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Abstract
Complex networks are intrinsically modular. Resolving small modules 
is particularly difficult when the network is densely connected; wide 
variation of link-weights invites additional complexities. In this article 
we present an algorithm to detect community structure in densely 
connected weighted networks. First, modularity of the network is 
calculated by erasing the links having weights smaller than a cutoff 
q. Then one takes all the disjoint components obtained at q=qm, 
where the modularity is maximum, and modularize the components 
individually using Newman Girvan’s algorithm for weighted networks. 
The performance of the proposed algorithm is evaluated on four 
different types of network. Initially taking microRNA (miRNA) co-target 
network of Homo sapiens as an example, we show that this algorithm 
could reveal miRNA modules which are known to be relevant in 
biological context. We also demonstrate the algorithm for scientific 
collaboration network, character interaction network of the novel Les 
Miserables, neural network of C. elegans and email communication 
network among employees of a company. In all these cases this new 
algorithm could efficiently detect all the relevant modules, particularly 
the small ones which are very strongly connected.
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likely to function together for some common cause; being able to 
unravel such communities help in identifying functional properties 
of the network. For example, in social networks [21], communities 
observed are based on interests, age, profession of the people. 
Similarly, communities reflect the themes of the web-pages in 
World Wide Web, related papers on a single topic in citation 
networks [22], subsystems within ecosystems [23,24] in food 
webs, and it may relate to functional groups [25,26] in cellular and 
metabolic networks.

To reveal the community structure of complex networks several 
methods have been devised, which includes Kernighan-Lin algorithm 
[27], spectral partitioning [28,29], hierarchical clustering [30] etc. 
Some of the recent algorithms are based on centrality measures [10], 
percolation models [31], random walks [32,33], resistor networks 
[34] and many others [35-39]. Majority of these methods are, 
however, context based and rely on maximization of a quantity called 
modularity Q. For any given partition, Q quantifies [34] the links 
present within the modules minus the expected number of links of 
an equivalent random network. Based on the idea, that best partition 
of a network is the one with maximum Q, Newman and Girvan 
have developed a couple of algorithms [10,34,40] which are further 
extended to include large [41] and weighted [42] networks. Newman 
Girvan’s modularization (NGM) algorithms, though widely used for 
finding modules of both weighted and unweighted networks, have 
some shortcomings [43]. It was argued that modularity maximization 
algorithm can resolve the network upto a scale that depends on 
the total number of links l; a module having more than  1 2  links 
cannot be resolved even when it is a clique and connected to external 
modules through just one link. Moreover, the situation gets worse 
when substantial number of small communities coexist with large 
ones. This observation is also true for weighted networks [44,45]. 
Therefore modularity maximization uncovers only large modules 
missing important sub-structures which are small.

Weighted networks bring in additional difficulties. Here, 
modularity maximization methods prefer to assign the links with 
small weights as the inter-module links. For networks with wide 
weight distribution, however, it is difficult to identify the links 
which should be taken as inter-module connections. To overcome 
this difficulty a clustering method has been proposed recently by 
Mookherjee et al. [20] in context of microRNA co-target network of 
Homo sapiens which is a weighted network with dense connections. 
This algorithm also suffers from certain short comings. First, the 
method has certain in-built arbitrariness in determining the total 
number of clusters. In addition, its sub-structures connected by 
large-weighted links, if any, remains undetectable. This situation 
begets the confusion whether inspite of presence of visibly distinct 
sub-structure they should be considered as a single component or 
be treated as two separate modules (Figure 1). In certain biological 
contexts, a circumstance, may correspond to two modules which does 
independent functions, but only a few nodes are significantly involved 
in both functions (Figure 1). Thus it is important to consider these 
sub-structures as independent modules, even though it lowers the 
modularity; or otherwise each module will act as a noise for each other 
while identifying their functionality. Details of the algorithm and its 
shortcomings are discussed in the next section. 

Introduction
Networks, a set of nodes or vertices joined pairwise by links or 

edges, are commonly used for describing socio-logical (scientific 
collaborations [1] and acquaintance net-works [2]), biological 
(proteins interactions, genes regulatory, food webs, neural networks, 
metabolic networks), technological (Internet and the web) and 
communication (airport [3], road [4,5], and railway network [6,7]) 
systems. The topological properties of these complex networks [8,9] 
help in identifying underlying community structures [10], network 
motifs [11], connectivity [12] and several other properties [13]. The 
links of a network can also be weighted. Some of the networks are 
associated with links of varying strengths [14-17] represented by link-
weights. The topological properties of weighted networks [18,19] are 
quite different and their study requires additional care. In particular, 
when link-weights vary in a wide range, one need to identify suitably 
the irrelevant links and ignore them to simplify the network [20].

Most networks in nature, whether weighted or not, exhibit 
community (or modular) structures. Detection of communities in the 
complex networks provide invaluable information on the underlying 
synergism. Nodes which belong to a particular module are more than 
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In this article we propose a new algorithm in an effort to overcome 
these shortcomings and to efficiently determine the communities of 
any dense weighted network. Initially we demonstrate the algorithm 
using the microRNA co-target network of Homo sapiens and compare 
the modules with those obtained by NGM algorithm for weighted 
networks [42] and the clustering algorithm [20]. Later we also 
successfully identify the modules of four other real world networks-
collaboration network of scientific [34], interaction network between 
the characters of the novel Les Miserables [46,47], neural network 
of C. elegans, and email communication network [48] among the 
employees of a small company.

Clustering algorithm

In a recent article, Mookherjee et al. [20] has proposed an 
algorithm to find clusters of miRNA co-target network of Homo 
sapiens. MicroRNAs are short non-coding RNAs which usually 
suppress gene expression in post-transcriptional level [49]. Taking the 
predicted targets of 711 miRNAs of Homo sapiens from Microcosm 
Target database [50], the authors constructed the co-target network 
by joining miRNAs pairwise by weighted links. The link-weight w 
corresponds to the number of common targets of the concerned 
pair. The network thus constructed consists of 711 miRNAs (nodes) 
and 252405 edges. Since the network is fully connected, it is evident 
that clusters containing less than half the number of nodes cannot 
be resolved by standard algorithms [34,42]. To obtain the clusters of 
this densely packed network Mookherjee et al. [20] have adopted the 
following strategy.

The link-weights of this network vary in a wide range: minimum 
being 1 and maximum 1253. Thus most links are considered irrelevant 
in determining the clusters. In an attempt to simplify the network, 
links with weights smaller than a pre-defined cutoff value q are 
erased; the resulting network breaks into small disjoint components. 
Denoting, N(q) as the number components the authors find that 
N(q) does not increase substantially until q reaches a threshold value 
q* and then it breaks quickly into large number of components 
(Figure 2) [20]. Thus the network is optimally connected at q*=103 

where ( )d N q
dq

 is maximum. Among all the components obtained 

at q*=103, the largest one 𝒢 contains 479 miRNAs. A large fraction 
of miRNAs present in 𝒢 are found to down regulate expression of 
genes involved in several genetic diseases. To explore how miRNAs 
are organized in 𝒢, q is increased further until the total number of 
components does not change much. At q=160, the subgraph 𝒢 has 
70 components (called miRNA clusters) and 149 lone miRNAs. Note 

that if we consider all 711 miRNAs, instead of 479 miRNAs belonging 
to 𝒢, the total number of clusters would have been 94 (Table 3).

Further, the authors have analyzed these 70 clusters and claimed 
that they are biologically relevant-either pathway or tissue or disease 
specific. Note that, even though the targets are predicted based on 
sequence similarities, the microRNA clusters reveals functionality quite 
well; only about 11 clusters are found to contain miRNAs of identical 
seed sequence. Thus it is suggestive that a group of miRNA, instead of 
individual ones, is involved in carrying out necessary functions.

Limitations

Although the cluster finding algorithm discussed in partitions 
the miRNA co-target network into several components which 
provide significant information about the functions of miRNA 
clusters, it suffers from certain limitations [20]. Firstly, there exists 
few clusters containing a large number (as large as 47) of miRNAs; 
such large clusters produce significant noise in identifying pathways 
and functions from enhancement analysis. Secondly, if a miRNA 
cluster has two or more sub-structures which are connected by a few 
links having weights much larger than q*, it is beyond the scope of 
this algorithm to resolve them. For example the network in Figure 1 
clearly has two modules but weight of the few links that joins the two 
modules are larger than q*. Since the algorithm looks for disconnected 
components of the graph, it is not possible to uncover these two 
obvious modules (A and B). Lastly to reveal the sub-structures of a 
giant cluster G, q is increase to an arbitrary value (taken as 160 [20]). In 
practice the actual number of clusters depends weakly on this choice, 
however it still introduces arbitrariness in the algorithm. All these 
shortcomings necessitate exploring other appropriate algorithms for 
finding the community structure in dense weighted network.

The Proposed Algorithm
In this section we proposed a modularization algorithm for dense 

weighted network (MADWN). The algorithm primarily consists of 
two steps -first, finding the major communities and second, extracting 
their sub-structures. 

 Step I: For finding the modular structures, we consider a 
weighted network which is densely connected. Let the network has 
M nodes denoted by i= 1, 2, . . . , M and a connected pair of nodes i 
and j has non zero weight Wij. Thus, the network is represented by an 
adjacency matrix W with elements

0{w if i and j areconnected
ij otherwisew =               (1)

Figure 1: This weighted network consists of visible substructures A and B connected by two strong links. It is likely that nodes in A are involved in functions 
different from those of B; only four nodes (labeled as a, b, c, d) participate in both.
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already known community structure. This comparative study of the 
modular structure of each of the real world networks considered here 
are found to be in good agreement with communities found earlier.

MicroRNA co-target network

 First let us demonstrate this algorithm for miRNA co-target 
network of Homo sapiens, a dense and weighted network constructed 
and studied by Mookherjee et al. [20]. MicroRNAs (miRNAs) are small 
single stranded ~22nt long non-coding RNAs [51] that repress gene 
expression by binding 3’-untranslated regions (3’ UTR) of messenger 
RNA (mRNA) target transcripts, causing translational repression 
[49]. Being a secondary regulator, miRNAs usually repress the gene 
expression marginally. Thus it is natural to expect that cooperative 
action of miRNAs are needed for alteration of any biological function 
or pathway. MicroRNA synergism has been a recent focus in biology 
for studying their regulatory effects in cell. Recent articles [20,52] 
have identified the assemblage of the miRNAs for performing various 
activities. In this view finding the small clusters or communities of the 
miRNAs that work together for regulatory functions is quite relevant. 
For completeness, first we describe the construction of miRNA co-
target network briefly and then proceed for obtaining modules of this 
network using the MADWN algorithm discussed here.

Construction of miRNA co-target network

The miRNAs which act as secondary regulators can target more 
than one mRNA transcripts and a transcript can also be targeted by 
many miRNAs. Computationally predicted targets of miRNAs for 
different species are available in Microcosm Target database [50]. For 
constructing the miRNA network the targets of miRNAs are collected 
from the above mentioned database. The data predicts 34788 targets 
for 711 miRNAs for Homo sapiens.

The miRNA co-target network is constructed by considering 
miRNAs as nodes, and a link with weight w is connected between 
two miRNAs if they both target w number of same target transcripts. 
The detailed procedure for constructing the miRNA co-target 
network is shown in Figure 3. The network thus formed is weighted 
and undirected. For convenience, miRNAs are given arbitrary, but 
unique, identification numbers i=1, 2,…, M, where M represents 
the total number of miRNAs present in the species. The miRNA co-
target network is represented as adjacency matrix W, where element 

We also assume that the network is densely connected. A 
preliminary simplification can be done [20], where links with weights 
smaller than a pre-decided cutoff q are erased. The resulting network 
thus breaks up into smaller disconnected components -say N(q) in 
total. It is evident that N(q) is the number of diagonal blocks of a 
matrix Wq with elements

0{ ij

ij

if w qq
ij w otherwisew <=                 (2)

Clearly N(q) must strictly be a non-decreasing function with 
N(q=0)=1.

We proceed further to calculate the modularity of the concerned 
weighted network for different values of q. In general, if a network 
(weighted) has c partitions, one can calculate the modularity [42] 
from knowing the set of nodes which belong to each partition,

1

1 ( )
2 2

c i j l
ij ijl ij

k k
Q w S

m m=
= −∑ ∑              (3)

where i ijj
k w= ∑  represents sum of the weights of the edges 

attached to node i and ii
m k= ∑ . The term l

ijS  is 1 only if vertices 
i and j belong to same group. For a given q, we take the components 
as the modules (thus c=N(q)) and denote corresponding modularity 
as Q(q). Note that, unlike N(q), the modularity Q(q) need not be an 
increasing function. A schematic plot of these functions are shown 
in Figure 2. Since, large modularity is a feature of better community 
structure we choose the value qm where Q(q) takes the maximum 
value and then collect set of components obtained there for further 
analysis.

 Step II: The number of nodes present in each of the components, 
i.e., the component sizes obtained at qm, are quite large. To obtain 
finner partitions, we find further sub-structures present in the 
individual components by using Newman Girvan modularization 
(NGM) algorithm for weighted networks [42], taking the components 
one by one. For each component we accept the partition if the 
modularity value for this partition is positive or otherwise we ignore 
it. Collections of all the partitioned components of the network are 
then considered as the final modules of the weighted network.

Example Case Studies
In this section, we use MADWN algorithm to find communities 

in several other real world networks, and compare them with the 

Figure 2: The outline of the algorithm MADWN that has been developed to find the modules of the densely linked weighted network.
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Wij represents the number of mRNAs co-targeted by miRNA i and j 
together. Thus Wij represents the weight of the link joining the nodes 
i and j. If a miRNA pair i and j have no common targets, they are not 
connected and we set Wij=0. The diagonal elements of matrix W are 
taken to be zero i.e., Wij=0. The link-weights the miRNA co-target 
network cannot be ignored while finding the communities present in 
the network; the community structure depends on both weights and 
the connectivity of the miRNAs.

Results
We obtain the components of miRNA co-target network using 

MADWN by progressively deleting the links which have weight less 
than q. For each q, taking the components as the communities of the 
graph, we calculate modularity Q(q). Figure 4 shows N(q) and Q(q) 
as a function of q. As expected N(q) is a non-decreasing function 
whereas Q(q) shows a maximum at qm=146. At q=qm, the modularity is 
Q(qm)=0.044 and there are 379 components, of which 284 are isolated 
miRNAs and the rest 95 have two or more miRNAs each (Table 1). 
Clearly, most of the components contain small number of miRNAs 
(less than 7), some have moderate number (9,12,16) and only two are 
large containing 47 and 85 miRNAs. In the next step we aim at finding 
modules of all these 95 disjoint graphs (components) individually 
using NGM algorithm for weighted network [42]. It turns out that 
only the large and moderate sized components (19 out of 95) give 
rise to smaller sub-structures (modules) where other components do 
not show any sub-structure. For example, the largest component (I 
in Figure 5) containing 85 miRNAs, partitions into 7 small modules 
of size (14,12,12,19,11,13,4) and the next largest having 47 miRNAs 
(Figure 5) has 6 modules of size (9,21,3,3,2,9). Partition of other three 
components of size 16, 12 and 9 are also shown in Figure 5 (marked 
as III, IV and V respectively). As a whole this algorithm results in 124 
modules in total. The distribution of their sizes is given in (Table 2).

The size of the partitions obtained for miRNA co-target network 
of Homo sapiens using (i) NGM algorithm for weighted network 
[42], (ii) clustering algorithm [20] and (iii) the current work are 
compared in Table 3. It is evident that NGM algorithm gives the 

highest modularity, but the modules obtained there are very large. 
On the other hand, the clustering algorithm [20] gives smaller 
modularity value and moderate size clusters and it was claimed that 
these clusters are biologically relevant i.e., they are pathway, tissue or 
disease specific. However, some of the clusters are still very large, and 
it is difficult to ascertain functional specificity to these clusters. This 
problem is resolved in our algorithm in expense of low modularity 
value. Such partitions can be accepted only when the functional 
specifications obtained here are consistent with those obtained 
earlier [20]. The authors have obtained 70 clusters, each having two 
or more miRNAs [20]. All these clusters are found to be pathways, 
disease or tissue specific; for convenience, we denote them as C1, C2 
,…, C70. We analyze the miRNA contents of these 70 clusters in terms 
of the 124 modules obtained in this work (namely M1, M2,…, M124). If 
modular structure of miRNAs is different from those of the clusters, 
one expects that each cluster would contain miRNAs belonging from 
many different modules. However we find that each cluster, terms 
of their miRNA content, is either identical to one of the modules or 
composed of at most four modules. This is described in Figure 6 in 
details. As described in the Figure 6, clusters C1 to C44 are identical 
to the respective modules M1 to M44. Module M45 is same as C45 but 
contains one extra miRNA, marked as S in Figure 6; the same is true for 
modules M46 to M55. MicroRNAs of all other clusters C56 to C70 comes 
from two or more modules. If all miRNAs of a module participate in 
forming a cluster we represent it in Figure 6 by a fully shaded box, or 
otherwise by a partially shaded box. For example, C60 consists of all 
miRNAs of module M60 and some miRNAs of M74. Note that miRNAs 
of module M49 belong to two clusters C49 and C69; another example is 
M80, whose miRNAs belong to C66 and C70. This analysis revels that 
the modules obtained in this work are either same or very similar to 
those obtained [20]. Since miRNA clusters are known to be pathway 
and tissue specific, the modules obtained here, which are combined to 
form the clusters are undoubtedly biologically relevant.

Scientific collaboration network

As a second example, we consider collaboration network 
among the scientists conducting research on network science. This 

Figure 3: Construction of miRNA co-target network. (a) A representative data for 8 miRNAs and their targets transcripts. (b) The adjacency matrix (W) with 
element Wij corresponding to the number of common target transcripts. (c) The miRNA co-target network, where the miRNAs are represented as nodes 
which are connected by links having weight Wij.
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collaboration network is constructed from the bibliographies of two 
review articles on networks [53,54]. 

In the collaboration network, the nodes represent scientists whose 
names appear as authors of the articles listed in the bibliographies 
of [53,54] and an edge joins any two authors who are coauthors 
in these papers. This collaboration network consisting of 1589 
scientists is multi component graph, with the largest component 
comprising 379 scientists, and the rest are distributed among 
395 other smaller components [55]. In this current study we 
consider only the largest component (with 379 nodes) for finding 
its modular structures. The Newman Girvans modularization 
algorithm for weighted network [42] yields 20 modules of this 
network with modularity value 0.850. Whereas the application 
of MADWN algorithm results in 45 modules. Comparative study 
of these 45 modules with those obtained here by NGM algorithm 

for weighted network [42] and those previously obtained, implies 
that these components not only denotes the substructures of these 
modules but also identifies quite clearly the significant scientists 
who have strong collaborative work in these network science 
articles [34,55].

The MADWN algorithm in its first step determines the value of 
qm=53 where the modularity of the network becomes maximum by 
ignoring all the links that have weights less than qm. In the next step 
the components of this network are obtained by deleting the links 
having weight less than qm, and then the modular structures of all 
these components are found. As a result, we obtain 45 modules of 
this collaboration network, the scientists involved in this modules are 
shown in Figure 7. These set of scientists are the most significant ones 
in this collaboration network, and they mostly collaborate among 
themselves. Earlier studies [34,55] in this regard has produced similar 

Figure 4: Plot of the number of components N(q)  verses q show a monotonically increasing curve. At every q the partition of the network corresponds to 
a modularity value Q(q). The Q(q) verses q plot shows a peak at qm=146.

Component Size : 1 2 3 4 5 6 9 12 16 47 85
Frequency : 284 47 24 8 6 5 1 1 1 1 1

Table 1: The distribution of size of the components at qm=146 for miRNA co-target network of Homo sapiens.

Figure 5: Left: The miRNA co-target network of Homo sapiens; it is fully connected network of 711 nodes. Right: At qm=146 all the components of size more 
than 5 are marked with different colors. Top five components are indicated with roman numbers, Component I (size: 85), II (47), III (16), IV (12) and V (9). 
These components when further analyzed with NGM weighted algorithm they partition into several modules.

Module size : 2 3 4 5 6 7 9 11 12 13 14 19 21
Frequency : 65 38 4 5 1 1 3 1 2 1 1 1 1

Table 2: Size distribution of miRNA modules obtained using MADWN. Note that there are 284 number of lone miRNAs which are not shown here.
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Methods N(q) Q(q) Component size
NGM Algorithm [42] 4 0.081 (6, 79, 294, 332)
Clustering algorithm [20] 94∗ 0.025 (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16, 31, 47)
MADWN 124 0.022 (1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 19, 21)

Table 3: Comparison of the three methods in context of finding the modules of densely connected weighted miRNA co-target network. The number of components or 
modules N(q) obtained with the corresponding modularity Q(q) are mentioned along with the sizes of the components for each of the algorithms.

*MiRNAs of the giant cluster 𝒢 in Reference [20] consists of 70 modules; the rest of the miRNAs form 24 modules.

Figure 6: Comparison of the modules obtained using MADWN with the clusters got from the clustering algorithm in Reference [20]. It is clear that all 
the cluster of miRNAs (denoted as C) are just combination of the modules (denoted as M) obtained here. The number written as subscript of C and M 
represents the ID number of the clusters and modules.

Figure 7: The modules of the collaboration network of the scientists present as the authors in the bibliography of two review articles on network [53,54] 
obtained using MADWN algorithm. These 45 modules indicated the significantly collaborating scientists in these particular articles.

type of modules of scientists as found presently using MADWN. But 
from the earlier modular structures it was not possible to identify 
the most significant scientists in the entire considered community, 
rather it could only identify the groups of scientist who worked 
collaboratively. Whereas in the present methodology, we could 
identify the most relevant scientists involved in this network, and also 
find the collaborations among them. Figure 7 shows in details all the 
45 modules of the collaboration network obtained using MADWN 

algorithm; the name of the scientists present these modules are 
indicated for reference.

Character relationship network in novel les miserables

For the next application of MADWN algorithm to real-world 
network, we consider the network of characters present in the 
Victor Hugo’s novel Les Miserables. The dataset collected, describes 
the relationships between the characters in the novel of crime and 
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redemption, Les Miserables [46,47]. In this network the nodes represent 
characters and a link between two nodes represents co-appearance of the 
corresponding characters in one or more scenes. There are in total 77 
characters (nodes) in the novel and they have 257 links among themselves

The modular structure of this network was initially studied by 
Newman and Girvan [34] with betweenness-based hierarchical 
algorithm, later by Lou and Suykens [56] using a separate 
modularization method. When we applied NGM algorithms for 
weighted network [42] which uses module maximization technique 
to find module, it leads to 5 modules M1 (6); M2 (10); M3 (11); M4 
(17); M5 (33) with sizes as indicated within the braces and the 
modularity value 0.547. These 5 modules are found to be similar to 
the ones previously observed by Lou and Suykens [56]. Although 
these modules could identify the frequently associated characters in 
the novel, but it is unable to specify the novel’s main characters. For 
the purpose we applied MADWN algorithm on this network.

The MADWN algorithm initially ignore all the links that have 
weights less than qm=9; at this value of qm the modularity of the 
network becomes maximum. This process results in separation 
of 64 characters (nodes) which 484 remains as singlets and some 
components. The substructures of these components are further 
analyzed in the 486 second step of MADWN algorithm, which results 
in 4 small module -m1 (2); m2 (2); m3 (4); m4 (5), sizes are indicated 
within the bracket (Figure 8). Comparing the members of these 
components with those of the modules depicts that the components 
m1 is a sub-unit present in M2; m2 and m4 in M5 and m3 in M4. The 
characters in this component are seen to have high frequency of co-
appearance in several scenes. The novel centers around these main 
characters of these components, such as the protagonist Jean Valjean, 
the police inspector Javert, the Bishop Myriel, servant of the Bishop 
Madame Magloire. Thus we see that MADWN algorithm finds 
preciously the main characters involved in the novel Les Miserables 
and reflects the relation among them.

Neural network of C. elegans

 In this section we apply the MADWN algorithm to another 
network, neural network of nematode worm C. elegans to find its 
underlying modular structures. The data for these neural networks 
of C. elegans is obtained from an article by White et al. [57]. They 
have considered the synaptic connectivity between neurons in the 
somatic nervous system except the pharynx. The data lists all the 
possible synaptic connections that exist between a neuron and its 
target neuron. This synaptic connectivity for a pair of neuron may 

be a chemical synapse, gap junction, or sometimes the synapse 
specification may be missing. It is found that a particular neuron 
may be connected to another neuron via (say) w synapses, but the 
later one may not be connected to the former by the same number 
of synapses. For convenience we have ignored these directionalities. 
For a pair of neurons we have considered all the synaptic connections 
possible between (former neuron to later one and the reverse) and 
then assigned the number of such synapses as the link weight between 
the consider neuron pair.

The neural network [57] consists of 265 neurons (nodes) and 
1832 links (Figure 9a). The weights of these links which represents 
the total number of synaptic connections present between a neuron 
pair vary in range (1; 41); the distribution of these weights follow a 
power law. The modularity maximization methods cannot resolve 
those modules of this network which have less than 1832/2 30≅  links. 
For example, Newman Girvans algorithm of finding modules for 
weighted networks [42] could find only 5 neuron modules of sizes 
42,44,51,52 and 76 (Figure 9b). Thus the smaller modules which are 
present remain unresolved by this method. In contrary the MADWN 
algorithm detect 26 modules of this neural network; the module size 
varies from 2 to 7 (Table 4 and Figure 9c).

The MADWN algorithm initially detects qm=16 where the 
modularity Q(q) takes the maximum value in the process of deletion 
of links having weights then than a prefix value q. For every step of 
increase of q the corresponding components N(q) are considered 
as the communities and thus its modularity is calculated. Figure 9 
shows the plot of N(q) and Q(q). At q=qm there are 173 singlet and 
17 components of size more than 1; the next step of the algorithm 
disintegrates these components into further fine structures, in total 
26 (Table 4 and Figure 9). Thus the MADWN algorithm is able to 
detect smaller modules than those obtained using NGM algorithm 
for weighted networks.

Email network

To evaluate the performance of MADWN algorithm we take 
up an email communication network [48] as fifth test network. 
This network is an internal email communication network between 
employees of a mid-sized manufacturing company. The nodes 
represent the employees who are sender and recipient of emails, and 
edges between two nodes are the individual emails. For every pair 
of node, one is sender and the other is recipient. Thus total number 
of email send from an employee to another may not be same as the 
number of email send by the later to the former. This implies that this 

Figure 8: Components of the network of the charters in novel Les Miserables found using MADWN algorithm reveals the main characters of the story.
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Figure 9: Modularization of (a) neural network of C. elegans [57] using (b) NGM algorithm [42] results in 5 modules and by applying (c) MADWN 
algorithm produces 26 modules and 173 singlets.

Networks Methods N(q) Q(q) Module size (frequency)

B. Scientific Collaboration network 
[53,54]

NGM [42] 20 0.850 5 (1), 7 (1), 8 (1), 9 (2), 10 (2), 11 (1), 17 (1), 18 (1), 20 (1), 21 (1), 22 (1), 
24 (1), 25 (2), 29 (1), 33 (2), 43 (1)

MADWN 45 0.960 1 (198), 2 (16), 3 (11), 4 (6), 5 (2), 6 (4), 7 (1), 8 (2), 10 (1), 12 (1), 13 (1)

C. Character network in Les 
Miserables [47]

NGM [42] 5 0.547 6 (1), 10 (1), 11 (1), 17 (1), 33 (1)

MADWN 4 0.283 2(2), 4(1), 5 (1)

D. Neural network of C. elegans 
[57]

NGM [42] 5 0.475 42 (1), 44 (1), 51 (1), 52 (1), 76 (1)

MADWN 26 0.307 1 (173), 2 (10), 3 (8), 4 (1), 5 (4), 6 (1)

E. Email network [48]
NGM [42] 7 0.402 2 (1), 15 (1), 17 (1), 24 (1), 25 (1), 35 (1), 49 (1)

MADWN 12 0.321 1 (128), 2 (8), 3 (2), 6 (1), 11 (1)

Table 4: Comparison of the two module finding methods NGM algorithm for weighted networks [42] and MADWAN algorithm in context of finding the modules of 
the following four weighted networks -scientific collaboration network [53,54], network of the character present in the novel Les Miserables [47], neural network of C. 
elegans [57] and Email network [48].

email communication network is a directed one. For simplicity, we 
ignored directionality and assign each link a weight which equals to 
the sum of the total number of emails send from one employee to the 
other and vice versa.

This email communication network [48] consists of 167 
employees (nodes), a pair of node is connected by a link if at least 
one of the employee has send email to the other; in total there are 
3250 such links. The links in this network are given weights equal to 
the number of emails send between the concerned pair of employer 
(node). While trying to find the modules of this network, we find that 
the usual methods which maximize the modularity value is unable 
to detect small sized modules. The NGM algorithm for weighted 
network [42] detect 7 modules of sizes 2; 15; 17; 24; 25; 35; 49 of this 
email communication network.

When we applied MADWN algorithm to find the modules we 
obtained in total 12 modules of size more than unity and the rest 128 
nodes remain as isolated nodes. These 12 modules comprises of 8 
components of size 2, 2 of size 3, and one component of size 6 and 11.

Conclusion
In this article we propose an algorithm (MADWN) to detect 

community structure of dense weighted networks. If the network has 
adjacency matrix W whose elements Wij refer to the weight of the 
link connecting nodes i and j, one can implement the algorithm by 
the following steps, I. Delete all the links having weight Wij<q; find 
the modularity Q(q) of the network taking the disjoint components 
obtained here as the partitions. II. Find qm where Q(q) is maximum. 
III. Take all the components at q=qm containing two or more nodes 
one at a time, apply Newman Girvan’s weighted algorithm to obtain its 
modules. To demonstrate the algorithm, we consider miRNA co-target 
network of Homo sapiens, which is dense and weighted, and compare 
the modules with the miRNA clusters obtained earlier [20]. It turns out 
that most clusters are either identical to one of the modules, or composed 
of miRNAs belonging to at most four different modules. Thus, like the 
clusters, modules are also involved in specific biological functions.

This algorithm has certain advantage over some of the standard 
ones. The NGM algorithm for weighted networks [42] cannot 
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resolve small sub-structures if the network is dense. The algorithm 
[20] can overcome this difficulty, but does not resolve communities 
which are interlinked by a few links having very large weights. The 
algorithm discussed here combines both the methods suitably and 
overcome their shortcomings. Unlike the algorithm [20], where 
actual number of miRNA clusters depends (though weakly) on the 
final choice of q (=160 [20]) this algorithm is free from parameters 
and provide a unique partition of the weighted miRNA co-target 
network. In addition, we have demonstrated the efficacy and utility of 
our algorithm with other four different kinds of real-world networks-
scientific collaboration network [34], character network in the novel 
Les Miserables [47], neural network of C. elegans [57], and email 
communication network among employees of a small company [48]. 
In all these example the MADWN algorithm could successfully detect 
the relevant components of the networks by ignoring the insignificant 
ones.

It has been known that a network containing l connections cannot 
resolve any module which has  1 2  links. Usually, a densely connected 
weighted network, with a wide distribution of link-weights falls in 
this category and it is difficult to resolve small sub-structures of these 
networks. We believe the algorithm considered here is general, though 
discussed in context of miRNA co-target networks, and can be used for 
community detection in dense [58] and weighted [59] networks.
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