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Abstract
Nisyros volcano has shown a series of volcanic and seismo-tectonic 
events including recent volcanic phreatic eruptions intruding an 
impermeable layer near the surface. Geological and atmospheric 
phenomena contribute to the heat output from the hydrothermal 
system. To monitor the temperature fluctuations from a vent gas 
emission in Nisyros, a temperature sensor has been installed in 
a fumarole near the Lofos and Laki sites. Raw and decomposed 
temperature data were analyzed to determine the cycles of heat 
contribution at the surface from the endogenic volcanic activity and 
from the interaction with the atmospheric temperature. The time 
series decomposition using Kolmogorov-Zurbenko filter and the 
Markov chain approach have been utilized as complementary tools 
for the determination of the main periodicities on the temperature 
data. The Kolmogorov-Zurbenko filter is used for the time series 
decomposition of the temperature data into the long and short term 
component of the time series. Markov chain analysis was used to 
determine probabilistically the periodicity in the temperature data 
and aggregate load impact in forecasting. Using spectral analysis 
and cluster analysis we determine the main periodicities of the 
long and short term cycles of heat contribution. Raw temperature 
data have shown an accelerated frequency of hourly temperature 
decreases at the surface. Small temperature decreases occur within 
the warmer atmospheric temperatures and dramatic temperature 
decreases occur during colder atmospheric temperatures. A physical 
or a mechanical phenomenon may prevent heat from reaching the 
surface. The time series decomposition performs well in long term 
cycles while the Markov chain performs better in short term cycles. 
Both periods are related to cyclones that occur in the Aegean Sea. 
Since Nisyros is an island, the temperature measurements are 
probably affected by various phenomena (cyclones, sea tides) that 
occur in the sea and affect the hydrothermal convection. 
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Introduction
A temperature logger of a volcanic surface such as in a fumarole 

may not directly reflect the various volcanic endogenic activities 
which are masked by interferences from other heat sources or 
phenomena. Volcanic monitoring is a rapid evolving field which 
requires sometimes a sophisticated data post-processing for removing 
interferences that mask endogenic volcanic activity. In active volcanoes 
such as in Greece, where nearly all the volcanic centers along the 
active Hellenic volcanic arc have erupted within the past three million 
years, and few volcanoes like Nisyros and Santorini have shown very 
recent eruptions, volcanic monitoring using advanced computational 
filtering techniques is necessary. Nisyros’ latest eruption of mud and 
altered rocks took place in 1873 [1]. Since then fumaroles continue to 
output heat originating from the active hydrothermal system beneath 
and, perhaps, rooted to a magma chamber they indicate the ongoing 
potential for further eruptions. Monitoring of the fumarole’s surface 
temperature, both the raw and the decomposed data, may allow 
monitoring of the endogenic volcanic activity.

In Nisyros, sealing of the upper bound of the hydrothermal 
system near the surface, above the condensate zone may take place 
by impermeabilization of the cover due to self-sealing [2]. This is a 
similar phenomenon to the one previously proposed [3], and it forces 
an accumulation of heat underneath the impermeable layer while 
the fumarole’s conduits receive less heat and show a temperature 
fall. Pressure distribution from the temperature fluctuation brings 
aquifers and fracture system close to becoming mechanically unstable 
with respect to their confining burden [4]. An imbalance between the 
internal fluid pressure and external atmospheric pressure can then 
trigger hydrothermal instability and further eruptions [5]. We think 
that a similar phenomenon may take place in Nisyros volcano and 
decomposing of time series data may provide insight at the endogenic 
volcanic activity.

Study Area
Nisyros island is an active composite volcano that belongs to 

the Hellenic Arc. It was built during the last 100 kyrs [6]. Multiple 
explosions formed a 3.8 km caldera less than 24,000 y.B.P. Rising 
magma derives as a consequence of the dehydration of the northward 
subducting African plate beneath the overriding South Aegean 
microplate. At the northern part of the caldera a series of dacitic-
rhyodacitic domes rose above the caldera floor, while the south part, at 
Laki and Lofos, where the temperature logger was installed, has been 
affected by recent hydrothermal activity, argillic alteration caused by 
fumarolic fluid reaction, and a NE-trending fracture system. 

Two wells have been previously installed [7], and the second well, 
Nisyros-2, is the closest to the logger site and encountered mostly talus 
and alluvial debris filling the caldera depression followed by deeper 
tephra and lavas. The well has shown two sections of permeable layers, 
a shallow layer from 250 to 350 m depth and a deeper one from 1000 
m to 1350 m. The first layer shows multiple minerals associated with 
phyllitic-zeolitic hydrothermal paragenesis and temperatures reaching 
from 120° to 180°C. The presence of chlorite denotes that seawater 
has contributed to the condensate zone. The deeper permeable zone 
occurs from 1000 to 1350 m with temperatures reaching up to at least 
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Markov chain process. Both methods are introduced in the following 
sections and were applied to time series decomposed data for the 
detection of the main periodicities in the temperature data. Those 
periods have been determined based on spectral analysis and cluster 
analysis and they provide a physical explanation for the main periods 
of the temperature data in the volcano island. 

Data
Hourly temperature time series data were derived from a Tinytag 

temperature sensor which has been installed at the surface of a 
fumarole site, buried approximately 20 cm under the surface of the 
volcano. The temperature data on the volcano have been measured 
from August 2016- January 2017 and 3571 records of hourly 
temperature data are plotted in Figure 1. 

Kolmogorov-Zurbenko Filter
The decomposition of a time series is a necessary technique to 

determine the contribution of different frequencies to the data. The 
KZ filter provides effective separation of frequencies related to the 
long and short cycles. Different frequencies are uncorrelated and are 
related with different physical phenomena. Those phenomena are 
related to different components of the time series and they need to be 
separated to avoid interferences on the data [10-14].

The Kolmogorov-Zurbenko filter (KZ) filter has a simple design 
and provides the smallest level of interferences between the scales (long 
term component and short term component) of a time series [15]. 
It separates the long term variations from the short term variations 
in a time series which are related with the long and short cycles of 
the time series data. The KZ filter is also known to provide the best 
and closest results to the optimal mean square of error [15,16] and 
provides effective separation in data sets with missing observations 
[17,18]. Some examples of the use of the KZ filter are flood prediction 
in Schoharie Creek, New York; the prediction of ground level ozone 
in Albany, New York; and the explanation of water use time series in 
Gainesville, Florida [14,19-23].

The KZ filter is a low pass filter, defined by p repeated iterations of 
a simple moving average of m points. The moving average of the KZ 
filter is described by (Equation 1):

290°C. The temperatures that have been measured in this well reflect a 
propylitic hydrothermal mineralization. This zone also shows chlorite 
as evidence of seawater input into the hydrothermal system.

Pre-volcanic basement is not exposed on Nisyros island in contrast 
to the other volcanic centers of the Hellenic arc. At the center of the 
caldera a carbonate sequence is not present, though one has been 
found at the second well, farther from the center. Mostly fragments, 
alluvium sediments, debris and talus compose the center of Nisyros 
caldera where argillic alteration has caused impermeabilization above 
the shallow permeable layer from 250 to 350 m. 

Hydrothermal circulation in Nisyros island has been previously 
described [2] and follows a similar model with that of Yellowstone or 
Waiotapu with characteristics of hydrothermal [8] eruptions driven 
by expansion of hydrothermal fluids against atmospheric pressure. 
Nisyros caldera continues to form through seismo-tectonic operation 
of NE-trending faults, causing volcanic and recent phreatic eruptions 
followed by hydrothermal release of heat towards the surface. The 
latest eruption of mud and altered rocks in 1877 [1] with a powerful 
emission of a steam has probably encouraged argillic alteration and 
formation of an impermeable layer near the center of caldera. Those 
eruptions were recently described as phreatic eruptions involving the 
interaction of meteoric, seawater, and heat forming craters [2]. Those 
eruptions in Nisyros were thought to be initiated by fracturing due 
to earthquakes [9]. Fumaroles allow the release of the accumulated 
heat closer to the caldera’s surface, and monitoring of the associated 
temperature data may allow observation of the upper hydrothermal 
zone activity or endogenic volcanic behavior. 

Materials and Methods
For this study we use the raw and decomposed temperature data 

from a logger installed at the surface of a fumarole in Nisyros volcano. 
Raw data shows a variable frequency of temperature drops that may 
be related to geological phenomena while the decomposed data show 
constant frequencies and periodicities reflecting mostly atmospheric 
phenomena. To decompose the raw temperature data we use a 
combination of two different approaches to determine and explain 
the main periodicities of the fumarole’s surface temperature time 
series. The Kolmogorov-Zurbenko (KZ) filter is combined with the 

Figure 1: Hourly temperature data recorded from the Tinytag temperature sensor at the fumarole site. Grey shaded bars outline the temperature fall events.
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where X(t) represents the original time series of a variable, 
L(t) is the long-term trend component, and Sh(t) is the short-term 
component. The long-term component describes the fluctuations of 
a time series defined as being longer than a given threshold, while 
the short-term component describes the short-term variations. The 
long-term trend component consists of the trend component and the 
cyclical component [24]. The cyclical component of a time series is 
related with the fluctuations around the trend. The cyclical component 
can be viewed as those fluctuations in a time series which are longer 
than a given threshold, e.g. one and a half years, but shorter than 
those attributed to the trend. In most of the cases, we also study the 
seasonal component of the time series separately from the long- and 
short-term component. The seasonal component describes the cycles 
of year-to-year fluctuations. Since the temperature data in Nisyros 
volcano are measured for less than a year, we do not investigate the 
seasonal component in this study.

For our study, the temperature time series were decomposed to the 
long- and short-term variations, while the main periods on the data 
have been determined. The KZ filter has been applied to the difference 
of the temperature time series (T(t)) and reveals a time series without 
short-term variations and consisting only of the long-term variations 
of the time series (TKZ (t)). The difference of the temperature time 
series is shown by the equation (5):

T(t) = TKZ (t) + Tsh (t) 				                 (5)

A schematic representation of equation (5) is illustrated in Figure 
2. The first graph shows the stationary temperature time series; 
the second graph is the long-term component which is devoid of 
short-term variations and the third graph represents the short-term 
component. With the long and the short term components of the 
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where m = 2k+1. The output of the first iteration becomes the 
input for the second iteration, and so on. The time series derived 
by p iterations of the filter, described in equation (1), is denoted by 
equation (2):

Yt = KZm,p(Xt)					                   (2)

The parameter m in equation (2) has been determined to provide 
the separation of scales between the long and the short term cycles of 
the temperature time series and provides a physical explanation of 
the data.

In our study, a detrend transformation prior to a time series 
analysis was performed as temperature data were recorded during 
most of the second half of the year. Data were detrended to a stationary 
time series by computing the differences between consecutive 
observations. Using the difference operator, the raw temperature time 
series data can be expressed by the time series Tt given by the equation 
(3):

Tt= Xt - Xt-1					                 (3)

The difference of the time series data and the resulting stationary 
temperature time series T(t) is shown in the Figure 2. Difference 
temperature time series were separated into the long and short 
term components which are related with the long and short term 
cycles using the Kolmogorov-Zurbenko (KZ) filter [15]. For the 
decomposition of the time series we use the equation (4):

X(t) = L(t) + Sh(t) 				                (4)

Figure 2: The difference of the time series data and the resulting stationary temperature time series T(t), the long-term, and the short-term.
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temperature time series, we determine the main periodicities in R 
software using the kzft package.

The periodograms for the long and short-term component of the 
temperature time series were smoothed with the DZ [25] algorithm in 
R software to identify the main periodicities and are shown in Figure 3.

To avoid the Nyquist effect of daily cycles in the temperature time 
series data (temperature is higher during the day and lower during 
the night), we decompose the time series data using the KZ filter with 
a threshold of more than 24 hours (1 day). Specifically, we decompose 
the time series into the long-term component (long-term cycles 
which are longer than a day) and a short-term component (short-
term cycles which are shorter than a day). For the decomposition of 
the time series, we use the KZ23,3 filter (length is 23 with 3 iterations) 
to provide a physically based explanation of the temperature time 
series data. Following a previously described methodology and 
parameters [19] for the KZ filter we provide the optimal solution to 
reveal the long and short cycles in the time series data. In particular, 
the parameters of the KZ filter have been estimated in order to reduce 
the short-term variations displayed in the long-term component of 
the time series.

Markov Chain
The Markov stochastic processes justify the conditional 

probability distribution of their future states relying on their present 
state. A discrete-time Markov process is referred as a Markov Chain 
(MC). An MC representation can break a time-series into sequences of 
segments, for example, time distances between identical temperature 
readings for our study, with specific properties (based on time series 
decomposition), and can be effective in domains where classic time 
series analysis has been used.

The Markov Chain process (MC) can be an effective methodology 
to better detect periodicities in short cycle events. MCs can have 
discrete sets of variables that can represent time in a number of 
different forms e.g. discrete or continuous and can reflect equivalently 
an MC state space. MCs representation can be via a form of directed 
graph although a graph and a transition matrix (that represents MC’s 
states) can also be independent of sequence.

MCs have been used successfully both for natural phenomena 
model simulation and simulation of precipitation events. MCs have 
been applied successfully in precipitation time series simulation [26], 

time-series using Monte Carlo algorithms [27] and general climate 
models [28], and urban drainage [29]. MCs provide an important 
element for present to future predictions in accordance with 
traditional past to present forecasting, thus they are important as a 
complementary approach to time-series analysis.

Markov chains describe a state t as a function of its previous 
value(s). The 1st order Markov model can be described by the 
equation (6):

(𝑤𝑡|𝑤𝑡−1, 𝑤𝑡−2, ⋯ ; 𝜃) = (𝑤𝑡|𝑤𝑡−1; 𝜃)		             (6)

Equation 6 describes a probability density function where w at 
time t is dependent on the values of w at time t-1 given the parameter 
set 𝜃 [30]. 

MCs can be used on numbers or problems where short term 
horizon forecasting is required, and events can be simulated 
dynamically while domain situations develop. Additionally, advanced 
time-series can be generated, holding information on original time 
events and simulating phenomena that may take a substantial amount 
of time to gather.

In our study, while we have decomposed the time series data, an 
additional approach can be applied for the determination of the main 
periodicities. We apply MCs to describe the periodicity of time-series 
using the decomposition of the time series method as described in 
section 2.2. The period of a state t is denoted d(t) and it is the greatest 
common divisor (gcd) of those values of n where Pt

n > 0. If the period 
is 1 then t is aperiodic. If the period is 2 or more then t is periodic.

Temperature data can belong to discrete continuous bands 
which are exhaustive and mutually exclusive. A temperature at any 
time can belong to only one band which can be regarded as a state 
since it is exhaustive and non-overlapping. In the 1st order Markov 
Chain process the relating probabilities of transitioning from state to 
state can be represented in a transition probability matrix. We had 
identified 56 distinct states represented by the equation (7):

T1, T2, …, T56					               (7)

K-means Cluster Analysis
K-means clustering is a type of unsupervised learning in cluster 

analysis, which is used when you have unlabeled data (i.e., data 
without defined categories or groups). Cluster analysis is a technique 

Figure 3: Smoothed periodograms for the long (left graph) and short term (right graph) component of the temperature time series.
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for finding similarity of groups in a data, called clusters. It attempts 
to group individuals in a population together, but not driven by a 
specific purpose [31]. In K-means cluster analysis the main goal of 
the algorithm is to find groups in the data, with the number of groups 
represented by the variable K (K-clusters). The algorithm works 
iteratively to assign each data point to one of K groups based on the 
feature similarity. The new data can be labeled by the centroids of the 
K clusters.

Further advanced peak analysis has been performed on the MC 
periods using the K-means cluster analysis to identify the main 
periods in the long- and short-term components of the time series. 
We use three clusters for the long term component of the time series 
and the associated centroids were formed as described in Table 1. To 
determine the main periods in the long- and short-term component 
of the time series, the periods of the temperature values have been 
grouped to different clusters and they have been plotted against 
frequency in a histogram and the main clusters have been examined 
for each component, separately.

The possibility of transitioning across states can be described 
by a 56 × 56 matrix where each row represents a temperature band 
as measured from our Nisyros sensors and each column represents 
a band that each state can move into. Given our 148 day (147.8) 
measurements the transition matrix can be represented by the 
equation (8):

1 1 1 2 1 56

2 1 2 2 2 56

56 1 56 2 56 56

, , ....,
....,

...., ...., ...., ...,
....,

T T T T T T

T T T T T T

T T T T T T

P P P
P P P

P P P

 
 
 
 
 
 

			              (8)

where PT1T1 is the probability that state T1, remains in the same 
state for (T1 +1) while PT1T2 is the probability for a temperature band 
to transition to state T2 for (T1 +1) and so on. Our focus was on the 
periodic effect of PT1T1, PT2T2, etc. in order to get an accurate frequency 
reading.

Major periods in the Markov Chain analysis were identified as the 
repeated time-distances between two successive identical temperature 
readings. We apply the first Markov order to count the time distances 
in hours between identical temperature readings among 3571 hourly 
temperature data in a linear manner. Histograms with bins of 
24-hours were created to observe the major peaks of high frequency 
of time distances for the long- and short-term component of the time 
series, respectively. Markov Chain analysis of time distances below 
and above 24 hours yield the two major components of the long and 
the short terms in the time series data. Therefore, the decomposition 
of the Markov time distances has provided histograms of the major 
periods for the long- and short-term components (Figure 4). 

Results
Data showed a descending trend ranging between 31.4°C and 

62.0°C. There were 3572 hourly temperature measurements with no 
missing data. From the beginning of the last month of the summer 
until the middle winter season, measurements showed a decrease 
trend with subsequent cold temperature fall (CTF) at various time 
intervals (Figure 1). Sudden temperature falls initiated always at 
noon or few hours later between 12 and 4 pm the time intervals 
between those falls decreased as the winter season approached. From 
42 day to 25 day time intervals the temperature falls increased from 
2.4° C to 14° C. Temperature falls lasted 2 hours and sometimes for 
longer times such as 25 hours. A broad pattern showed longer times 
during the warmer temperatures, and shorter times during the colder 
temperatures.

In detail, on September 20th a small fall of the temperature lasted 
for 22 hours between 1:40 pm and 11:40 am after approximately 42 
days, on October 31st another temperature fall of approximately 4°C 

Method Periods (days)
  Long term Short term
Markov Chain 3.5, 12.9, 25.4 0.5
KZ Filter 8, 12 0.5, 1

Table 1: Periods derived from the K-mean cluster analysis for the long and short 
term components using the KZ filter and the Markov Chain.

Figure 4: Histograms of the main periods in the long-term component (left histogram) using bins of 24 hours (annotation on the major peaks refers to days), 
and in the short-term component (right histogram) using bins of 1 hour identified by Markov Chain analysis.
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started at 4:40 pm and lasted for 25 hours. A third temperature fall of 
12.6°C occurred after 30 days on November 29th at 4:40 pm and lasted 
for 2 hours. The fourth temperature fall of 14°C happened after 25 
days starting around 12:40 pm with duration of 7 hours.

Spectral Analysis
Using the KZ filter for the decomposition of the temperature 

time series, we determined the main periods in the spectral analysis 
domain. We applied the KZ25,3 filter on the detrending temperature 
time series data which was a stationary time series. Periodograms 
were determined for the long- and the short-term component of the 
time series, respectively (Figure 3). For the long-term component the 
main peaks, which corresponded to the main periodicities, were 8 
days and 12 days. Both periods were related to cyclones that occur in 
the Aegean Sea which occur at periodicities from 4 to 12 days [32]. 
The remaining three peaks, which were not so sharp, corresponded 
to 3.5 days, 4.5 days, and 6 days. Those peaks were also related to 
possible tide and cyclone phenomena in the South Aegean Sea. The 
periodogram of the short-term component (Figure 3) showed the 
main peaks for the short term component of the time series to be 
12 hours and 24 hours. The 12 hour period was the semi-period of 
24 hours (daily cycles) of the temperature data. Thus, using the KZ 
filter for the decomposition of the time series, we determined that the 
main periodicity for the short-term component was the daily cycle 
(24 hours). 

Markov Chain
Another approach to determine the main periodicities on the 

temperature data is the Markov Chain (MC). MC has shown numerous 
similar periods clustering around centers in a histogram (Figure 
4) for the short-term and for the long-term components. K-means 
cluster analysis determined the main periods for both components 
where were three main peaks in the long-term component and one 
main peak in the short-term component (Table 1). For the long-term 
component, the centroids of the three clusters were a period of 3.5 
days (n=48) and 12.9 days (n=23) (Table 1). There was also a minor 
period of 25.4 days (n=3). For the short-term component, there was 
one cluster in the histogram which showed that the main period is 0.5 
day (12 hours). The 12-hour period was the semi-period of the daily 
cycle of the temperature data.

It is interesting that higher temperature readings occurred 
mostly during longer periods. The period of 3.5 days showed mostly 
temperature readings ranging from 33.0°C to 60.7°C, and the period of 
12.9 days occurred within temperature readings ranging from 44.1°C 
and 61.4°C. The period of 25.4 days showed a range of temperature 
readings from 41.1°C to 48.4°C. The short-term component showed 
only one main period of 12 hours with all temperature readings. The 
hybrid model based on the KZ filter and the Markov Chain approach 
did not identify any larger periodicities, such as seasonal components. 
This is reasonable due to the limitation of the data which range over 
less than an annual cycle.

Discussion
Both methods, the Kolmogorov-Zurbenko filter (KZ) and the 

Markov-Chain (MC), are complementary tools for the elucidation of 
the main periodicities in the temperature data. The KZ filter is used 
for the time series decomposition of the temperature data into the 
long- and short-term components. MC results have been significantly 
improved by processing the decomposed data. This decomposition 
allowed MC to reveal shorter periodicities in the temperature data. 

Markov Chain may be used to prove probabilistically the periodicity 
in the temperature data and aggregate load impact in forecasting. The 
application of the time series decomposition in both techniques (KZ 
and MC) shows that the Kolmogorov-Zurbenko filter performs well 
in long cycles while the hybrid application of Markov Chain performs 
well in short cycles. The decomposition of a time series has shown 
that this is a necessary step to avoid the contribution of different 
frequencies to the data. The KZ filter provides an effective separation 
of frequencies related to the long and short periodicities.

The periods determined from our study are related to cyclones that 
occur in Aegean Sea or with the sea tides that occur around Nisyros 
Island. Since Nisyros is an island, the temperature measurement 
is reasonably affected by various phenomena (i.e. cyclones, sea 
tides) that occur in the sea. This methodology can be applied for 
the determination of the main periods in data at other locations, as 
well. With the decomposition of the time series and Markov Chain 
techniques, we can examine the volcanic temperatures at various 
volcanic sites. However, the periodicities of the temperature data will 
depend on the location and landscape of the volcano.

The atmospheric effect on a fumarole’s surface temperature log 
shows a periodicity from a few days to 12 days. Temperature falls 
are mostly related to mechanical triggering episodes rather than 
atmospheric changes which cause gradual temperature changes 
over days and occasionally within a day. A geological contribution 
is prominent in the raw data, however, it would be interesting to 
correlate decomposed continuous geochemical data collected hourly, 
which unfortunately are difficult to measure and currently do not 
exist.

Geological Interpretation of the Raw Data
In a volcanic island such as Nisyros is possible to affect the 

fumarole’s surface temperature through periodic impermeabilization 
via self-sealing of the argillic altered cover and embedded micro-
fracture system. Nisyros is a result of volcanic and seismo-tectonic 
events including the manifestation of a series of volcanic phreatic 
eruptions mainly caused by the unstable operation of the upper 
hydrothermal system. Hydrothermal convection of meteoric water 
and seawater between the liquid-dominated zone and the vapor-
dominated zone conveys heat and gases towards the surface. 
Any self-sealing as previously described [2] of the cover and the 
upper condensate zone will increase pressure while it will prevent 
heat release towards the fumarole’s surface. The first locations of 
temperature change on the volcano’s surface will be at fumarole sites 
which are the major manifestations of this young composite volcano’s 
activity on the Nisyros caldera surface. This study evaluates raw and 
decomposed temperature data and the associated periodicities of 
phenomena from the monitoring of a fumarole’s surface temperature 
at the caldera of the Nisyros volcano.

The decomposition of the temperature time series allows us to 
identify various other periodicities which may correspond to possible 
geochemical variables, geotectonic patterns and other phenomena. 
A decomposed temperature is separated from interferences from 
different physical phenomena, and this filtering process permits the 
identification of interferences from different physical phenomena in 
the raw temperature time series data which mask the real periodicities 
of those phenomena. Raw temperature data are records consisting 
all those interferences such as constructive noise or short-term 
variations. The decomposed temperature variable may be a significant 
indicator for observing the outgassing behavior from the upper level 
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of a hydrothermal system and the monitoring of volcanic endogenic 
activity.

A fumarole’s surface temperature shows a series of temperature 
falls over a decreasing temperature trend during the downward 
semiannual atmospheric temperature cycle of the year. Those CTF 
events are visible in the raw temperature data with intermittent 
time intervals of stationary temperature time series ranging from 25 
days to 42 days. Those intervals show an increasing frequency trend 
towards the winter season arrival, however, no long-term periodicity 
was identified by the KZ filter and hybrid MC application from the 
examined dataset for this time range. In addition, during this time 
of the year, although the South Aegean climate may experience some 
summer-temperature days there is no indication of any peak increase 
in the fumarole’s surface temperature implying another heat input 
other than the atmospheric temperature oscillation.

Temperature falls are followed by a gradual regain of the lost 
temperature implying another factor that impedes the heat transfer 
towards the surface. In detail, the series of the temperature falls 
recorded in the logger, after the stopping fall point are followed by 
a systematic rising trend and a leveling out at no more than half of 
the previous fall. At the beginning of a fall, a CTF occurs within a few 
degrees C which lasts for more than a day, while during the winter 
season the CTF occurs shortly for few to a couple of hours and within 
a fall of 14°C. 

It is worth mentioning that the CTF events begin in the logger 
between 12:00 pm and 5:00 pm since those are cold temperature fall 
events it should be reasonable to expect them to be triggered during 
the coldest time of the day and not during the warmest time of a 
day. A time delay may exist between the times that a phenomenon 
impedes the convection of heat away from a heat source towards the 
surface and the surface temperature logger recording the drop in 
temperature. 

We may assume that this is the time when the hydrothermal 
system pauses in its constant supply of thermal energy towards 
the surface. This is a lag time of 8-12 hrs prior to initiation of the 
CTF event. This can be the estimated travel time of the heat from 
the impedance zone (which could be a self-sealing layer or less 
clear pathways and fractures of the upper condensate zone of the 
hydrothermal system) to the surface. Since the main component 
that controls the heat transmission is the permeability, then this 
time interval denotes also the properties of the local permeability. If 
we consider the maximum depth of the impedance zone nearby the 
previously described impermeable layer [2] to be at the depth of 250 
m, then it is reasonable to estimate a minimum speed of 250 m over 
12 hours, that is 0.5 cm/sec (or a 1 ft/min) and a maximum speed of 
0.8 cm/sec over the 8 hour delay.

The phenomenon that causes the CTF events (Figure 1) weakly 
appears at the end of the summer season, escalates through the 
autumn season and matures during the winter time indicating a higher 
frequency and a stronger effect showing with a deeper temperature 
fall. Although no measurements exist for the spring season, this can 
be a cyclical phenomenon strongly dependent on the downward trend 
of the annual temperature cycle. This phenomenon causing the CTF 
recorded by the temperature logger at the fumarole site may imply an 
episode of a reduced thermal energy release from the hydrothermal 
system or an inability of the hydrothermal system to release thermal 
energy towards the surface. Considering the latter case, it is possible 
that the hydrothermal system is adjusting its permeability. This 

permeability depends on clear pathways and fractures which may 
expand or shrink during the atmospheric seasonal variations and a 
threshold exists at which heat is unable to go through. 

The CTF events may be dependent on the even longer term of 
the periodic phenomena derived from seasonal or global ocean 
or atmospheric tides or cyclones. However, a period requires a 
constant frequency of occurrences, and based on the various time 
intervals within the CTF events in the temperature raw data a strong 
relationship with atmospheric phenomena may not be the main 
cause. 

Atmospheric seasonal variations may cause a gradual shrinking 
of the space hosting the volcanic gases as well as the volume of the 
volcanic gas itself. This process does not necessarily denote any 
physical variation of the entire hydrothermal system neither it excludes 
that reduced heat towards the surface was caused by impedance of 
the hydrothermal fracture system such as shrinking of the pathways. 
On the contrary, dilation or contraction of the hydrothermal fracture 
system may yield different rates of thermal emission towards the 
surface. In addition, during a CTF event the decreasing rate of the 
output thermal energy release from the upper condensate zone to the 
surface may be overwhelmed by the lack of atmospheric heat input 
during the winter time. Thus, a resulting significant colder temperature 
fall will be reflected in the temperature sensor. 

Another important feature of the fumarole’s surface temperature 
data is that a little temperature fall takes place during the beginning 
of the autumn season and a dramatic temperature fall occurs during 
the middle of the winter season while there is an inverse relationship 
with the CTF operation time. Even though a more stable time lapse 
of the CTF events should occur as impermeabilization causes more 
permanent structures to hinder the degassing process nearby the 
surface, CTF events operate in ranges from a very short time of 2 
hours to 25 hours. A CTF event occurs over longer times during the 
warmer (end of summer to beginning of autumn season) atmospheric 
temperatures and over shorter times during the colder temperatures 
(end of autumn season to middle of winter season). Assuming that 
degassing from the hydrothermal system is constant, then this 
CTF variable operation time may imply a seasonal effect of the 
atmospheric temperature on the stability of the impermeable layer 
or fracture system. 

Considering the independence of the CTF events from the 
atmospheric seasonal effects and a constant degassing of the 
hydrothermal system, a self-sealing phenomenon would preserve 
the same periodicity by bringing aquifers, the fracture system, and 
the impermeable layer to a mechanical balance with respect to the 
confining burden providing constant periodic heat releases towards 
the surface. The hydrothermal system shows a temporal adjustment 
to seasonal atmospheric changes providing threshold points at which 
temperature drops suddenly and a CTF event happens. During this 
temporal change of the hydrothermal fracture system shrinking of 
the fractures and the porous space will take place. Local pressure 
and accumulation of thermal energy will exceed a threshold point at 
which fractures will again permit thermal energy to be released at the 
surface until the next shrinking event will yield a new temperature 
crisis. On the other hand, if we assume that Nisyros heat output 
from the hydrothermal system is not constant, then shortening of 
the operation time of the CTF events may imply an increase of heat 
output from the Nisyros hydrothermal system and a subsequent 
vulnerability of the Nisyros caldera surface stability.
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The various frequency of the CTF does not exclude the 
impermeabilization process as one of the main driving mechanism 
of this phenomenon, but it is listed among others that would yield 
temperature falls strongly dependent on atmospheric temperature 
seasonality. Open fractures and porous space may permit more time 
for heat to go through and travel towards the surface during the 
summer time and less during the winter time. This assumption does 
not imply that more gas or energy is released during the summer time 
and less during the winter time as sensor measures only temperature. 
In addition this phenomenon probably causes an impermanent 
shrinking of the pathways and fractures that may momentarily 
shrink the porous space, fracture and pathway opening volume, 
impeding heat release towards the surface until accumulated heat 
will trigger the reopening of those and cessation of the CTF event. 
This phenomenon takes place in a cyclic way mostly dependent 
on atmospheric phenomena with the condition that heat output is 
constant from the hydrothermal system of Nisyros. This phenomenon 
would alleviate any normal heat accumulation nearby the surface and 
would preserve a favourable mechanical balance between the internal 
fluid pressure and the external atmospheric pressure avoiding 
triggering hydrothermal instability and further eruption. Periodicity 
of the CTF events may be considered as the threshold points at which 
the impedance of the hydrothermal system to release thermal energy 
is at peak and a temperature crisis occurs upon micro-fractures self-
sealing. Studying the CTF periodicity may provide a useful early 
warning system prior to any risky volcanic activity. 

Conclusion
For this study we analyzed raw and decomposed temperature data 

from a logger installed at the surface of a fumarole in Nisyros volcano. 
Raw data shows a variable frequency of temperature drops (CTFs) 
that may be related to geological phenomena while the decomposed 
data show constant frequencies and periodicities reflecting mostly 
atmospheric phenomena. The decomposition of a time series has 
shown that this is a necessary step to avoid interferences on the data. 
The hybrid model of the Kolmogorov-Zurbenko and the Markov 
Chain approach shows a complementary relationship that strengthens 
the identification of periodicities over a wide range of the long- and 
short-term components of the time series. The KZ filter shows an 
advantage for revealing the long-term processes while the Markov 
Chain may isolate the short-term processes. Short- and long-term 
periodicities of a fumarole’s surface temperature show evidence of a 
cyclic phenomenon with a mechanism that preserves a mechanical 
balance between the internal fluid pressure and the external 
atmospheric conditions, possibly through a cyclical operation of a 
micro-fracture system in an impermeable layer beneath the center 
of the Nisyros caldera surface. Studying the CTF periodicity may 
provide a significant signature of volcanic activity as CTF events 
and related temperature reading periods have shown that volcanic 
thermal energy is driven and regulated mostly by the atmospheric 
temperature variations in the Nisyros volcano. Using similar time 
series techniques for volcanic temperatures at other volcanic sites, we 
may reveal different periodicities depending on the geotectonic status 
of the volcano and explain geochemical and geophysical short-term 
oscillations reflecting various endogenic volcanic behaviors.
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