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Abstract

Healthcare costs have been a significant issue in the United
States. A large proportion of the cost is potentially avoidable if
high-quality care is provided to the appropriate high-cost
members. Moreover, only a small proportion of members
consume the majority of healthcare costs and medical
resources. By predicting more accurately those likely to
become high-cost members and providing proactive care to
those members, a large amount of the medical cost and
resources can be diverted with effective prevention and
outreach programs. Accurately identifying high-cost members
in the future is critical for proactive care.

With the rapid advancements of big data platforms, as well as
data science tools and techniques, machine-learning
algorithms have been successfully applied for predicting
different types of outcomes within the healthcare community. In
this paper, we propose an efficient and effective predictive
model based on the recent open-source algorithm LightGBM to
predict various high-cost members based on different types of
features. The predictive model was compared to several
current “state-of-the-art” and well-known machine-learning
algorithms. Additionally, different feature categories were
extracted from the claims data, social determinants of health
data, access to care information, and the proposed algorithm
was evaluated on different feature groups. The experimental
results show that the proposed predictive model combined with
a specific feature group with more robust features can yield
better performance in terms of different metrics while retaining
operational efficiency.
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Introduction
In 2018, the healthcare cost in the US consists 17.7% of its gross

domestic product, and it is expected to rise to 19.7% in 2028 [1]. On
the one hand, there has been an increasing interest to shift from the
traditional fee-for-service (providers are paid for the volume of
services performed) to the value-based care (providers are paid based
on patient health outcomes – value derived from services), which can
both provide better care for individuals and lower the cost [2]. The
fee-for-service system will result in ‘quantity care’ while the value-
based system is for ‘quality care’. It is estimated that the top 20% of
the population accounts for 80% of the total expenditures [3]. For
those high-cost members, if their costs can be managed well by
providing proactive care and outreach programs, then the total

expenditures can be reduced. However, predicting the high-cost
members is a challenging problem since a member’s probability of
becoming a high-cost member or a low-cost member is associated
with time and the quality of care provided to them. Many factors such
as their age, chronic conditions, historical outcomes and gaps in care,
etc., will determine if they will become a high- or low-cost member.
Moreover, there are several reasons for high-cost, including
admissions and readmissions, emergency (ER) visits, medication
costs, post-acute care costs like hospice care, home health and others.
Therefore, accurately identifying those high-cost members and their
future cost using the rich feature information for proactive care is of
great importance [4-5].

Artificial Intelligence has gained increasing popularity in the area
of healthcare, especially with the evolution of big data platforms. This
is because the large volume of data can provide more useful patterns
for machine-learning algorithms to adapt to those patterns and
separate different classes. Moreover, the electronic health care claims
submission process makes it much easier to fully extract the available
features and exploit the power of machine learning. Different data
sources including medical claims, pharmacy claims, eligibility, and
even Electronic Medical Records (EMR) [6] have been used for
predicting different types of outcomes. For instance, in [7], a Logistic
Regression predictive model is adopted for predicting the binary
outcome to enhance the clinical decision-making. Decision tree based
algorithms have gained popularity because of their predictive
capability. In [8], a decision tree based algorithm is presented to
predict the utilization of healthcare based on socioeconomic data.
Gradient Boosting Decision Tree algorithms such as XGBoost [9]
have been proposed to predict the hospital admission, and the results
show it offers superior performance compared with the logistic
regression and deep neural network predictive models. Improved from
XGBoost, LightGBM [10] proposed novel techniques to reduce the
training time and increase the performance.

In this paper, we propose to use LightGBM to predict high-cost
members using different set of features that are available on the claims
data, Social Determinants of Health (SDoH) and Access to Care
(ATC) information. Different metrics including Precision, Recall, F1
score and Area under Curve (AUC) score of the Receiver Operating
Curve are reported. To investigate the importance of the different
feature categories, the model is tested on different set of features. The
organization of the paper is as follows. First, the dataset and the
features are discussed. Then, the proposed algorithm and the metrics
for performance evaluation is presented. The experimental results are
discussed followed by the discussion and conclusion section.

Dataset and Features
The dataset that is used for experimentation in this study is a

population in one state of the United States. The dataset that we used
is from January 2015 to December 2019. The number of eligible
membership for the latest month (December 2019) was 119,168. The
average age for this population is 30, and the number of male and
female is 55987 and 63182 respectively. The number of members who
has enrolled more than six months at December 2019 is 113227, and
the number of members who has enrolled more than one year is 91324
Different features are constructed from one-year data, and then the
target variable is formed using the costs from the following year. The
detailed formulation of the features and targets is shown in Table 1.
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After eliminating the members who were enrolled for less than six
months in the year of the features, the resulting total number of
samples is 319,328 spanning our dataset’s four-year timeframe. Eighty
percent of the total samples in this dataset are randomly selected for
training and cross validation, and the rest of the samples are used for
testing. All the performance on different metrics is reported on the
testing data. The detailed statistics of the training and the testing
dataset are shown in Table 2. Based on the statistics in Table 2, we
decided to use the yearly cost above the 80th percentile of the total
cost in the training dataset to represent the high cost cohort. The target
variable is a binary variable, and the yearly cost above the 80th
percentile of total cost in the training dataset is set as one to represent
the high-cost members. Otherwise, it is denoted as zero to represent
the lower cost cohort. It can also be noted from Table 2 that the
distributions between the training and testing data are close.

Features Targets

2015/01 to 2015/12 2016/01 to 2016/12

2016/01 to 2016/12 2017/01 to 2017/12

2017/01 to 2017/12 2018/01 to 2018/12

2018/01 to 2018/12 2019/01 to 2019/12

Table 1: Features and targets formulation.

Characteristic Training set Testing set

Patients, N (%) 255364 (80) 63964 (20)

Age, mean (SD) 32 (21) 32 (21)

Male sex, N (%) 113233 (44.34) 28482 (44.52)

More than five chronic
conditions, N (%)

61105 (23.93) 15015 (23.47)

Three to five chronic
conditions, N (%)

57476 (22.51) 14461(22.61)

Two chronic
conditions, N (%)

32458 (12.71) 8210 (12.84)

One chronic condition,
N (%)

44426 (17.40) 11234 (17.56)

No chronic conditions,
N (%)

59899 (23.46) 15044 (23.52)

More than five open
gaps in care, N (%)

59671 (23.37) 14762 (23.08)

Three to five open
gaps in care, N (%)

140057 (54.85) 34761 (54.34)

Two open gaps in
care, N (%)

41744 (16.35) 10874 (17.00)

One open gap in care,
N (%)

12516 (4.90) 3209 (5.02)

Zero open gaps in
care, N (%)

1376 (0.54) 358 (0.56)

Annual cost 80
percentile ($)

6005.3 5986.9

Annual cost 60
percentile ($)

2043.3 2055.8

Annual cost 40
percentile ($)

892.1 900.4

Annual cost 20
percentile ($)

291.3 296.2

More than two hospital
admissions, N (%)

177 (0.07) 39 (0.06)

Two hospital
admissions, N (%)

1751 (0.69) 422 (0.66)

One hospital
admission, N (%)

13739 (5.38) 3428 (5.36)

Zero hospital
admission, N (%)

239355 (93.73) 60000 (93.80)

Table 2: Detailed statistics of the training and testing dataset.

To investigate the effects of the features on the model, we separate
the features into five different sets. Each set includes different feature
categories as shown in Table 3. The total number of features in each
set is also shown in Table 3. The feature category includes
demographic, SDoH and ATC risk scores, chronic conditions,
historical outcomes and indexes.

Feature group Features category No. of Features

Set1 Demographic Only 2

Set2 Demographic + SDoH
+ ATC

4

Set3 Demographic + SDoH
+ ATC+ Chronic
conditions

46

Set4 Demographic +SDoH
+ ATC + Chronic
conditions + Historical
outcomes

379

Set5 Demographic + SDoH
+ ATC + Chronic
conditions + Historical
outcomes + Indexes

401

Table 3: Different feature groups.

The demographic features include age and gender. We also include
the nonclinical feature categories including SDoH risk score and ATC
risk score. The SDoH risk score is calculated by using a logistic
regression machine learning model, and the features include education
level, occupational and financial well-being, physical and social well-
being, housing and nutrition, environmental and access-to- care at a
census tract level. The ATC risk score is calculated based on the
distance between the members’ home location and their primary care
physician and available hospitals. The chronic conditions category
includes forty chronic conditions, two indicators of rare disease and
one-time disease. In this category, there are a total of 42 features. For
example, if a patient has hypertension, then the corresponding value of
this feature will be assigned as one. On the contrary, if a patient does
not have hypertension, then the value of the hypertension feature
column will be zero. This could also be considered a comorbidity set.

In the historical outcomes category, monthly cost of different types
and historical outcomes including number of emergency visits,
hospital admissions, office visits, etc., are constructed as a time series.
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For instance, monthly inpatient cost for each month is included in the
feature matrix for the twelve months. Simple moving average and
exponential moving average [11] for different outcomes and cost is
calculated for a twelve-month window. The exponential moving
average of the monthly cost is a feature that can determine the trends
of cost for that member. High value of this feature indicates that this
member has higher medical cost or number of outcomes in recent
months compared with prior months. The gaps in care for the chronic
conditions are also included in those features. For instance, months
since the patient was seen for Diabetes, though not a National
Committee for Quality Assurance (NCQA) gap, has been considered
as a diabetes care persistence gap for purposes of this model, and is
considered as one feature. There are a total of 333 features in this
category.

In the indices category, LACE index [12], Charlson index [13]
Chronic Illness and Disability Payment System (CDPS) risk score [14]
are included. Additionally, each ICD diagnosis code and NDC drug
code has been assigned a score from the training dataset by grouping
the different types of outcomes. Since there are a large number of ICD
and NDC codes, this can be considered as a dimensional reduction
approach while taking full advantage of the available information.
Based on the individual ICD and NDC scores for different types of
outcomes, the ICD and NDC index are calculated and formed as
features. For instance, if a member has ten ICD codes, then the ICD
index for hospital admission is calculated as the summation of the
individual ICD scores weighted with respect to hospital admissions
associated with that code. Since the outcomes can be different types
including hospital admission, Emergency Department visits,
Readmission, and the target can be grouped in a period of a year or the
last quarter, different ICD and NDC indices can be generated as
features. In this category, there are a total of 22 features.

Based on the different category of features, we constructed different
set of features as shown in Table 3. For instance, feature set1 only
include the demographic features. Feature set2 include the
demographic features, SDoH risk score, and the ATC risk score.
Feature set3 includes both the demographic features SDoH risk score,
the ATC risk score, and the chronic conditions. The Chronic
conditions are list in Table 4. In feature set4, demographic, SDoH risk
score, ATC risk score, the chronic conditions, and the historical
outcome are included. Finally, in the last set, the index features are
included along with all the features in set4.

CAD Hypertension Diabetes CHF

Asthma Joint disorders Cancer Cerebrovascula
r disease

Anxiety
disorders

COPD Prediabetes Osteoporosis

Depression Renal disease Obesity Arthritis

Epilepsy Autism HIV Substance use
disorder

Sickle Cell
Anemia

Cerebral Palsy Congenital
anomalies

End stage renal
disease

Cystic Fibrosis Neoplasm Bipolar disorder Neuro cognitive
disorder

Schizophrenia Personality
disorders

OCD Neuro
development
disorder

Hemophilia Hyperlipidemia Intellectual
disabilities

Organ
transplant

Immunity
disorder

Seizure
disorder

Somatic
disorders

Trauma and
stress

Table 4: Different chronic conditions included in the features.

Methods and Metrics
The algorithm that we used in the experimentation is LightGBM,

which is an Efficient Gradient Boosting Decision Tree. Improved from
XGBoost, two techniques including Gradient-based One-Side
Sampling and Exclusive Feature Bundling are implemented for high
accuracy and scalability [10].

The performance metrics in the experimentation include Accuracy,
Area under curve (AUC), Precision, Recall, F1 score. The Accuracy is
the total correctly predicted testing samples out of all the testing
samples regardless of their classes. AUC is the area under the
Receiver operating characteristic curve (ROC), which plots the trade-
off of specificity against the sensitivity for every cut-off. The larger
this value, the better the performance. For Precision, Recall, F1, we
illustrate the cases for the positive class. The rule is the same for the
negative class if the class labeled is reversed. Thus, for simplicity, for
those three measures, we illustrate the case for the positive class only.
Precision is defined as the ratio of the correctly predicted positive
samples over all the true positive samples as shown in Equation (1).
Recall is defined as the ratio of the correctly predicted positive
samples over all the true positive samples as shown in Equation (2).
Note Precision for the positive and negative class is denoted as
Precision (positive) and Precision (negative) respectively. Recall for
the positive and negative class are defined as Recall (positive) and
Recall (negative) respectively. Recall (positive) and recall (negative)
are also known as Sensitivity and Specificity respectively. The F1
score is a trade-off metric that balances the precision and recall as
shown in Equation (3).

Precision=(True Positive)/(True Positive+False Positive) (1)

Recall=(True Positive)/(True Positive+False negative) (2)

F1=(2*Precision*Recall)/(Precision+Recall) (3)

Results
First, we compare the performance of different algorithms using all

the available features. The algorithms include Logistic Regression
(LR) [15], Naïve Bayes classifier (NB) [16], K-nearest Neighbors
algorithm (KNN) [17], Neural Network (NN) [18], Decision Tree
algorithm (DT) [19], XGBoost [20], and LightGBM. LR is a linear
classifier that aims to maximize the binary cross entropy among the
training samples to separate the classes. NB is a simple probabilistic
classifier that relies on the Bayes theory. KNN is a non-parametric
classifier that in the prediction process, the testing sample’s label is
determined by its n closest distance from the training samples. NN is
the classifier that consists of multilayers of neurons, and during the
training process, the weights of the neurons are generated by the
training samples. In the prediction process, the probability of
belonging to different classes is calculated by the weights and each
testing sample feature for each testing sample. A DT classifier
generates the tree-like rules during the training process, and the
prediction process can be determined by the learned rules from the

Citation: Xu Y, Kirit P, Cooper J (2021) An Efficient Model for Predicting High-Cost Members. J Health Inform Manag 5:2.

Volume 5 • Issue 2 • 117 • Page 3 of 6 •



training process. XGBoost is a scalable tree boosting algorithm that is
easily scalable and has been widely used in the industry. Five- fold
cross validation is implemented on all the algorithms for hyper-
parameters tuning to select the best parameters for fair comparison.
The detailed parameters by cross validation for each algorithm are
shown in Table 5, Figure 1 shows the AUC for all the algorithms. We
can see that the proposed LightGBM algorithm can yield the best
performance in terms of the AUC value. Another observation is that
Decision tree based algorithms including LightGBM, XGBoost, DT
have better performance in terms of AUC value compared with other
algorithms investigated. The NN classifier also has good performance,
followed by KNN and Naïve Bayes algorithm. KNN has the worst
performance in terms of AUC.

Algorithms Parameters: value

LR [“C”:0.001, “penalty”:L2]

NB [“smoothing parameter”:1e-8]

KNN [“number of neightbors”:5] Journal of
health informatics and management

NN [“hidden layer sizes”:(100,
2), ”activation”:’relu’]

DT [“criterion”:’gini’, “max depth”: 6]

XGBoost [“learning rate”:0.02, “max depth”:8,
“gamma”:0.7, “min child weight”:2,
“estimators”:500, “max leaves”:300,
“col-sample by tree”:0.8]

LightGBM [“learning rate”:0.01, “max depth”:12,
“max le aves”:260, “min child
weight”:3, “estimators”:900, “col-
sample by tree”:0.61, “regularization
lambda”:0.2]

Table 5: Parameters by cross-validation for different algorithms.

Figure 1: ROC curve for different algorithms.

Table 6 shows the performance of all the algorithms for different
metrics. It can be concluded that LightGBM can outperform other
State-of-the-Art algorithms including LR, NB, KNN, NN, DT, and
XGBoost in terms of Accuracy and AUC. For the metrics Precision
(positive) and Recall (negative), KNN has slightly better performance
than LightGBM. The reason might be that for KNN, there are more

negative samples that have been predicted in the prediction process.
Since KNN algorithm determines the class label by calculating the
similarity between the testing sample and each training samples, and
the most samples in the training dataset belongs to class zero.
Therefore, when calculating the similarity in the prediction process,
more zero class samples are determined. However, in terms of Recall
(positive), which is a more important metric to predict the high-cost
members out of the total high-cost members, LightGBM can yield
significantly better performance than KNN.

Algor
ithm
s

LR NB KNN NN DT XGB
oost

Light
GBM

Accur
acy

0.880
9

0.859
1

0.887
6

0.891
4

0.893
7

0.901
4

0.903

AUC 0.88 0.875
6

0.843
2

0.915
9

0.914
3

0.929 0.932
1

Preci
sion
(nega
tive)

0.926
1

0.912
4

0.910
8

0.932
7

0.93 0.938
9

0.939
7

Preci
sion
(posit
ive)

0.700
4

0.645
8

0.767
6

0.726
6

0.741
5

0.751
4

0.754
5

Recal
l
(nega
tive)

0.925
1

0.911
4

0.952
8

0.931
6

0.937
8

0.937
8

0.938
6

Recal
l
(posit
ive)

0.703
4

0.648
6

0.625
1

0.729
8

0.716
4

0.754
7

0.757
8

F1(ne
gativ
e)

0.925
6

0.911
97

0.931
4

0.932
2

0.933
9

0.938
3

0.939
1

F1
(posit
ive )

0.701
9

0.647
2

0.689
1

0.728
2

0.728
7

0.753
1

0.756
1

Table 6: Different metrics on the algorithms.

Additionally, we compare the performance of the LightGBM using
different set of features in Figure 2. The motivation is to investigate if
adding new types of features will increase the performance of the
model. It can be clearly seen that with only demographic features, the
performance is very poor. For example, the Precision and Recall of the
positive class is even less than 0.5. With the SDoH risk score and ATC
risk score incorporated, the performance of the model can be slightly
improved with the demographic only features. By adding the different
chronic conditions feature, the performance of the model is increased.
If more features including the historical outcomes features are added,
then we see a clearly improved performance for all the metrics. The
reason is that when the number of features is very low, samples
between different classes are very hard to be distinguished with each
other in a low dimensional space. By adding more features and
increasing the nonlinearity, samples are easier to be separated from
each other. Moreover, we could see a slight increase in performance
over different metrics when adding the index set of features.
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Figure 2: LightGBM performance for different feature groups.

The training and testing time of the different algorithms are
presented in Table 7. As we can conclude from this table, the training
time for LR, DT, and NB is less compared with XGBoost, LightGBM,
and NN. This is expected because LR, DT, and NB are simpler
classifiers and have less parameter during the training process. For
XGBoost and LightGBM, they are improved from the DT algorithm
by using boosting algorithms. Additionally, we can see that XGBoost
has a longer training time compared with LightGBM, which is
expected. KNN has the longest testing time, and this is because in the
testing process, the testing sample needs to compare with every
training sample to find the closet neighbors.

Algor
ithm
s

LR NB KNN NN DT XGB
oost

Light
GBM

Traini
ng
time
(s)

19.78
14

3.153
67

- 242.3
75

15.37
21

298.9 172.3
4

Testin
g
time
(s)

0.178
5

0.869
67

1464.
93

0.875
629

0.226
39

0.001 3.700
14

Table 7: Computational cost of different algorithms.

Discussion
The performance of the proposed LightGBM with a set of rich

features and the model using the CDPS risk score is also reported in
Figure 3. As we can conclude from this figure, the proposed model
will significantly outperform the model that applies CDPS risk score
only. For instance, for the recall on the positive class, the proposed
algorithm is 0.76 while the one using the CDPS risk score is only 0.47,
which means that the proposed algorithm can accurately identify more
than 29% of the total high-cost members. The AUC score of the
proposed model is also significantly larger than the one using the
CDPS risk score. Additionally, we investigate the amount of the cost
on the testing data using both the proposed model and CDPS risk
scores. The total cost of the members on the testing data is $408.16
million. By reaching out to the members with the positive predicted
categorization, $311.046 million can be accurately identified by the
proposed model, compared with only $127.16 million using the CDPS
risk score.

Figure 3: LightGBM and CDPS risk score performance.

Conclusion
In this paper, we consider the use of an efficient algorithm

LightGBM for predicting the high-cost members. The proposed
algorithm is compared with current state-of-the-art machine learning
algorithms over several metrics. The experimental results show that
the proposed algorithm consistently outperforms current state-of-the-
art algorithms over different metrics. Different sets of features are also
investigated on the performance of the proposed model to evaluate the
different aspect of features. Additionally, the performance of the
proposed machine learning model is compared with the model using
CDPS risk scores. From our study and methods utilized, one could
conclude that by including more features, the predictive modeling
performance can be significantly improved and accurately predict
high-cost members.
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