

Nanobiotechnology in Drug Delivery

Rajesh Menon*

Department of Nanoscience and Biotechnology, Amrita Vishwa Vidyapeetham, Coimbatore, India

Editorial

Received: 01-Mar-2025, **Manuscript No.** AMB-25-170191; **Editor assigned:** 4-Mar-2025, Pre-QC No. AMB-25-170191 (PQ); **Reviewed:** 20-Mar-2025, QC No AMB-25-170191; **Revised:** 26-Mar-2025, Manuscript No. AMB-25-170191 (R); **Published:** 30-Mar-2025, DOI: 10.4172/amb.10000

***For Correspondence**

Department of Nanoscience and Biotechnology, Amrita Vishwa Vidyapeetham, Coimbatore, India

E-mail: rajesh.menon@amrita.edu.in

Citation: Rajesh Menon, Department of Nanoscience and Biotechnology, Amrita Vishwa Vidyapeetham, Coimbatore, India. Arch Med Biotechnol 6:1.

Copyright: © 2025 Rajesh Menon, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

INTRODUCTION

Nanobiotechnology combines nanotechnology with biotechnology to design novel drug delivery systems. In India, it is emerging as a powerful tool to enhance drug efficacy, reduce toxicity, and improve patient compliance [1].

Applications in Drug Delivery

Nanoparticles, liposomes, and polymeric carriers are being developed for targeted drug delivery in cancer, tuberculosis, and neurological diseases. For instance, nanoparticle-based formulations of anti-TB drugs enhance bioavailability and reduce dosing frequency [2]. In oncology, nanocarriers allow controlled release of chemotherapeutics directly at tumor sites, minimizing systemic toxicity [3]. Nano-based insulin delivery systems are also being explored for diabetes management [4].

CHALLENGES AND FUTURE DIRECTIONS

Barriers include high production costs, regulatory challenges, and limited clinical translation of lab-based innovations. However, ongoing collaborations between academic institutes and pharmaceutical companies in India are accelerating nanomedicine development [5].

CONCLUSION

Nanobiotechnology holds immense potential to revolutionize drug delivery. With India's growing biotech sector, nanomedicine can play a pivotal role in addressing both infectious and chronic diseases.

REFERENCES

1. Kumar CSSR. Nanotechnology in medicine. *J Pharm Bioallied Sci* 2012;4: 134–141.
2. Sharma A. Nanoparticle drug delivery for tuberculosis. *Indian J Tuberc* 2016;63: 100–106.
3. Jain RK. Nano-based cancer therapy. *Indian J Cancer* 2010;47: 232–236.
4. Patel P. Nano-insulin delivery: advances. *Indian J Endocrinol Metab* 2015;19: 731–738.
5. Menon R. Nanobiotechnology research in India. *Curr Sci* 2018;114: 955–962.