. Deng L (2012) The mnist database of handwritten digit images
for machine learning research [best of the web]. IEEE Signal
Process Magazine 29: 141-142.

7. Le Cun Y, Jackel LD, Boser B, Denker JS, Graf HP, et al. (1989)
Handwritten digit recognition: Applications of neural network
chips and automatic learning. IEEE Communicat Magazine 27:
41-46.

8. Sudhakar R, Rao PV (2019) Video super resolution using non-
linear regression and deep learning. Imaging Sci J 67: 305-318.

9. Uchida S, Ide S, Iwana BK, Zhu A (2016) A further step to
perfect accuracy by training CNN with larger data. In 2016 15th
International Conference on Frontiers in Handwriting
Recognition, pp. 405-410.

Citation: Shubhangi, Pandey RS (2023) Handwritten Digit Recognition. J Comput Eng Inf Technol 12:1.

Volume 12 • Issue 1 • 1000254 (QI) • Page 5 of 5 •

https://dl.acm.org/doi/abs/10.5555/2969830.2969879
https://www.earticle.net/Article/A249641
https://www.earticle.net/Article/A249641
https://www.zora.uzh.ch/id/eprint/132634/
https://www.zora.uzh.ch/id/eprint/132634/
https://direct.mit.edu/neco/article-abstract/22/12/3207/7596/Deep-Big-Simple-Neural-Nets-for-Handwritten-Digit
https://ieeexplore.ieee.org/abstract/document/6296535
https://ieeexplore.ieee.org/abstract/document/6296535
https://ieeexplore.ieee.org/abstract/document/41400
https://ieeexplore.ieee.org/abstract/document/41400
https://www.tandfonline.com/doi/abs/10.1080/13682199.2019.1652445
https://www.tandfonline.com/doi/abs/10.1080/13682199.2019.1652445
https://ieeexplore.ieee.org/abstract/document/7814098
https://ieeexplore.ieee.org/abstract/document/7814098

	Contents
	Handwritten Digit Recognition
	Abstract
	Introduction
	Materials and Methods
	Early scanners
	To the digital age
	Future works
	Proposed method

	Results and Discussion
	Training and testing
	Algorithm
	Feasibility study

	Conclusion
	Acknowledgment
	References




