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selective prostaglandin D2 receptor CXCR2 antagonist, in patients with 
uncontrolled asthma receiving medium-to-high dose ICS, and LABA. The 
findings in this clinical trial showed no significant benefits in the rates 
of exacerbations, ACQ-5, and FEV1. Risankizumab a humanised IgG 
monoclonal antibody that targets the p19 subunit of IL-23 is in phase 
2 clinical trials for the treatment of asthma [17]. However, blockade of 
IL-17 and IL-17R is more effective in the treatment of other chronic 
autoimmune diseases, such as psoriasis vulgaris, erythrodermic psoriasis, 
psoriatic arthritis, and inflammatory bowel disease [17]. Brodalumab 
(Siliq®) [18], secukinumab (Cosenyx®) [19], and risankizumab (Skyrizi®) 
[20] have been approved in several countries, and are excellent drugs for 
the treatment of plaque psoriasis. 

Airway epithelium constitutes the first line of defense against allergens, 
chemicals, pollutants, and microbes, such as viruses, bacteria, and 
fungal spores, and trauma in the atmospheric environment [21,22]. This 
can lead to epithelial injury, and impaired epithelial barrier function. 
Dysfunctional allergic epithelium in response to allergens, pollutants, 
and viral respiratory infections release three bioactive cytokines 
nicknamed “alarmins”, including IL-25, IL-33, and thymic stromal 
lymphopoietin (TSLP) [23-27]. The three “whistle blower” cytokines, 
although they belong to different cytokine families, play synergistic roles 
in the pathophysiology of severe asthma [27]. They stimulate Th2, innate 
lymphoid group 2 cells (ILC2), mast cells, basophils, and oesinophils to 
release large quantities of cytokines (IL-4, IL-5, IL-13, IL-25, IL-33, TSLP), 
chemokines (eotaxins 1-3, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, 
CCL17, CCL22), and growth factors (TGF-β1, EGF-1, FGF, SCF, VEGF, 
angiogenin) responsible for airway hyperresponsiveness (AHR), and 
structural changes in the airways. Alarmin cytokines together with the 
pro-fibrotic Th2 cytokines IL-4 and IL-13 orchestrate airway remodeling, 
characterized by mucus hypersecretion, subepithelial fibrosis, increase 
in ASM mass and contractility, and progressive persistent airflow 
obstruction [28-30]. IL-25, IL-33, and TSLP are favourable targets for the 
development of new biologics for ads on treatment, and for prophylaxis of 
asthma, particularly due to asthma exacerbations provoked by respiratory 
viral infections [31]. 

Currently, there is no anti-IL-25, and anti-33 biologics approved for the 
treatment of asthma, including the eosinophilic phenotype. Tezepelumab 
a first-in-class monoclonal antibody that blocks TSLP is approved by the 
U.S. Food and Drug Administration (FDA) for the treatment of severe 
asthma without an eosinophilic phenotype in patients 18 years and older 
[32]. 

Thymic stromal lymphopoietin is a member of the 4-helix bundle 
cytokine, most closely related to IL-7 [33]. TSLP signaling pathway is 
mediated through its complex heterodimeric receptor formed by a TSLP-
specific TSLPR subunit (CRLF2) and the IL-7α signaling chain [34,35]. 
TSLP activates dendritic cells in response to allergen exposure, inducing 
naïve CD4+ T cell differentiation to Th2 cells, which produce and secret 
cytokines (IL-4, IL-5, IL-9, and IL-13), chemokines, and growth factors 
[36,37]. This leads to switching of B cells to produce IgE, degranulation 
of mast cells, and eosinophils, and airway eosinophilia. TSSLP can also 
activate innate lymphoid group 2 cells (ILC2) to produce large amounts 
of IL-5, and IL-13 which drives Th2 immune responses [38]. There is 
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Asthma is a heterogeneous chronic airway disease with distinct 
phenotypes, characterized by different immunopathological pathways, 
clinical features, disease severity, physiology, and response to treatment. 
The established cytologic phenotypes of asthma include eosinophilic, 
neutrophilic, mixed granulocytic, and paucigranulocytic phenotypes [1]. 
Despite recent advances in the diagnosis and treatment of asthma, some 
phenotypes of asthma are difficult treat, and still pose an exceptionable 
health, and pharmaco-economic burden [2]. Approximately 3.6-10% of 
patients with asthma have severe refractory disease, which is uncontrolled 
despite treatment with high-dose inhaled corticosteroids (ICS), long 
acting β2-agonists (LABA), and/or leukotriene receptor antagonists 
(LTRA) [3,4]. A smaller proportion of patients unresponsive to high-
dose ICS, respond favourably to interleukin (IL) antagonists, such as 
mepolizumab and reslizumab (anti-IL-5), benralizumab (anti-IL-5Rɑ), 
and dupilumab (anti-4Rɑ). T helper type (Th2) targeted monoclonal 
antibodies (mAb) are highly effective in the treatment of eosinophilic 
asthma and have a good safety profile [5-8]. They reduce exacerbation, 
improve lung function (forced expired volume in 1 sec., FEV1), and the 
quality of life, and are steroid sparing [5-8]. However, they are mostly 
effective in patients with biomarker specific eosinophilic asthma, and 
have little therapeutic value in patients with other phenotypes of asthma, 
such as Th17-driven neutrophilic asthma, and paucigranulocytic asthma 
[9]. Biologics also do not ameliorate airway remodeling due to globlet 
cell hyperplasia and oversecretion of mucus, subepithelial basement 
thickening and fibrosis, airway smooth muscle (ASM) cell hyperplasia 
and hypertrophy [10-14]. Moreover, anti-Th2 biologic therapies decrease 
exacerbation rates by 48-59%.

There are no biologics targeting the Th17/IL-17 axis which play a 
pivotal role in the pathogenesis of neutrophilic asthma, one of the 
phenotypes of asthma unresponsive to biologics [9]. Busse at al. [15] 
in a randomized, placebo-controlled phase IIa trial of brodalumab, a 
monoclonal antibody against IL-17 receptor (IL-17Rα), in patients with 
moderate-to-severe asthma, reported no statistically significant benefit 
in terms of Asthma Control Questionnaire-6 (ACQ-6) scores, FEV1, or 
use of rescue short-acting β-agonists (SABA). O’Byrne and colleagues 
[16] in a larger, multicenter, dose finding trial, investigated AZD5069, a 
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of the patient’s withdrawal from the study due to adverse events.

In summary, biologics targeting the Th2-driven eosinophilic asthma 
are well established treatment for severe steroid unresponsive asthma, 
and have been shown to be safe and very effective in the treatment of 
severe uncontrolled disease. Tezepelumab an anti-TSLP antagonist 
has been demonstrated to be effective in the treatment of patients with 
both eosinophilic and neutrophilic asthma. The new kid in the biologics 
armament CSJ117 may prove to be effective and well tolerated as add on 
treatment for patients with mild asthma.
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evidence that that TSLP also plays a central role in the pathogenesis of 
Th17-driven neutrophilic asthma. TSLP promotes dendritic cells to 
induce polarization of naïve CD4+ T cells into Th17 cells which produce 
IL-17 a master cytokine responsible for neutrophilic asthma [39,40]. 

TSLP contributes to airway remodeling by stimulating ASM cell 
proliferation and migration [41,42], and facilitates crosstalk between ASM 
cells and mast cells [43]. This leads to secretion of more pro-inflammatory 
cytokines and chemokines by both cell types [44-46]. Additionally, TSLP 
stimulates fibroblasts to produce collagen which promotes reticular 
basement membrane fibrosis [47,48]. Thus TSLP plays a critical role in 
airway remodeling and fixed airflow limitation. 

TSLP seems attractive to target in therapeutic interventions to treat asthma 
because it is an upstream cytokine at epithelial barrier, and it promotes 
both eosinophilic and neurophilic asthma, and paucigranulocytic asthma 
through its effects on airway remodeling [49].

Phase 1b [50], Phase 2b PATHWAY [51], and Phase 3 [52] clinical 
trials have documented the efficacy, safety profile of tezepilumab in the 
treatment of in patients with uncontrolled asthma. The first Phase Ib 
clinical trial evaluated the efficacy of tezepelumab in an allergen challenge 
model of asthma in patients with mild, allergic asthma [50]. Tezepelumab 
200 mg administered intravenously every 4 weeks for 3 months resulted in 
a decrease in blood eosinophil count at 2 weeks of treatment, and the level 
of fractional exhaled nitric oxide (FeNO) improved after the first dose of 
tezepelumab. Bronchoprovocation with allergen at day 42 and 84 showed 
that tezepelumab treatment significantly inhibited the early and late 
asthmatic responses [50]. Phase 2b PATHWAY, multicentre, randomized, 
parallel-group, double-blind, placebo-controlled trial assessed the efficacy 
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