
a S c i T e c h n o l j o u r n a lResearch Article

Shoaib and Sayed, J Comput Eng Inf Technol 2021, 10:5
Journal of Computer

Engineering & Information
Technology

All articles published in Journal of Computer Engineering & Information Technology are the property of SciTechnol, and is
protected by copyright laws. Copyright © 2021, SciTechnol, All Rights Reserved.International Publisher of Science,

Technology and Medicine

A Drone-Based Deep Learning
Framework for Detecting and
Tracking Objects
Muhammad Shoaib1, Nasir Sayed2

Abstract
In recent years, integrating artificial intelligence and unmanned
aerial vehicles (UAVs) has become a hot topic of study, especially
where UAVs must conduct complex tasks that cannot be completed
quickly under human control. Drones often use several sensors
to gather full details about conditions, such as a top-down
camera or LiDAR sensors, and the main processor measures
all of the drone’s trajectories. This paper proposes tracking a
detected target that employs a monocular on-board camera and a
reinforcement learning model. This system is more cost-effective
and adaptable to the atmosphere using various sensors and pre-
calculated trajectories than previous approaches. Our model
added encompassing box details to the drive network picture input
by extending the previous Deep Double Q network with the Duel
Architecture Model (D3QN), modifying an action table and incentive
feature, enabling 3-dimensional gestures and object recognition
combined with MobileNet’s support. The simulations are carried
out in various simulation settings, each with its level of difficulty
and sophistication. The “Airsim” application, a Microsoft-supported
quadrotor simulation API, is used for research. The findings reveal
that using a convergence-based exploration algorithm, the model
approaches the observed object, a human figure, without reaching
any barriers along the way and is moved faster.

Keywords

Deep Reinforcement Learning; Object Detection; Computer Vision
and Unmanned Aerial Vehicles.

*Corresponding author: Muhammad Shoaib, Department of IT and Emerging
Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan, Tel: 03138841394;
Email: shoaib1646@gmail.com

Received: April 16, 2021 Accepted: May 12, 2021 Published: May 19, 2021

Introduction
Artificial intelligence has grown in strength and been extensively

investigated to assess machine learning capability after the advent of
in-depth learning and increased efficiency in the graphics processing
unit (GPU). Intelligent agents are likely to be deployed on moving
equipment such as a ground robot as a ground unit and a drone as an
air unit, particularly in the case of human-machine interaction (HCI),
where the actual implementation of a detailed understanding occurs.
Furthermore, autonomous activities such as navigation [1], aerial
mapping [2], item distribution, and so on are encouraged. In general,
achieving such a target entails combining data from several sensors
and analyzing it for trajectory calculation, obstacle prediction, and
collision avoidance. Navigation and collision avoidance are complex
tasks since the robot agent must handle the situation every second of
the picture and make the best judgment possible in that short amount

of time. Furthermore, since the physical world is generally fluid and
dynamic, the construction of several sensors across space to capture
and map the agent’s data is disrupted.

The full implementation of many utilities to gather case-specific
details and algorithms is ludicrous after realizing the real obstacles. As
a result, even though it is complicated, a general-purpose algorithm
that can cooperate with a simple hardware configuration has been
highlighted and researched recently. Approaches with fewer sensors
or only the camera are common because they are less expensive than
other sensors, and visual input is usually more effective than auditory,
gravity, and other sensors. The convolutional neural network (CNN)
is used in the vision-based method to analyze vision and support AI
agents in making decisions. However, since CNN is guided learning,
it has a drawback in that the supervisor must first transmit case-
specific training results. Consequently, an additional module called
the Reinforcement Learning Algorithm (RL) is added to the learning
agent, enabling it to become a general-purpose AI.

One of the most exciting reinforcements learning jobs with
simple equipment and Xie from Oxford University [1] has produced
the CNN network. In their thesis ‘’Towards obstacle avoidance based
on monocular vision through deep-reinforcing learning’, the AI
agent is implemented on the Turtlebot Mobile, the 2-dimensional
ground-based motor robot, using the only monocular camera above
the hardware. The officer gradually finds ways to avoid obstacles and
navigate the surrounding area as quickly as possible through the
reinforcement learning algorithm. Their work’s novelty lies in a two-
tiered architecture where CNN comes first to extract information from
the image and RL comes later to calculate the next movement, and the
Double Q-network algorithm with Duel Architecture (D3QN), which
improves RL performance.

This research focuses on the extension of ‘Towards obstacle
avoidance based on monocular vision through deep-reinforcing
learning’, sharing the D3QN algorithm as a nucleus, however, with
a modified architecture to overcome more complex tasks. Given the
power of RL, an AI agent must perform complex tasks other than
simple two-dimensional navigation. Therefore, this work selects an
uneasy air vehicle (UAV) or a drone as an AI agent ship to perform
navigation and a 3-dimensional object following the object detection
API with the CNN module. The integration of vision technology and
drones has been a very popular research topic in recent years due
to three-dimensional tasks such as delivering air parcels, scanning
agricultural areas, etc. With an increasing focus on drone research,
the industry has evolved rapidly, and there is plenty of user-friendly
UAV software and hardware for research. The Microsoft Airsim API
is used for this work because of its manoeuvrability and accessibility,
and simulation environment.

Literature review
A brief overview of target recognition and reinforcement learning

and the detailed principles of both are discussed in this portion.

Object Detection.

Object recognition has become a hot topic in recent years, with
researchers collaborating mainly in the fields of computer vision

Citation: Shoaib M, Sayed N (2021) A Drone-Based Deep Learning Framework for Detecting and Tracking Objects. J Comput Eng Inf Technol 10:5.

• Page 2 of 8 •Volume 10 • Issue 5 • 1000267

and robotics, where sensory feedback dictates a robot’s tasks. It
was challenging to handle even limited picture sizes, such as 32 out
of 32, a few years ago, because each pixel of the image may have
up to 2555 types of states containing details regarding brightness
and RGBA colors. Study with photos became even more available
with the advent of deep neural networks, and research into the
identification, recognition, and monitoring of artifacts started to
evolve. Consequently, tech firms such as Google have often rendered
the object detection module and researcher-friendly API available.
Fast R-CNN [3], SSD [4], YOLO [5], and Retina-Net [6] are a few
common object detection models.

Reinforcement Learning

In unsupervised learning, strengthening learning is a machine
learning technique with force; however, supervised expertise is
needed. The logic of the strategy is based on an activity-reward
architecture, in which an agent acts first, then an evolving situation
and a discovery calculate a new reward for the agent, which updates
the preferred factors for each action. Each behaviour is driven by
Markov’s decision-making mechanism, in which stock experience
has little bearing on recent decisions, implying that the agent is only
concerned with observing the current state.

Q-learning

Reinforcement learning has some variations depending on how
an agent chooses an action toward the observed environment and
how the corresponding rewards update the agent’s preferred factors.
This framework uses the DRL (Deep Reinforcement Learning)
architecture, which comes from the Q-learning algorithm. Q-learning
stores use and updates the q values that determine an agent’s actions
where the action with the highest q value is chosen. Therefore, the q
values must be in the form of an action-state pair, and the table is an
appropriate frame for recording such values called the “Q table.”

In summary, the agent takes action Ai ∈ A at state Si ∈S, which
yields the best Q(Si, Ai), then the action affects the environment, and
the new observation results in a reward as a result of updating the
Q-table with a new q-value, Qnew(Si, Ai). The following Bellman
equation is used to update the data Figure 1.

Deep Reinforcement Learning (Deep Q Learning)

Q-learning, on the other hand, works best when states are discrete.
Because Q-table stores q-value in state-action pairs, infinitely many
state counts increase Q-table size, likely exceeding the storage limit,
resulting in waste of space. If we define visual input as a state, the
state would be 256^3^(width of image * height of the image) because
each pixel in the image has three channels and a brightness range of
0 to 256, requiring over a million buffers to save q-values. Previously,
this was a significant barrier to reinforcement learning; however,

with the addition of a deep neural network, the algorithm may evolve
to deep reinforcement learning. Deep reinforcement learning was
first introduced in 2013 by the company DeepMind with the well-
known AlphaGo, which takes a game board image as an input and
processes it through a convolution neural network, which is a type
of deep neural network, and outputs which action yields the best
q-values for each frame of the image [7]. The convolution network’s
original output shows which category has the highest similarity value
to the image frame. The ‘cat’ category, for example, has the highest
similarity value among the other types: ‘dog,’ ‘rabbit,’ and ‘human.’
Rather, the output of deep reinforcement learning indicates which
actions are the best strategies at this frame of the image (Figure 2). We
call this newly implemented convolution neural network a q-network
in this state of the algorithm because it stores varia 2.2.3 Exploration
and Exploitation bles that determine the qvalue for each action. As a
result, the entire.

lgorithm is known as ‘Deep Q Learning

The exploration and exploitation problem is a well-known
dilemma problem in reinforcement learning. The algorithm forces an
agent always to take the best action; however, the action may result
in a local maximum rather than an overall maximum due to a lack
of additional information or exploration. The q-network variables
are initially set to random floats, and the learning process is carried
out in an unsupervised manner, with the agent possibly repeating
an action that provides an immediate short-term reward. The
exploration strategy devises frequent random actions to avoid such
learning limitations and provide more rich learning scenarios. This
method employs the well-known epsilon-greedy exploration method,
with the recently introduced convergent-based exploration method
proving to be slightly more effective [8].

Epsilon-Greedy Exploration

How to balance time consumption between exploration and
exploitation is the most important aspect of exploration and
exploitation. Exploration contributes to overall convergence, so if an
agent explores too much, the learning speed slows down; however, if
exploration is discouraged, the learning may become stuck in local
convergence. A parameter is introduced as a probability of choosing
random action, exploration rather than exploitation, in the epsilon-
greedy method (-greedy policy). In most cases, it is set to 0.1; thus, the
agent chooses the best action in proportion to 0.9 and random action
in proportion to 0.1. The parameter can change as the training steps
progress, usually decreasing because exploration may not be required
at a later stage of training.

Convergence-based Exploration

The epsilon-greedy policy problem is based on random factors
that may cause an agent to fall into a local maximum at random,

Figure 1: Bellman Equation for updating q-value.

Citation: Shoaib M, Sayed N (2021) A Drone-Based Deep Learning Framework for Detecting and Tracking Objects. J Comput Eng Inf Technol 10:5.

• Page 3 of 8 •Volume 10 • Issue 5 • 1000267

and the agent then repeats the action for short-term rewards.
The best-case scenario is when the agent is confronted with an
unfamiliar state and decides to investigate. As a result, a state-action
familiarity or convergence level is examined in work [9] to choose
between exploration and exploitation. Two parameters determine
the exploration time threshold and minimum convergence error for
exploitation, and. The agent is forced to explore during the first ten
minutes of T’s total training time, then exploit during the remaining
ten minutes of T-. During exploration, the parameter checks if the
action’s convergence error is less than, indicating that the current
state’s action is sufficiently converged. If the algorithm determines
that the action is converged, the algorithm will move on to the next
random action until the new action is not sufficiently converged. As a
result, the agent can deal more smoothly with new states and untried
actions, referred to as faster learning.

Methodology
Introduction

The proposed model is an extension of work [1] on 2-dimensional
UAV navigation. It is primarily divided into two sections: object
detection and reinforcement learning. Object detection includes
cognition and pre-processing, which alters visual data so that
reinforcement learning modules can deal with it more easily. The
process entails depth prediction, object detection, and the drawing
of an object’s bounding box, detailed in the following section. Pre-
processed visual data is transferred to the input layer of the q-network
in the reinforcement learning module, and the output layer
determines which action to take. Another important module is the
environment interpreter, which controls how reward and penalty are
handled when interacting with the simulation environment, a UAV
agent, and the logic module. In the section on reinforcement learning,
the interpreter will be introduced in Figure 3.

Object Detection and Depth Prediction.

The entire architecture is designed to avoid collisions and force
an agent to follow a target. As a result, depth prediction is required
for collision avoidance, and object detection is required to obtain
information about the target. The embedded depth prediction
function of the Airsim API made depth prediction relatively simple.

When it comes to real-world testing, it is a different storey. However,
this article focuses solely on simulation training and testing, in
which the depth prediction process is heavily reliant on camera
and simulation setup related to the Airsim API. The Airsim API
call ‘DepthPerspective’ returns camera input in black and white,
with darker colours representing closer distance and brighter
colours representing further distance. The q-learning network
receives depth prediction images as state input, and the agent
learns to prefer whiter space over black images; thus, collision
avoidance is learned automatically. A study [1] has done the way
of representing depth information as the state, and this research
work has extended it.

When you consider the power of reinforcement learning, giving
the learning agent a single task like collision avoidance may be
underestimating its potential. As a result, this manuscript attempts
to add a new task: detecting and following an object. To accomplish
this, the object detection model must detect the person and process
the data before feeding it into the learning algorithm. MobileNet
SSD V3 was chosen for real-time object detection in this work
because of its excellent performance in detecting speed despite
its comparably low accuracy, as explained in the review session.
The information about the position and size of the bounding box
returns to the pre-process module once MobileNet detects the
(Figure 4-6), which is a human.

As previously stated, the issue is how we define the state for the
input layer of reinforcement learning, which was previously a depth-
prediction image. To achieve a successful following, bounding box
information must be reasonably harmonized with depth-prediction.
It has been discovered that in depth-prediction based collision
avoidance, an agent learns to prefer white space over dark space
because brightness indicates open space while darkness indicates
something approaching. This framework fills the bounding box with
white colour based on the preference, so the agent is likely to learn to
prefer bounding boxes.

Reinforcement Learning Architecture

Recent research has done much work on internal architecture
reinforcement learning, and there are some well-known models like
D3QN. This research framework aims to evaluate an existing model’s

Figure 2: Q Learning and Deep Q Learning.

Citation: Shoaib M, Sayed N (2021) A Drone-Based Deep Learning Framework for Detecting and Tracking Objects. J Comput Eng Inf Technol 10:5.

• Page 4 of 8 •Volume 10 • Issue 5 • 1000267

Figure 3: Architecture Setup of this work.

Figure 4: Depth Prediction Images.

Figure 5: Images with Bounding Box.

Figure 6: Images with Depth Prediction and Bounding Box.

potential, the D3QN network, using various reward functions and
multi-functional actions. The work [1], which asks a ground robot to
navigate in two dimensions while avoiding collisions, was successful,
but it was limited to single, simple tasks. As a result, this research
creates a three-dimensional movable UAV and tests it for three-
dimensional navigation, collision avoidance, and object tracking.
Furthermore, due to the increased complexity of 3D states, the
convergence-based algorithm from work [10] has been implemented
for smarter reinforcement learning exploration

Actions and Rewards

The next state is determined by an agent’s action, the drone, from
the first-person view camera’s perspective. There are eight action
options available, each of which allows the agent to change the speed
or direction of progress in three dimensions. Previously, rewards
were based on an agent’s linear speed, with a minus ten penalty when
collided with other objects [1]. The reward is calculated using the
linear velocity and angular velocity by * cos (). The reward function
aims to achieve the fastest possible navigation without colliding.

Citation: Shoaib M, Sayed N (2021) A Drone-Based Deep Learning Framework for Detecting and Tracking Objects. J Comput Eng Inf Technol 10:5.

• Page 5 of 8 •Volume 10 • Issue 5 • 1000267

This research framework adds a new reward based on bounding box
information to achieve a successful following human figure. When
the bounding box is in the centre of the visual input, it gives the
highest reward. The bounding box reward is defined as √2/ 2 – / where
√2/ 2 represents the maximum distance from the image centre and /
represents the distance between the image centre and the bounding
box centre

Convergence-based Exploration

Previous work [10] implemented a convergence-based q-learning
exploration that had nothing to do with deep q-learning. This
paper applies the approach to a deep neural network with near-
infinite states, whereas the previous paper [10] tested the algorithm
with discrete states. The main distinction between the two is how
convergence error is calculated, which is the q-value difference
between current and future state action. Our model fits q-network
to get current q-values instead of using a q-table to refer to q-values.

System Architecture

This section describes the hardware and software setup and
the simulation environment used to validate the new method and
conduct experiments.

Hardware and Software Setup

This proposed model uses simulation-based experiments, which
typically take a day to complete, and it involves the continuous
repetition of 3-dimensional rendering, physics calculations, and code
execution for each frame. As a result, high-quality GPU and CPUs
are required, and we used NVIDIA Titan RTX for GPU and Intel
i7 9700k for CPU. We brought additional devices with NVIDIA
graphic cards for simultaneous simulation testing, in addition to the
main testing machine, because each trial takes a long time. Aside
from the simulation requirement, the algorithm’s code includes a
neural network in which we used TensorFlow API for parallel tensor
computation. Tensor Flow 1.14 is used, along with compatible CUDA
10.0 and cuDNN 7.4 libraries [11-13].

Environment Setup

Because the Airsim API runs on the platform, environments
for simulation testing are built on Unreal Engine. The ‘Simple’ and
‘Hallway’ environments are the two primary environments. The
simple setting is shaped like a rectangle with a wall in the middle. A
human character is programmed to move around the space, avoid

obstacles, and go up and downstairs. The hallway environment begins
with a vertical hallway where the human character tends to walk
straight and return to the start point after reaching the end.

Each environment is designed to put an AI agent through its paces
in 3-dimensional navigation, following, and collision avoidance.
The simple environment is more specialized for collision avoidance
testing, whereas the Hallway environment focuses on testing human
figure following. In a Simple environment, the number of possible
routes is limited. As a result, distinguishing between normal
navigation and the next target can be difficult [14]. In contrast, the
agent in the Hallway environment is challenged to choose its route
wisely in order to keep the target in sight. The senior design team
from a computer vision and robotics lab assisted in the creation of a
3-dimensional environment [15,16]. With their help, the foundation
for editing Unreal Engine was laid, and they programmed the human
figure’s path.

Experimental Results
This section shows the visual and numerical results of a training

experiment in two different simulations. Before the test, it was
assumed that a drone would smoothly follow a target and re-route its
next move if it missed the target. When it comes to tracking a target,
our algorithm’s reward function rewards us more when the target is
in the centre of the camera. As a result, the overall performance is
regarded as the cumulative reward per episode [17-20]. Each episode
is one cycle of starting with lifting and ending with a collision; as the
agent gets better at following the target and survives longer without
colliding, the cumulative reward increases. Furthermore, when
compared to the adaptive epsilon-greedy algorithm, the novelty of
convergence-based discovery must be demonstrated. (Figure 7-11)
depicts the two lines of cumulative reward per episode, as well as two
methods of exploration.

As shown in the graph, a convergence-based exploration
experiment performs better in general, and an agent is more likely
to adapt to the environment faster. On the other hand, the adaptive
epsilon-greedy algorithm is likely to struggle due to its inability to
cope with a three-dimensional environment. As previously stated, a
3-dimensional environment is more challenging than a 2-dimensional
environment due to a large number of states. By calculating the mean
of convergence error, the convergence-based exploration appears to
have figured out a way to distinguish necessary states.

Figure 7: Input and Actions.

Citation: Shoaib M, Sayed N (2021) A Drone-Based Deep Learning Framework for Detecting and Tracking Objects. J Comput Eng Inf Technol 10:5.

• Page 6 of 8 •Volume 10 • Issue 5 • 1000267

Figure 8: Simple (Left) and Hallway (Right) Environments for Training.

Figure 9: Comparing epsilon-greedy and convergence-based exploration in terms of cumulative rewards per episode.

Figure 10: Simulation Screenshots In this video, a drone successfully follows a human in a simple environment.

Citation: Shoaib M, Sayed N (2021) A Drone-Based Deep Learning Framework for Detecting and Tracking Objects. J Comput Eng Inf Technol 10:5.

• Page 7 of 8 •Volume 10 • Issue 5 • 1000267

In terms of coping ability, the agent’s performance is inconsistent.
Because the reward function is based on the drone’s speed when the
target is not detected, when the target abruptly changes direction and
disappears from the camera’s view, the agent is likely to navigate as
quickly as possible. The agent eventually re-detects the target and re-
routes its trajectory, even though it may take some time. There is one
drawback: when the target quickly turns back to face the drone, the
agent tends to struggle and wander for longer. Because our algorithm
prevents the drone from moving backwards, this is the case. Moving
backwards in three dimensions would add nine additional actions,
slowing training by more than twice.

Conclusion
Deep reinforcement learning is a powerful tool for training task-

purpose robots, and unmanned aerial vehicles (UAVs) are one of the
most rapidly growing robotics industries. In other words, the potential
of using deep reinforcement learning to train UAVs is enormous, and
it is worthwhile to try a variety of experiments with two. Collision
avoidance, autonomous landing, and data collection with UAVs
have all been studied in the hopes of improving performance. This
manuscript is the first to use convergence-based exploration to test
following a target without collision avoidance. Despite the difficulties
of a three-dimensional environment, this paper can be said to have
successfully trained UAVs to follow a target with better performance
using convergence-based exploration.

Because this manuscript is limited to a simulation environment,
future work on this project should be done with real-world UAVs.
Because the Airsim API is compatible with Pixhawk/PX4, which runs
the drones’ real hardware, our proposed algorithm should be simple
to implement in a real-world setting. A better exploration method
adaptable to 3-dimensional space can improve internal architecture
performance in addition to real-world testing. Convergence-based
exploration was first tested in a two-dimensional environment
with a limited number of states. It does an excellent job of reducing
redundant exploration, but it is not designed for three-dimensional
testing. As a result, we will compare several different exploration
methods in future work and put them to the test in real-world
scenarios.

References

1. Xie L, Wang S, Markham A, Trigoni N (2017) Towards Monocular Vision
based Obstacle Avoidance through Deep Reinforcement Learning. RSS
workshop on New Frontiers for Deep Learning in Robotics.

2. Polvara R, Patacchiola M, Sharm S, Wan J, Manning A, et al. (2018) Toward
End-to-End Control for UAV Autonomous Landing via Deep Reinforcement
Learning, International Conference on Unmanned Aircraft Systems.

3. Girshick R (2015) Fast R-CNN, IEEE International Conference on Computer
Vision.

4. Liu W, (2016) SSD: Single shot multibox detector. European Conference on
Computer Vision, 21-37.

5. Redmon J (2016) You only look once: Unified, real-time object detection.
Proceeding of the IEEE Conference on Computer Vision and Pattern
Recognition.

6. Tsung-Yi Lin (2020) Focal Loss for Dense Object Detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence.

7. Volodymyr M, Koray K, David S, Alex G, Ioannis A, et al. (2013) Playing Atari
with Deep Reinforcement Learning. arXive e-prints.

8. Madawalagama, S (2016) Low Cost Aerial Mapping with Consumer Grade
Drones. 37th Asian Conference on Remote Sensing.

9. Iro Laina (2016) Deeper Depth Prediction with Fully Convolutional Residual
Networks, IEEE International Conference on 3D vision.

10. Masadeh A, Wang Z, Ahmed E, (2018) Convergence-Based Exploration
Algorithm for Reinforcement Learning. Electrical and Computer Engineering
Technical Reports and White Papers.

11. Ala’Eddin M, Zhengda W, Ahmed E (2018) Reinforcement Learning
Exploration Algorithms for Energy Harvesting Communications Systems.
IEEE.

12. Cameron F (2017) Autonomous Driving with a Simulation Trained
Convolutional Neural Network. University of the Pacific, Thesis.

13. Hasselt H, Guez A, David S (2016) Deep Reinforcement Learning with
Double Q-Learning. Proceeding of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI16).

14. Jemin H, Inkyu S, Roland S, Marco H (2017) Control of a Quadrotor with
Reinforcement Learning. IEEE Robotics and Automation Letter.

15. Mnish (2015) Human-level control through deep reinforcement learning.
Nature, 518.

16. Risto K, Nora E, Alejandro H, Victor M, (2018) Evaluation of Deep
Reinforcement Learning Methods for Modular Robots. Workshop track –
ICLR.

Figure 11: Simulation Screenshots In this video, a drone successfully follows a human in a hallway environment.

https://arxiv.org/abs/1706.09829v1
https://arxiv.org/abs/1706.09829v1
https://arxiv.org/abs/1706.09829v1
https://doi.org/10.1109/ICUAS.2018.8453449
https://doi.org/10.1109/ICUAS.2018.8453449
https://doi.org/10.1109/ICUAS.2018.8453449
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-46448-0_2&v=6508e5c8
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-319-46448-0_2&v=6508e5c8
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1606.00373
https://arxiv.org/abs/1606.00373
https://doi.org/10.1109/ICC.2018.8422710
https://doi.org/10.1109/ICC.2018.8422710
https://doi.org/10.1109/ICC.2018.8422710
https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.1109/LRA.2017.2720851

Citation: Shoaib M, Sayed N (2021) A Drone-Based Deep Learning Framework for Detecting and Tracking Objects. J Comput Eng Inf Technol 10:5.

• Page 8 of 8 •Volume 10 • Issue 5 • 1000267

17. Sarmad R, Mujdat S (2015) Effects of UAV Mobility Patterns on Data
Collection in Wireless Sensor Networks. IEEE.

18. Wulfe, Black. UAV Collision Avoidance Policy Optimization with Deep
Reinforcement Learning, Stanford University.

19. Xiaodan L, Tairui W, Luona Y, Eric P (2018) CIRL: Controllable Imitative
Reinforcement Learning for Vision-based Self-driving.

20. Ziyu Wang (2016) Dueling Network Architectures for Deep Reinforcement
Learning. International Conference on Machine Learning.

Author Affiliation Top
1Department of IT and Emerging Sciences, University of Peshawar, Khyber
Pakhtunkhwa, Pakistan
2Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan

https://doi.org/10.1109/COMNETSAT.2015.7434288
https://doi.org/10.1109/COMNETSAT.2015.7434288

	Title
	Corresponding author
	Abstract

