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Abstract
In recent years, integrating artificial intelligence and unmanned 
aerial vehicles (UAVs) has become a hot topic of study, especially 
where UAVs must conduct complex tasks that cannot be completed 
quickly under human control. Drones often use several sensors 
to gather full details about conditions, such as a top-down 
camera or LiDAR sensors, and the main processor measures 
all of the drone’s trajectories. This paper proposes tracking a 
detected target that employs a monocular on-board camera and a 
reinforcement learning model. This system is more cost-effective 
and adaptable to the atmosphere using various sensors and pre-
calculated trajectories than previous approaches. Our model 
added encompassing box details to the drive network picture input 
by extending the previous Deep Double Q network with the Duel 
Architecture Model (D3QN), modifying an action table and incentive 
feature, enabling 3-dimensional gestures and object recognition 
combined with MobileNet’s support. The simulations are carried 
out in various simulation settings, each with its level of difficulty 
and sophistication. The “Airsim” application, a Microsoft-supported 
quadrotor simulation API, is used for research. The findings reveal 
that using a convergence-based exploration algorithm, the model 
approaches the observed object, a human figure, without reaching 
any barriers along the way and is moved faster.
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Introduction
Artificial intelligence has grown in strength and been extensively 

investigated to assess machine learning capability after the advent of 
in-depth learning and increased efficiency in the graphics processing 
unit (GPU). Intelligent agents are likely to be deployed on moving 
equipment such as a ground robot as a ground unit and a drone as an 
air unit, particularly in the case of human-machine interaction (HCI), 
where the actual implementation of a detailed understanding occurs. 
Furthermore, autonomous activities such as navigation [1], aerial 
mapping [2], item distribution, and so on are encouraged. In general, 
achieving such a target entails combining data from several sensors 
and analyzing it for trajectory calculation, obstacle prediction, and 
collision avoidance. Navigation and collision avoidance are complex 
tasks since the robot agent must handle the situation every second of 
the picture and make the best judgment possible in that short amount 

of time. Furthermore, since the physical world is generally fluid and 
dynamic, the construction of several sensors across space to capture 
and map the agent’s data is disrupted.

The full implementation of many utilities to gather case-specific 
details and algorithms is ludicrous after realizing the real obstacles. As 
a result, even though it is complicated, a general-purpose algorithm 
that can cooperate with a simple hardware configuration has been 
highlighted and researched recently. Approaches with fewer sensors 
or only the camera are common because they are less expensive than 
other sensors, and visual input is usually more effective than auditory, 
gravity, and other sensors. The convolutional neural network (CNN) 
is used in the vision-based method to analyze vision and support AI 
agents in making decisions. However, since CNN is guided learning, 
it has a drawback in that the supervisor must first transmit case-
specific training results. Consequently, an additional module called 
the Reinforcement Learning Algorithm (RL) is added to the learning 
agent, enabling it to become a general-purpose AI.

One of the most exciting reinforcements learning jobs with 
simple equipment and Xie from Oxford University [1] has produced 
the CNN network. In their thesis ‘’Towards obstacle avoidance based 
on monocular vision through deep-reinforcing learning’, the AI 
agent is implemented on the Turtlebot Mobile, the 2-dimensional 
ground-based motor robot, using the only monocular camera above 
the hardware. The officer gradually finds ways to avoid obstacles and 
navigate the surrounding area as quickly as possible through the 
reinforcement learning algorithm. Their work’s novelty lies in a two-
tiered architecture where CNN comes first to extract information from 
the image and RL comes later to calculate the next movement, and the 
Double Q-network algorithm with Duel Architecture (D3QN), which 
improves RL performance.

This research focuses on the extension of ‘Towards obstacle 
avoidance based on monocular vision through deep-reinforcing 
learning’, sharing the D3QN algorithm as a nucleus, however, with 
a modified architecture to overcome more complex tasks. Given the 
power of RL, an AI agent must perform complex tasks other than 
simple two-dimensional navigation. Therefore, this work selects an 
uneasy air vehicle (UAV) or a drone as an AI agent ship to perform 
navigation and a 3-dimensional object following the object detection 
API with the CNN module. The integration of vision technology and 
drones has been a very popular research topic in recent years due 
to three-dimensional tasks such as delivering air parcels, scanning 
agricultural areas, etc. With an increasing focus on drone research, 
the industry has evolved rapidly, and there is plenty of user-friendly 
UAV software and hardware for research. The Microsoft Airsim API 
is used for this work because of its manoeuvrability and accessibility, 
and simulation environment.

Literature review
A brief overview of target recognition and reinforcement learning 

and the detailed principles of both are discussed in this portion.

Object Detection.

Object recognition has become a hot topic in recent years, with 
researchers collaborating mainly in the fields of computer vision 
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and robotics, where sensory feedback dictates a robot’s tasks. It 
was challenging to handle even limited picture sizes, such as 32 out 
of 32, a few years ago, because each pixel of the image may have 
up to 2555 types of states containing details regarding brightness 
and RGBA colors. Study with photos became even more available 
with the advent of deep neural networks, and research into the 
identification, recognition, and monitoring of artifacts started to 
evolve. Consequently, tech firms such as Google have often rendered 
the object detection module and researcher-friendly API available. 
Fast R-CNN [3], SSD [4], YOLO [5], and Retina-Net [6] are a few 
common object detection models.

Reinforcement Learning

In unsupervised learning, strengthening learning is a machine 
learning technique with force; however, supervised expertise is 
needed. The logic of the strategy is based on an activity-reward 
architecture, in which an agent acts first, then an evolving situation 
and a discovery calculate a new reward for the agent, which updates 
the preferred factors for each action. Each behaviour is driven by 
Markov’s decision-making mechanism, in which stock experience 
has little bearing on recent decisions, implying that the agent is only 
concerned with observing the current state.

Q-learning

Reinforcement learning has some variations depending on how 
an agent chooses an action toward the observed environment and 
how the corresponding rewards update the agent’s preferred factors. 
This framework uses the DRL (Deep Reinforcement Learning) 
architecture, which comes from the Q-learning algorithm. Q-learning 
stores use and updates the q values that determine an agent’s actions 
where the action with the highest q value is chosen. Therefore, the q 
values must be in the form of an action-state pair, and the table is an 
appropriate frame for recording such values called the “Q table.”

In summary, the agent takes action Ai ∈ A at state Si ∈S, which 
yields the best Q(Si, Ai), then the action affects the environment, and 
the new observation results in a reward as a result of updating the 
Q-table with a new q-value, Qnew(Si, Ai). The following Bellman 
equation is used to update the data Figure 1.

Deep Reinforcement Learning (Deep Q Learning)

Q-learning, on the other hand, works best when states are discrete. 
Because Q-table stores q-value in state-action pairs, infinitely many 
state counts increase Q-table size, likely exceeding the storage limit, 
resulting in waste of space. If we define visual input as a state, the 
state would be 256^3^(width of image * height of the image) because 
each pixel in the image has three channels and a brightness range of 
0 to 256, requiring over a million buffers to save q-values. Previously, 
this was a significant barrier to reinforcement learning; however, 

with the addition of a deep neural network, the algorithm may evolve 
to deep reinforcement learning. Deep reinforcement learning was 
first introduced in 2013 by the company DeepMind with the well-
known AlphaGo, which takes a game board image as an input and 
processes it through a convolution neural network, which is a type 
of deep neural network, and outputs which action yields the best 
q-values for each frame of the image [7]. The convolution network’s 
original output shows which category has the highest similarity value 
to the image frame. The ‘cat’ category, for example, has the highest 
similarity value among the other types: ‘dog,’ ‘rabbit,’ and ‘human.’ 
Rather, the output of deep reinforcement learning indicates which 
actions are the best strategies at this frame of the image (Figure 2). We 
call this newly implemented convolution neural network a q-network 
in this state of the algorithm because it stores varia 2.2.3 Exploration 
and Exploitation bles that determine the qvalue for each action. As a 
result, the entire.

lgorithm is known as ‘Deep Q Learning

The exploration and exploitation problem is a well-known 
dilemma problem in reinforcement learning. The algorithm forces an 
agent always to take the best action; however, the action may result 
in a local maximum rather than an overall maximum due to a lack 
of additional information or exploration. The q-network variables 
are initially set to random floats, and the learning process is carried 
out in an unsupervised manner, with the agent possibly repeating 
an action that provides an immediate short-term reward. The 
exploration strategy devises frequent random actions to avoid such 
learning limitations and provide more rich learning scenarios. This 
method employs the well-known epsilon-greedy exploration method, 
with the recently introduced convergent-based exploration method 
proving to be slightly more effective [8].

Epsilon-Greedy Exploration

How to balance time consumption between exploration and 
exploitation is the most important aspect of exploration and 
exploitation. Exploration contributes to overall convergence, so if an 
agent explores too much, the learning speed slows down; however, if 
exploration is discouraged, the learning may become stuck in local 
convergence. A parameter is introduced as a probability of choosing 
random action, exploration rather than exploitation, in the epsilon-
greedy method (-greedy policy). In most cases, it is set to 0.1; thus, the 
agent chooses the best action in proportion to 0.9 and random action 
in proportion to 0.1. The parameter can change as the training steps 
progress, usually decreasing because exploration may not be required 
at a later stage of training.

Convergence-based Exploration

The epsilon-greedy policy problem is based on random factors 
that may cause an agent to fall into a local maximum at random, 

Figure 1: Bellman Equation for updating q-value.
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and the agent then repeats the action for short-term rewards. 
The best-case scenario is when the agent is confronted with an 
unfamiliar state and decides to investigate. As a result, a state-action 
familiarity or convergence level is examined in work [9] to choose 
between exploration and exploitation. Two parameters determine 
the exploration time threshold and minimum convergence error for 
exploitation, and. The agent is forced to explore during the first ten 
minutes of T’s total training time, then exploit during the remaining 
ten minutes of T-. During exploration, the parameter checks if the 
action’s convergence error is less than, indicating that the current 
state’s action is sufficiently converged. If the algorithm determines 
that the action is converged, the algorithm will move on to the next 
random action until the new action is not sufficiently converged. As a 
result, the agent can deal more smoothly with new states and untried 
actions, referred to as faster learning.

Methodology  
Introduction

The proposed model is an extension of work [1] on 2-dimensional 
UAV navigation. It is primarily divided into two sections: object 
detection and reinforcement learning. Object detection includes 
cognition and pre-processing, which alters visual data so that 
reinforcement learning modules can deal with it more easily. The 
process entails depth prediction, object detection, and the drawing 
of an object’s bounding box, detailed in the following section. Pre-
processed visual data is transferred to the input layer of the q-network 
in the reinforcement learning module, and the output layer 
determines which action to take. Another important module is the 
environment interpreter, which controls how reward and penalty are 
handled when interacting with the simulation environment, a UAV 
agent, and the logic module. In the section on reinforcement learning, 
the interpreter will be introduced in Figure 3.

Object Detection and Depth Prediction.

The entire architecture is designed to avoid collisions and force 
an agent to follow a target. As a result, depth prediction is required 
for collision avoidance, and object detection is required to obtain 
information about the target. The embedded depth prediction 
function of the Airsim API made depth prediction relatively simple. 

When it comes to real-world testing, it is a different storey. However, 
this article focuses solely on simulation training and testing, in 
which the depth prediction process is heavily reliant on camera 
and simulation setup related to the Airsim API. The Airsim API 
call ‘DepthPerspective’ returns camera input in black and white, 
with darker colours representing closer distance and brighter 
colours representing further distance. The q-learning network 
receives depth prediction images as state input, and the agent 
learns to prefer whiter space over black images; thus, collision 
avoidance is learned automatically. A study [1] has done the way 
of representing depth information as the state, and this research 
work has extended it.

When you consider the power of reinforcement learning, giving 
the learning agent a single task like collision avoidance may be 
underestimating its potential. As a result, this manuscript attempts 
to add a new task: detecting and following an object. To accomplish 
this, the object detection model must detect the person and process 
the data before feeding it into the learning algorithm. MobileNet 
SSD V3 was chosen for real-time object detection in this work 
because of its excellent performance in detecting speed despite 
its comparably low accuracy, as explained in the review session. 
The information about the position and size of the bounding box 
returns to the pre-process module once MobileNet detects the 
(Figure 4-6), which is a human.

As previously stated, the issue is how we define the state for the 
input layer of reinforcement learning, which was previously a depth-
prediction image. To achieve a successful following, bounding box 
information must be reasonably harmonized with depth-prediction. 
It has been discovered that in depth-prediction based collision 
avoidance, an agent learns to prefer white space over dark space 
because brightness indicates open space while darkness indicates 
something approaching. This framework fills the bounding box with 
white colour based on the preference, so the agent is likely to learn to 
prefer bounding boxes.

Reinforcement Learning Architecture

Recent research has done much work on internal architecture 
reinforcement learning, and there are some well-known models like 
D3QN. This research framework aims to evaluate an existing model’s 

Figure 2: Q Learning and Deep Q Learning.



Citation: Shoaib M, Sayed N (2021) A Drone-Based Deep Learning Framework for Detecting and Tracking Objects. J Comput Eng Inf Technol 10:5.

• Page 4 of 8 •Volume 10 • Issue 5 • 1000267

Figure 3: Architecture Setup of this work.

Figure 4: Depth Prediction Images.

Figure 5: Images with Bounding Box.

Figure 6: Images with Depth Prediction and Bounding Box.

potential, the D3QN network, using various reward functions and 
multi-functional actions. The work [1], which asks a ground robot to 
navigate in two dimensions while avoiding collisions, was successful, 
but it was limited to single, simple tasks. As a result, this research 
creates a three-dimensional movable UAV and tests it for three-
dimensional navigation, collision avoidance, and object tracking. 
Furthermore, due to the increased complexity of 3D states, the 
convergence-based algorithm from work [10] has been implemented 
for smarter reinforcement learning exploration

Actions and Rewards

The next state is determined by an agent’s action, the drone, from 
the first-person view camera’s perspective. There are eight action 
options available, each of which allows the agent to change the speed 
or direction of progress in three dimensions. Previously, rewards 
were based on an agent’s linear speed, with a minus ten penalty when 
collided with other objects [1]. The reward is calculated using the 
linear velocity and angular velocity by * cos ( ). The reward function 
aims to achieve the fastest possible navigation without colliding. 
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This research framework adds a new reward based on bounding box 
information to achieve a successful following human figure. When 
the bounding box is in the centre of the visual input, it gives the 
highest reward. The bounding box reward is defined as √2/ 2 – / where 
√2/ 2 represents the maximum distance from the image centre and / 
represents the distance between the image centre and the bounding 
box centre

Convergence-based Exploration

Previous work [10] implemented a convergence-based q-learning 
exploration that had nothing to do with deep q-learning. This 
paper applies the approach to a deep neural network with near-
infinite states, whereas the previous paper [10] tested the algorithm 
with discrete states. The main distinction between the two is how 
convergence error is calculated, which is the q-value difference 
between current and future state action. Our model fits q-network 
to get current q-values instead of using a q-table to refer to q-values.

System Architecture

This section describes the hardware and software setup and 
the simulation environment used to validate the new method and 
conduct experiments.

Hardware and Software Setup 

This proposed model uses simulation-based experiments, which 
typically take a day to complete, and it involves the continuous 
repetition of 3-dimensional rendering, physics calculations, and code 
execution for each frame. As a result, high-quality GPU and CPUs 
are required, and we used NVIDIA Titan RTX for GPU and Intel 
i7 9700k for CPU. We brought additional devices with NVIDIA 
graphic cards for simultaneous simulation testing, in addition to the 
main testing machine, because each trial takes a long time. Aside 
from the simulation requirement, the algorithm’s code includes a 
neural network in which we used TensorFlow API for parallel tensor 
computation. Tensor Flow 1.14 is used, along with compatible CUDA 
10.0 and cuDNN 7.4 libraries [11-13].

Environment Setup 

Because the Airsim API runs on the platform, environments 
for simulation testing are built on Unreal Engine. The ‘Simple’ and 
‘Hallway’ environments are the two primary environments. The 
simple setting is shaped like a rectangle with a wall in the middle. A 
human character is programmed to move around the space, avoid 

obstacles, and go up and downstairs. The hallway environment begins 
with a vertical hallway where the human character tends to walk 
straight and return to the start point after reaching the end.

Each environment is designed to put an AI agent through its paces 
in 3-dimensional navigation, following, and collision avoidance. 
The simple environment is more specialized for collision avoidance 
testing, whereas the Hallway environment focuses on testing human 
figure following. In a Simple environment, the number of possible 
routes is limited. As a result, distinguishing between normal 
navigation and the next target can be difficult [14]. In contrast, the 
agent in the Hallway environment is challenged to choose its route 
wisely in order to keep the target in sight. The senior design team 
from a computer vision and robotics lab assisted in the creation of a 
3-dimensional environment [15,16]. With their help, the foundation 
for editing Unreal Engine was laid, and they programmed the human 
figure’s path.

Experimental Results 
This section shows the visual and numerical results of a training 

experiment in two different simulations. Before the test, it was 
assumed that a drone would smoothly follow a target and re-route its 
next move if it missed the target. When it comes to tracking a target, 
our algorithm’s reward function rewards us more when the target is 
in the centre of the camera. As a result, the overall performance is 
regarded as the cumulative reward per episode [17-20]. Each episode 
is one cycle of starting with lifting and ending with a collision; as the 
agent gets better at following the target and survives longer without 
colliding, the cumulative reward increases. Furthermore, when 
compared to the adaptive epsilon-greedy algorithm, the novelty of 
convergence-based discovery must be demonstrated. (Figure 7-11) 
depicts the two lines of cumulative reward per episode, as well as two 
methods of exploration.

As shown in the graph, a convergence-based exploration 
experiment performs better in general, and an agent is more likely 
to adapt to the environment faster. On the other hand, the adaptive 
epsilon-greedy algorithm is likely to struggle due to its inability to 
cope with a three-dimensional environment. As previously stated, a 
3-dimensional environment is more challenging than a 2-dimensional 
environment due to a large number of states. By calculating the mean 
of convergence error, the convergence-based exploration appears to 
have figured out a way to distinguish necessary states.

Figure 7: Input and Actions.
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Figure 8: Simple (Left) and Hallway (Right) Environments for Training.

Figure 9: Comparing epsilon-greedy and convergence-based exploration in terms of cumulative rewards per episode.

Figure 10: Simulation Screenshots In this video, a drone successfully follows a human in a simple environment.
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In terms of coping ability, the agent’s performance is inconsistent. 
Because the reward function is based on the drone’s speed when the 
target is not detected, when the target abruptly changes direction and 
disappears from the camera’s view, the agent is likely to navigate as 
quickly as possible. The agent eventually re-detects the target and re-
routes its trajectory, even though it may take some time. There is one 
drawback: when the target quickly turns back to face the drone, the 
agent tends to struggle and wander for longer. Because our algorithm 
prevents the drone from moving backwards, this is the case. Moving 
backwards in three dimensions would add nine additional actions, 
slowing training by more than twice.

Conclusion
Deep reinforcement learning is a powerful tool for training task-

purpose robots, and unmanned aerial vehicles (UAVs) are one of the 
most rapidly growing robotics industries. In other words, the potential 
of using deep reinforcement learning to train UAVs is enormous, and 
it is worthwhile to try a variety of experiments with two. Collision 
avoidance, autonomous landing, and data collection with UAVs 
have all been studied in the hopes of improving performance. This 
manuscript is the first to use convergence-based exploration to test 
following a target without collision avoidance. Despite the difficulties 
of a three-dimensional environment, this paper can be said to have 
successfully trained UAVs to follow a target with better performance 
using convergence-based exploration.

Because this manuscript is limited to a simulation environment, 
future work on this project should be done with real-world UAVs. 
Because the Airsim API is compatible with Pixhawk/PX4, which runs 
the drones’ real hardware, our proposed algorithm should be simple 
to implement in a real-world setting. A better exploration method 
adaptable to 3-dimensional space can improve internal architecture 
performance in addition to real-world testing. Convergence-based 
exploration was first tested in a two-dimensional environment 
with a limited number of states. It does an excellent job of reducing 
redundant exploration, but it is not designed for three-dimensional 
testing. As a result, we will compare several different exploration 
methods in future work and put them to the test in real-world 
scenarios.
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