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Abstract

To estimate changes in global mean surface temperature (GMST),
one must infer past temperatures for regions of the planet that lacked
observations. However, current global instrumental temperature
datasets (GITDs) do not adequately account for the tendency of
different regions of the planet to warm at different rates, creating a
bias in their estimates, which this paper calls amplification bias. In
addition, most GITDs do not adequately account for changes in sea
ice, creating a bias in their estimates, which this paper calls sea ice
bias. To estimate the impact of these two biases, a new GITD was
created that used maximum likelihood estimation (MLE) to combine
the land surface air temperature (LSAT) anomalies of HadCRUT4
with the sea surface temperature (SST) anomalies of HadSST4.
The new GITD has improvements compared to the Cowtan and
Way version 2 dataset, including an improved statistical foundation
for estimating model parameters, taking advantage of temporal
correlations of observations, taking advantage of correlations
between land and sea observations, accounting for more sources of
uncertainty, and better treatment of the El Nifio Southern Oscillation
(ENSO). Corrections for amplification bias and sea ice bias in the
new dataset increase the estimate of GMST change from the late
1800s (1850-1899) to 2018 by 0.01°C and 0.08°C respectively,
although tests suggest that there may be an overcorrection by a
factor of two for sea ice bias. Overall, the median estimate of
GMST change from the late 1800s to 2018 is 1.20°C, with a 95%
confidence interval of (1.11°C, 1.30°C).
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Introduction

Estimating the evolution of global surface temperatures since
the industrial revolution is important as it can help improve
understanding of the Earth’s climate system. Currently, there are
various GITDs, including HadCRUT4 [1] by the UK Met Office
Hadley Centre (Met Office) in conjunction with the Climatic Research
Unit (CRU) of the University of East Anglia, GISTEMPv4 [2] by
NASA’s Goddard Institute of Space Studies, and NOAAGlobalTempv5
[3-5] by NOAA’s National Climate Data Centre. One major issue with
estimating past temperatures is that not all regions of the Earth have
complete observational records. As a result, one must statistically infer
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temperatures of unobserved regions of the planet using available data
to properly understand the evolution of global surface temperatures
since the industrial revolution.

In the past decade, two new GITDs have been created that use a
geostatistical technique known as kriging [6,7] to infill temperatures
for unobserved regions of the Earth: Berkeley Earth Surface
Temperature [8-10], and Cowtan and Way [11,12]. For convenience,
this paper refers to Berkeley Earth Surface Temperature using LSATSs
for sea ice regions as BEST, and refers to the long reconstructions of
Cowtan and Way version 2 using HadSST3 [13,14] and HadSST4
[15] as C&W-HadSST3 and C&W respectively. Kriging has desirable
statistical properties: if covariances between temperature observations
are known with certainty, then kriging provides the most-efficient
linear unbiased estimates of temperatures of unobserved regions.
In addition, the kriging estimates are identical to the maximum
likelihood estimates if the distribution of residuals is multivariate
normal.

While kriging has desirable statistical properties when covariances
between temperature observations are known with certainty, in
reality, these covariances are unknown and must be empirically
estimated from available data. Ordinary kriging, by itself, does not
provide a method to empirically estimate these covariances, nor does
it account for the uncertainty due to estimating these covariances.
To address these issues, this study uses MLE to estimate parameters
in the covariance function and quantify their uncertainty. MLE has
very desirable statistical properties when the number of observations
is large: consistency, asymptotic efficiency, and asymptotic normality.

The underlying statistical models of BEST and C&W do not
adequately account for the statistical tendency of different regions
of the planet to warm at different rates and, therefore, are subject to
amplification bias. In addition, C&W does not account for changes in
sea ice and so is subject to sea ice bias. To quantify these biases, the
Akaike information criterion (AIC) [16] was used to select the best of
16 different temperature anomaly models and the best of 24 different
temperature climatology models. Using AIC to pick from a large set
of models helps reduce omitted variable bias and avoid the statistical
issue of overfitting. The best models were combined to construct a
new GITD. This GITD is given the name HadCRU_MLE, to reflect its
use of MLE and data primarily from the Met Office and CRU. Similar
to C&W, LSAT anomalies of HadCRUT4 and SST anomalies of
HadSST4 were used, so the results of this study are most comparable
to the results of C&W.

Data

5° by 5° gridded monthly temperature anomalies of HadCRUT4
and HadSST3 were obtained from the Met Office website. This
includes 100 ensemble members as well as ensemble medians. These
datasets were used to infer LSAT anomalies of HadCRUT4, which are
essentially CRUTEM4 [17] but with adjustments to account for biases
and uncertainties such as due to temperature homogenization and the
urban heat island effect. Measurement and sampling uncertainties of
CRUTEM4 were also obtained.

5° by 5° gridded monthly temperature anomalies of HadSST4
were obtained from the Met Office website. This includes 200
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ensemble members, which account for bias uncertainties, as well as
the ensemble median. The 100 ensemble members of HadCRUT4
LSAT anomalies were combined with the 200 ensemble members of
HadSST4 to produce 200 ensemble members of temperature anomaly
observations; each LSAT ensemble member was used twice. Error
covariance matrices and total uncertainty of HadSST4, which account
for measurement and sampling uncertainties, were also obtained.

0.25° by 0.25° gridded land mask data of OSTIA [18] was obtained
from the Copernicus Marine Environment Monitoring Service
website. OSTIA data was integrated to a 5° by 5° grid to replicate
the land fraction data used in HadCRUT4. OSTIA data was also
integrated to a 1° by 1° grid. OSTIA was used in combination with the
HadCRUT4, HadSST3, and CRUTEM4 data to infer LSAT anomalies
of HadCRUT4.

1° by 1° gridded monthly sea ice concentrations (SICs) of
HadISST1 [19] and HadISST2 [20] were obtained from the Met Office
website. These SICs were component-wise multiplied by the non-land
fraction to obtain sea ice fractions (SIFs). This paper defines the SIF of
a grid cell as the fraction of the total surface area of a grid cell covered
by sea ice. SIFs were integrated to a 5° by 5° grid. HadISST2 was used
as the main SIC dataset of this study; HadISST1 was used only to
determine how much sea ice extent varies between datasets.

The 5° by 5° gridded 1961-1990 temperature climatology of Jones
et al. [21] and 100 ensemble members of the 5° by 5° gridded 1961-
1990 temperature climatology of HadSST3 were obtained from the
Met Office website. These temperature climatologies were used to help
estimate and correct for sea ice bias. The 1° by 1° gridded 1979-1998
temperature climatology of IABP-POLES [22] was obtained from the
University of Washington website. IABP-POLES was used to test for
the impact of spatial resolution on the estimate of sea ice bias.

Time series data of the ensemble medians of C&W-HadSST3 and
C&W was obtained from the University of York website. In addition,
time series data of BEST was obtained from the Berkeley Earth website.
These datasets were used for comparison with the results of this study.

30 arc-second resolution GMTED2010 surface elevation data
[23] was obtained from the US Geological Survey website. This was
integrated to a 0.25° by 0.25° grid. This was combined with the land
fraction data and integrated to a 5° by 5° grid to produce average
surface elevation data for land regions and non-land regions. This
average surface elevation data was used to help explain variation in
the temperature climatology.

CCSM4 output for the pre-industrial control scenario and for the
RCP6.0 scenario was obtained from the University Corporation of
Atmospheric Research website. This includes monthly gridded surface
air temperatures (SATs) 2 m above the surface and monthly gridded
SICs. The climate model output for the pre-industrial control scenario
was used to estimate temperature patterns of internal variability. As the
RCP6.0 scenario roughly corresponds to historic forcing, the output
for the RCP6.0 scenario was used for comparison with the corrections
for sea ice bias of this study. CCSM4 was chosen because it “has been
analysed the most extensively of any current climate model with
regards to [interdecadal Pacific variability] processes and mechanisms,
and compares favourably in those aspects to observations” [24]. Only
the last 501 years (800-1300) of the pre-industrial control scenario
were used because the model was not necessarily in equilibrium at the
beginning of the model run.

SICs of CCSM4 are given in a Greenland pole grid, where the

North Pole is moved to Greenland to avoid singularity problems in
the sea ice model. Nearest neighbour interpolation was performed to
convert SICs to a 0.125° by 0.125° grid; this small grid size was used
to reduce interpolation error. These SICs were integrated to a 0.25° by
0.25° grid and component-wise multiplied by the non-land fraction
to obtain SIFs. Similarly, SATs, which are given in a 1.25° longitude by
0.9375° latitude grid, were converted to a 0.125° by 0.125° grid using
nearest neighbour interpolation. SIFs and SATs were integrated to
a 5° by 5° grid. 5° by 5° climatologies of SIFs and SATs for the pre-
industrial control scenario were constructed by taking averages by
calendar month.

Monthly Southern Oscillation Index (SOI) [25] data was obtained
from the Australian Government website. The SOI is based upon
the pressure difference between Darwin, Australia and Tahiti, and
is strongly correlated with ENSO. This index was compared with the
estimated ENSO behaviour of this study.

The versions of the datasets used in this study were their most up-
to-date versions at the time of download. Data after December 2018
was not used as HadSST4 data after December 2018 was not available
at the time of download. Results of this study are often given as the
change from the late 1800s to 2018; the entire late 1800s is used as
uncertainties of annual GMST anomalies in the late 1800s are large
and 2018 is used as it is the most recent year with data for all calendar
months.

Methods
Amplification bias

Adopting the notation of Berkeley Earth, the temperature 7%, at a
position on the Earth’s surface X and time in months ¢ is

Tii=Csm +0+Ws, (1)

where m, is the calendar month of ¢, Cj,, is the temperature
climatology at X for calendar month m, Qr is a constant for month ¢,
and W is a weather residual term.

For this paper, 6 can differ from the GMST and X is replaced with
(%,s),where X corresponds to the mid latitude and mid longitude of
a 5° by 5° grid cell, and s is the surface type; s=0 for open sea (referred
to as sea) and s=1 for land or sea ice (referred to as land-ice). For
convenience, ¥ is called a grid cell and (X,s) is called a grid subcell.
This study adopts the convention of GISTEMP, BEST, and C&W of
treating SATs above sea ice similarly to LSATs since SATs above sea ice
tend to more closely resemble LSATs than SATs above sea (also called
marine air temperatures (MATs)). Thus, (1) becomes

T},s,t = C)?,s,mx + 9[ + Wf,s,t (2)

Similar to C&W, C is taken to be the 1961-1990 temperature
climatology. Thus, (2) simplifies to become

AT)?,S,[ = T)?,s,t - C?c,s,m; =6+ W)?,s,t (3)
where ATk, is the local temperature anomaly at (X,s) for month ¢.

In reality, observations of temperature anomalies are subject to
measurement, sampling, and bias uncertainties. Thus, (3) is modified
to become

Yfr,s,t = AT)T‘,S,I + E,?,s,t = 0[ + Wf(,s,t + E?r,s,t (4)

where Y;,, is the temperature anomaly observation at (X,s) for
month ¢ and Ex, is the error due to measurement, sampling, and
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bias uncertainties at (X,s) for month .

Equation (4) implicitly assumes that all regions of the Earth have
a statistical tendency to warm at the same rate. However, polar regions
tend to warm faster due to the snow-albedo feedback and because
global warming increases heat transfer from equatorial regions to
polar regions. This increased heat transfer occurs partly because
warmer air can hold more water vapour and thus can have a higher
heat capacity. In addition, sea regions tend to warm more slowly than
land regions, as water has a higher heat capacity than land. As a result,
the assumption that all regions have a statistical tendency to warm
at the same rate can lead to amplification bias. When amplification
bias is ignored, unobserved regions are infilled with temperature
anomalies that are biased towards the GMST anomaly. Since polar
regions such as Antarctica, the Southern Ocean, and the Arctic Ocean
were poorly observed during the instrumental period, not accounting
for amplification bias should cause an underestimation of the rate of
GMST change as these regions tend to have high local amplification
factors (LAFs).

To try to correct for amplification bias, (4) is modified to become
Yf,s,t = A},s,m,el + ch,s,t + E)?,s,l (5)

where Azsm is called the LAF at (X,s) for calendar month m and
is defined to have a surface area weighted mean of one over the
Earth’s surface for each calendar month (assuming that SICs are
the 1961-1990 HadISST2 mean by calendar month). In reality, the
amplification function A could change from one year to the next.
However, modelling studies find that the assumption of unchanging
LAFs over the instrumental period is reasonable [26,27] and find that
LAFs are mostly independent of the type of climate driver [28]. This
suggests that (5) should correct for most amplification bias.

This study tested four different functional forms of the
amplification function (Table 1) to determine if LAFs are affected by
calendar month, latitude, or surface type. For simplicity, the impact
of latitude on A was treated as a polynomial of order at most four. In
addition, the derivative of A with respect to latitude was restricted to
zero at the poles to ensure smoothness at the poles. All four functional
forms can be expressed as

A)?,S,m =1+ F?,s,mf (6)

where f€R"™ , ny €N, Fism€ R | and F has a surface area
weighted mean of zero for each calendar month.

Internal variability, such as from ENSO, may cause issues in
estimating A. Polar regions tend to warm faster than equatorial
regions. However, an El Nifio event causes significant short term

warming that is concentrated in equatorial regions, particularly in
the Eastern Equatorial Pacific Ocean. As a result, if one estimates A
using (5) and (6), then ENSO could bias the estimate of A towards the
identity function.

To try to avoid this ENSO bias and allow for internal variability to
be incorporated into the model, (5) is modified to become

Y;c,s,t = (] + E?,x,m:f)gt + chéh + W;,s,t + E},s,t (7)

gt
where g: = €R"™, ng €N jis the number of internal variability
qt,ng
patterns (IVPs) in the model, g, is an index for month ¢ that
corresponds to the i* IVP Ox :{Q;,l Q;,nq]eRIX”" , and
Oz is the value of the i IVP at X . One IVP was obtained (see later
subsection on IVPs), corresponding to ENSO, and this study tested
models that contain zero or one IVPs. While only one IVP was used,
the statistical framework of this study can be easily extended to
incorporate more IVPs.

To estimate model parameters in (7) using MLE, a model of W is
needed. W is assumed to be multivariate normal with a mean of zero
and with covariance function

COV(WZ‘,S,,I, ,W?/,s,,l/ ) =
Vi, simy +V.¥,>,s,',m;/ ] (8)
_—Z

AP M) )| -

p4
where ki, €R, z=| i |€R™, n:€Z., ve,, R, A

Zn,

is the standard logistic function, and |X,—X ,H is the great circle
distance between X; and ¥, . In this model, r determines the temporal
autocorrelation of weather residuals, k1 determines the spatial
correlation of weather residuals, k2 affects the correlation between
land-ice and sea weather residuals, and z determines the variances.
The standard logistic function constrains temporal and spatial
correlations between zero and one, which ensures physically sensible

results and improves numeric stability of the estimation procedure.

Two different models of the covariance function were tested
(Table 2) to determine if the variance of weather residuals is affected
by surface type. The models of the covariance function are simple
compared to the models of the amplification function since additional
parameters in the covariance function are more computationally
intensive than additional parameters in the amplification function.

GISTEMP, BEST, and C&W infill land-ice and sea regions
separately as it was found to give better results. However, the

Table 1: The different models of the amplification function. These models were used to estimate temperature anomalies.

Model Amplification function depends on latitude?
1 No
2 No
3 Polynomial of order four
4 Polynomial of order four

Amplification function depends on surface

Amplification function depends on calendar

type? month?
No No
Yes Yes
No Yes
Yes Yes

Table 2: The different models of the covariance function of weather residuals. These models were used to estimate temperature anomalies.

Model Covariance function depends on latitude?
No
2 No

Covariance function depends on surface

Covariance function depends on calendar

type? month?
No No
Yes No
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introduction of the amplification function puts this practice into
doubt. Perhaps this approach gave better results due to differences in
LAFs between land-ice and sea regions. The statistical models tested in
this study account for correlations between land-ice and sea weather
residuals, which can improve temperature anomaly estimates.

Alternatively, perhaps infilling land-ice and sea regions separately
gave better results due to differences in their correlation decay
lengths. This paper defines the correlation decay length as the distance
between two locations required to reduce the spatial correlation of
their residuals to e’. However, C&W estimate similar correlation
decay lengths for weather residuals: 767 km and 860 km for land-ice
and sea regions respectively. Similarly, BEST has similar maximum
correlation lengths: 3310 km and 2680 km for land-ice and sea regions
respectively, corresponding to correlation decay lengths of 1497 km
and 1212 km respectively. Having different correlation decay lengths
for land-ice and sea regions was considered, but this approach was not
taken due to its high computational cost. As C&W and BEST estimate
similar correlation decay lengths for land-ice and sea regions, the
impact of using identical correlation decay lengths for land-ice and
sea regions should be minimal.

The four models of the amplification function were combined
with the two models of the covariance function and using zero or
one IVPs to produce 16 different temperature anomaly models. To
estimate a temperature anomaly model, an iterative approach to MLE
was taken, where a reasonable first guess was calculated and used in
combination with a saddle-free Newton’s method [29,30]. To make
the procedure computationally feasible, numeric approximations to
the log-likelihood function were used and their derivations are given
in the supplementary information. As the bias uncertainties of E have
a complicated covariance structure, do not have a multivariate normal
distribution, and have significant temporal correlation, numeric
approximations that account for bias uncertainties could not be
derived. As a result, bias uncertainties were neglected in the estimation
of the temperature anomaly model. However, bias uncertainties were
still taken into account in the estimation of total uncertainty.

The best of the 16 models was chosen by minimizing the AIC. To
reduce computation time, only six of the 16 models were estimated and
the best temperature anomaly model was chosen in a stepwise manner.
Firstly, the best covariance function was chosen by estimating the two
covariance functions with the first amplification function and zero
IVPs and picking the model with the lowest AIC. Secondly, the best
amplification function was chosen by estimating the best covariance
function with the other three amplification functions and zero IVPs,
and picking the model with the lowest AIC. Finally, the best covariance
function was estimated with the best amplification function and the
IVP for ENSO. For comparison, Bayesian information criterion (BIC)
[31] values were also calculated. This paper presents normalized
AIC and BIC values (nAIC and nBIC), which are normalized by the
number of observations.

For each of the six models, maximum likelihood estimates of
temperature anomalies were calculated for all combinations of grid
subcells and months. Land-ice and sea temperature anomalies were
then blended, by weighting observations using SICs of the 1961-1990
HadISST2 mean by calendar month. For the model with the lowest
AIG, its uncertainty was evaluated using a Monte Carlo approach.
The Monte Carlo approach produced 200 ensemble members of
temperature anomalies, which account for measurement, sampling,
model parameter, infilling, and bias uncertainties.

Sea Ice Bias

When sea ice is replaced with open sea, an increase in SATS is
observed empirically [22] and in climate models [32,33]. This is
because sea water has a lower albedo than sea ice and because sea
ice acts as an insulator that prevents heat transfer between colder air
and warmer water. As a result, not accounting for changes in sea ice
can lead to sea ice bias. In particular, as warming has caused sea ice
to melt, neglecting sea ice bias leads to an underestimation of GMST
change over the instrumental period. C&W assumes constant SICs
for each calendar month and uses the 1981-2010 HadISST1 median
by calendar month. As a result, C&W may underestimate GMST
change over the instrumental period. In comparison, BEST varies
SICs according to HadISST2 and, partially as a result, shows more
warming over the instrumental period than C&W.

To correct for sea ice bias, a temperature climatology model was
combined with the best temperature anomaly model to estimate
temperature differences between sea ice and open sea. The estimated
temperature differences were used to estimate and correct for sea
ice bias. Since HadSST4 and CRUTEM4 are temperature anomaly
datasets, suitable temperature climatology datasets that correspond
to these temperature anomaly datasets should be used to estimate a
temperature climatology model. Since a temperature climatology for
HadSST4 was not available, the HadSST3 climatology was used as the
temperature climatology corresponding to HadSST4.

CRUTEM4 does not have a corresponding LSAT climatology.
However, the Met Office website lists the 1961-1990 temperature
climatology of Jones et al. along with its main temperature anomaly
datasets of HadCRUT4, HadSST3, and CRUTEMA4. The Jones et al.
climatology was constructed using CRUCLI [34] for land regions
north of 60°S, IABP-POLES for sea ice regions north of 60°N, a
combination of MAT and SST observations for sea regions north of
60°S, and LSAT observations of Antarctica for land regions south of
60°S.

Climatologies corresponding to CRUTEM4 were inferred from
the Jones et al. climatology. The following model was used to explain
variation in the temperature climatology

C},m = X)?,mB+ Uf,m (9)
where Cy,, is the temperature climatology at X for calendar month

m, BER"™, ngeN, Xin€ R™™ contains explanatory variables

at X for calendar month m, and U is a term for the temperature
climatology residual. In particular, X5 ,B is given the functional
form

e B+ seaz m X' B

XizmB (10)

4 land; X" B 1 icez X1 B
where ez is the average surface elevation at X, lands is the fraction
of grid cell X covered by land, icexm is the SIF of grid cell x for
calendar month m using SICs of the 1961-1990 HadISST2 mean by
calendar month, seax ., =1—land; —icezm, and X* , X4 and
X are defined implicitly.

U is assumed to be multivariate normal with a mean of zero and
with covariance function
COV(U)?,,m, aU)?,',m, ) =

)\(}’)1_6"”’”’/ A (k)H;’ —},H exp[ Vi ,mi + V;j ,m; z

(11)
e
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where rkeR, zeR™, n.€Z, vin cR™: and & is the
Kronecker delta. In this model, r determines the temporal correlation
of residuals, k determines the spatial correlation of residuals, and z
determines the variances. Variables in (8) are repeated in (11) for ease
of communication; however, temperature climatology models and
temperature anomaly models were estimated independently.

Six different models of the climatology function (Table 3) and
four different models of the covariance function (Table 4) were
combined to produce a total of 24 models. The different models of
the climatology function determine how the temperature climatology
varies by surface elevation, latitude, calendar month, and surface
type. The different models of the covariance function determine
how variance varies by latitude and surface type. The derivatives of
the climatology function and the covariance function with respect to
latitude were restricted to zero at the poles. Model parameters were
estimated using MLE.

For some of the climatology functions, the temperature
climatology can differ between sea ice and land regions for the
northern hemisphere. This allows for the possibility that temperatures
of land and sea ice regions may behave differently. However, this
distinction is not made for the southern hemisphere since, unlike in
the northern hemisphere, Jones et al. did not use direct observations
of temperatures of sea ice regions in the southern hemisphere. Instead,
Jones et al. extended nearby LSAT estimates to sea ice regions in the
southern hemisphere.

Jones et al. linearly interpolated between sea temperatures at
60°S and estimated temperatures at the sea ice edge to estimate sea
temperatures south of 60°S. However, Jones et al. noted that their
temperature estimates for sea ice regions might be unphysical as
“the field is likely to exhibit a sharp increase in air temperature at
the margin of the continental ice sheet” To prevent sea temperatures
south of 60°S from biasing estimates of sea ice bias, the Jones et al.
climatology was considered missing for grid cells south of 60°S that
have less 90% of their area covered by land or sea ice for any calendar
month.

To reduce computation time, only 9 of the 24 models were
estimated and the best temperature climatology model was chosen in
a stepwise manner. Firstly, the best covariance function was chosen
by estimating the four covariance functions with the first climatology

function and picking the model with the lowest AIC. Next, the best
climatology function was chosen by estimating the best covariance
function with the five other climatology functions and picking the
model with the lowest AIC.

The temperature climatology of sea regions C**, the temperature
climatology of land regions C***, and the temperature climatology of
sea ice regions C* were estimated as

€28 = s (€275 + X5 Us ) "
Cind — e By 4+ X B+ Us o
)l{fn _ e;atlandBl + X)’{‘;B + U},m (14)

where /i3, isa function that returns the HadSST3 climatology at X
for calendar month m if it is available, but is otherwise the identity
function, € is the average land elevation at ¥ and e/ is
the average surface elevation of non-land regions at X . C** mostly
reflects the HadSST3 climatology, except for a few grid cells where the

HadSST3 climatology is not available.

Sea ice bias can be estimated as the change in SIF multiplied by
the difference between sea temperatures and sea ice temperatures. For
this study, sea ice bias was estimated as

= [ (e rar)
SIB; ;s = (zce;,t — lce;,m,) ’[Ee
— (C— +AT)?,I,I>

X,m;

(15)

where SIB;, is the sea ice bias at X for month ¢, icez, is the SIF at
X for month ¢. Sea ice bias-corrected temperatures of grid cells were
estimated as

seaz (C;efm + AT;,O,z)
Ty=+ landf( fand | ATm,:)

X,my
+ icex (Cl{fnl + AT;,U)
Temperatures inferred using (15) may be physically unrealistic,
such as inferred sea temperatures below the freezing temperature of sea
water or inferred sea ice temperatures above the freezing temperature

of fresh water. Therefore, one may want to use the following to estimate
sea ice bias while preventing unphysical temperatures.

4 ATeg,, —1.8°C)

X,m;

(16)

o = max( .
SIB;, = |icez ; —ices m, (17)

— min(CE¢ + ATy, 0°C)

Table 3: The different models of the temperature climatology function. These models were used to quantify the sea ice bias of temperature anomaly estimates.

Model Climatology function depends on

latitude? on surface type?
1 Polynomial of order four No
2 Polynomial of order four Yes
3 Polynomial of order four Yes
4 Polynomial of order six No
5 Polynomial of order six Yes
6 Polynomial of order six Yes

Climatology function depends

Special treatment for northern
hemisphere sea ice?

Climatology function depends
on calendar month?

No Yes
No Yes
Yes Yes
No Yes
No Yes
Yes Yes

Table 4: The different models of the covariance function of temperature climatology residuals. These models were used to quantify the sea ice bias of temperature

anomaly estimates.

Model Covariance function depends on latitude?
1 No
2 No
3 Polynomial of order four
4 Polynomial of order four

Covariance function depends on surface

Covariance function depends on calendar

type? month?
No No
Yes No
No No
Yes No
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Bias-corrected temperatures that are physically realistic could
then be estimated as

seaz, max(C‘;e,‘; +ATs 04, — 1.8°C>
+ land; (Cé":’n’f +AT;,1,,)
+ ices min(CES 4+ ATz, 0°C)

Tz = (18)

The maximum function restricts temperatures of sea water to
at least -1.8°C, which is the freezing temperature of sea water with
a salinity of 35 parts per thousand, and the minimum function
restricts temperatures of sea ice to at most 0°C, which is the freezing
temperature of fresh water. While SATs above sea and sea ice can
exceed these limits, they cannot significantly exceed these limits for
monthly temperature averages. Restricting sea temperatures to at least
-1.8°C is standard practice and is performed in HadISST1, KOBE-
SST1 [35], ERSSTv5 [4], and BEST. Also, sea ice regions tend to have
isothermal summers with temperatures close to 0°C [22].

While sea ice bias and temperature estimates using (17) and
(18) would be physically realistic, they might be statistically biased.
Estimating (9) and (11) using MLE would correspond to B being
estimated using generalized least squares (GLS) given the estimate of
the covariance function. GLS is unbiased if the covariance function
is known; therefore, estimates of (15) and (16) may be relatively
unbiased. Applying minimum and maximum functions to GLS
estimates could result in biased estimates; in particular, the magnitude
of sea ice bias could be overestimated. In addition, it is unclear if the
use of freezing temperatures in (17) and (18) is appropriate as the
temperature climatology datasets used have measurement error and
do not correspond perfectly with the temperature anomaly datasets.
Therefore, the results of (15) and (16) are presented as the main
estimates of this study and the results of (17) and (18) are presented
as alternate estimates.

Changes in SICs can cause changes in local temperatures. Changes
in local temperatures can cause changes in SICs. In addition, changes
in SICs can cause temperature changes in nearby regions due to heat
transfer. The sea ice bias estimated using the above methodology
may capture all three of these mechanisms and does not necessarily
reflect the impact of SICs on local temperatures alone. This lack of
distinction of these mechanisms in the statistical model can make
physically interpretability of results difficult. However, for the purpose
of statistically inferring temperatures using available data, it is not
necessary to identify how much of the correlation between SICs and
local temperatures is caused by each of these mechanisms since what
matters is the existence of the correlation.

If SICs are correlated with the temperatures of nearby regions
and if the statistical model used assumes a temperature field that is
discontinuous between sea and sea ice regions, then this could cause
an overcorrection for sea ice bias. This is because the temperature
anomaly observations of nearby land or sea regions may already
reflect the higher regional warming due to melting sea ice. If the
temperature climatology function is estimated from blended data
and a coarse resolution is used, then this may cause the temperature
climatology model to overestimate the impact of SICs on local
temperatures, resulting in a further overcorrection for sea ice bias. To
test for this potential issue, IABP-POLES data north of 60°N was used.
Using ordinary least squares, the temperature climatology function
was re-estimated twice: once using a 5° resolution of IABP-POLES
and once using a 1° resolution of IABP-POLES. For simplicity, these
tests neglect differences in AT between land-ice and sea regions in

(15). The impact of sea ice bias on GMST change due to changes in
SICs north of 60°N was estimated for each of these resolutions. To be
consistent with Jones et al., IABP-POLES was treated as a 1961-1990
climatology.

As an additional test, empirical LAFs of regions of sea ice loss
were calculated for HJdCRU_MLE and for CCSM4 under the RCP6.0
scenario using a 5° resolution. For each calendar month, weighted
averages of temperature change from the late 1800s to 2018, weighted
by the surface area of net sea ice loss for each grid cell, were calculated.
These weighted temperature changes were averaged over the calendar
year and divided by the annual GMST change to produce empirical
LAFs of regions of sea ice loss. For simplicity, leap days were neglected
in this calculation. While these empirical LAFs may underestimate
the true LAF of regions of sea ice loss due to using a coarse resolution
of 5°, they provide useful metrics for comparison.

For each of the temperature climatology models, its uncertainty was
evaluated using a Monte Carlo approach. The Monte Carlo approach
produced 200 ensemble members of temperature climatologies. To
generate these ensemble members, each of the 100 ensemble members
of the HadSST3 climatology was used twice. The HadSST3 ensemble
accounts for bias uncertainties, but not other uncertainties such as
measurement or sampling uncertainties. 200 ensemble members of
sea ice bias and 200 ensemble members of blended temperatures
were then calculated. While this Monte Carlo approach accounts for
parameter estimation uncertainty and infilling uncertainty, bias and
uncertainty due to a possible methodological overcorrection for sea
ice bias were neglected. In addition, measurement uncertainties of
temperature climatologies and uncertainties of SICs were neglected
since they were not quantified. Uncertainties of SICs may be large
as SICs vary greatly between datasets; the change in average global
sea ice extent between the late 1800s and 2018 is -0.7% of the Earth’s
surface according to HadISST1, which is approximately half of the
-1.3% change according to HadISST2.

Patterns of Internal Variability

Temperature patterns that correspond to modes of internal
variability are needed to use (7) to obtain amplification bias-corrected
estimates of past temperatures. One approach to obtain IVPs is to use
the method of empirical orthogonal teleconnections (EOTs) [36]. This
is used extensively by NOAA in ERSSTv5, where 140 EOTs are used to
reconstruct SSTs. NOAA calculates its EOTs using OISSTv2 [37] data
for the period 1982-2011. OISSTv2 combines satellite data with SST
data and is spatially complete. A second approach is to use empirical
orthogonal functions (EOFs) [38]. Methodologies where one first
obtains internal variability indices from observed temperatures and
then looks for IVPs that are orthogonal to these indices have also been
used [24,39,40].

The approach of NOAA of using OISSTv2 data to calculate IVPs
has three problems. Firstly, as global warming has occurred over the
instrumental period, estimates of these IVPs might contain warming
signals. Secondly, estimates of these IVPs are not independent of
instrumental temperature data, thus proper error analysis using these
IVPs becomes more difficult. Thirdly, estimates of these IVPs include
weather residuals for the period 1982-2011. Thus, the use of such
estimated IVPs in (7) could result in zero-biased estimates of internal
variability indices due to attenuation bias [41]. Even worse, because of
how such IVPs are calculated, estimates of internal variability indices
could contain more attenuation bias prior to 1982 than after 1982,
which might affect estimates of changes in ENSO variability over
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time. The use of climate model output for scenarios with constant
forcing over time can avoid these three problems. This approach
has been performed using CMIP5 output for pre-industrial control
scenarios [24,39,40].

Warmer temperatures due to internal variability can cause sea ice
to melt, which could cause high localized warming in areas where sea
ice melts. However, the correlation between SICs and temperature is
included in the correction for sea ice bias. If IVPs include temperature
changes explained by SIC changes, then this could result in double
counting. Therefore, it is desirable to remove temperature changes
explained by SIC changes from temperature anomalies before
obtaining IVPs.

To remove temperature changes explained by SIC changes, the
results of the best climatology model estimated using Jones et al. data
were used. In particular, sea ice detrended temperature anomalies for
CCSM4 under the pre-industrial control scenario were estimated as

ﬂ";,z =ATi, + (ice;,, —icex m, )( sea _ cice )

X,my X,my

19)

where AT:; is the CCSM4 temperature anomaly at X for month ¢,

and AT, is the detrended temperature anomaly at ¥ for month ¢
SICs of CCSM4 were used for ice and ice , whereas the ensemble of the
best temperature climatology model estimated using Jones et al. data
was used for C** and C*.

EOFs were calculated from annual averages of the ensemble
median of detrended CCSM4 temperature anomalies using the
approach given in the supplementary information. Annual averages
were used to remove temperature variation on a timescale of less than
a year. Throughout this study, annual averages were calculated by
weighted each month by its number of days while accounting for leap
years. An EOF approach was used instead of an EOT approach since
the EOT approach would involve the selection of a set of reference
grid cells, which can be somewhat arbitrary.

Results and Discussion

Table 5 summarizes the results of the estimated temperature
anomaly models. For the best (lowest AIC) model with a constant
amplification function (amplification function 1), the maximum
likelihood estimate of GMST change from the late 1800s to 2018 is
1.11°C, which is similar to the 1.11°C estimate of GMST change of
C&W. When the best amplification function is introduced into the
model, the estimate of GMST change increases by 0.01°C to 1.12°C.
This is expected as polar regions, which tend to be poorly observed,
have high LAFs. Introducing the IVP for ENSO leaves the estimate of
GMST change relatively unchanged at 1.12°C. For the best temperature
anomaly model, the maximum likelihood estimate of GMST change is
slightly greater than the ensemble median estimate of GMST change:
1.11°C, with a 95% confidence interval of (1.04°C, 1.20°C).

Table 5: Summary of results of the estimated temperature anomaly models. Estimates listed correspond to maximum likelihood estimates. The global mean surface
temperature (GMST) change values listed in this table do not correct for sea ice bias and include the impact of the internal variability pattern (IVP) if applicable.

Correlation .
Amplification Covariance Number nAlC nBIC GMST change from the Ofb';ﬂ::ﬂls d(;g;re:zt':o:lh regig::ll: tl:lazz‘wc:en
function function of IVPs late 1800s to 2018 (°C) consecutive (Km) 9 Iand-ice_and sea
months regions

1 1 0 2.279 2.288 1.103 0.08 970 0.36
1 2 0 2.194 2.203 1.107 0.08 975 0.53
2 2 0 2.194 2.203 1.108 0.08 974 0.53
3 2 0 2.194 2.203 1.106 0.08 974 0.53
4 2 0 2.194 2.203 1.116 0.08 969 0.53
4 2 1 2.190 2.207 1.117 0.07 945 0.52

(a) December-January-February

Local Amplification Factor by Meteorological Season

(b) March-April-May
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Figure 1: Weighted average of the maximum likelihood estimates of local amplification factors by meteorological season: (a) December-January-February,
(b) March-April-May, (c) June-July-August, and (d) September-October-November. Calendar months were weighted by their average number of days. These
estimated local amplification factors neglect changes in sea ice. The shaded areas correspond to the 95% confidence regions.
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Figure 1 shows averages of the estimated amplification functions
for each meteorological season; for simplicity, amplification functions
are shown by meteorological season instead of by calendar month.
As expected, polar regions tend to have higher estimated LAFs than
equatorial regions and land-ice regions tend to have higher estimated
LAFs than sea regions. The northern hemisphere tends to have higher
estimated LAFs than the southern hemisphere.

The estimated LAFs are often far from unity, with Arctic land
regions having LAFs of two or greater. This suggests that accounting
for LAFs is important for temperature estimates of unobserved
regions. Of the GITDs discussed in the introduction, none of their
statistical models adequately account for LAFs, so all should be
subject to amplification bias. GISTEMPv4 and NOAAGlobalTempv5
use ERSSTv5 for SSTs; ERSSTv5 might indirectly account for some
amplification bias through its use of EOTs. In addition, GISTEMPv4
averages temperature anomalies zonally before averaging globally,
which may cause GISTEMPv4 to have reduced amplification bias
compared to other GITDs.

Figure 2 shows the first EOF of the CCSM4 detrended temperature
anomalies under the pre-industrial control scenario. This EOF
appears to correspond to the temperature pattern of ENSO due to its
strong warming band in the Eastern Equatorial Pacific. If temperature
variation explained by SICs is excluded, this EOF explains 18% of
the variation in local annual mean SATs and 51% of the variation

in annual GMSTs for the CCSM4 output under the pre-industrial
control scenario.

Figure 3 shows the estimated impact of the IVP on annual
GMST anomalies. It appears that this IVP causes fluctuations in
annual GMSTs with an amplitude of approximately 0.1°C. The GMST
variability explained by this IVP corresponds well with the SOI,
suggesting that this mode of internal variability corresponds well to
ENSO.

Table 6 summarizes the results of the estimated temperature
climatology models. For the model with the lowest AIC, the median
estimate of the impact of sea ice bias on GMST change from the late
1800s to 2018 is -0.08°C, with a 95% confidence interval of (-0.04°C,
-0.13°C). The maximum likelihood estimate of the lapse rate of the
best model is 6.4°C km™, corresponding to a typical wet lapse rate for
Earth; the retrieval of a physically sensible lapse rate adds confidence
to the results of the temperature climatology model. When the
freezing temperatures of sea water and fresh water are applied, the median
estimate remains relatively unchanged at -0.09°C. Thus, while the use of
the freezing temperatures has an impact on the estimated bias, it does
not change the order of magnitude of estimated bias.

To test for a possible overestimation of sea ice bias due to using a
temperature field that is discontinuous between sea and sea ice regions,
the climatology function was re-estimated twice using IABP-POLES.
When the resolution is 5° and when only accounting for changes in

Figure 2: The dominant temperature pattern of internal variability obtained from CCSM4 output under the pre-industrial control scenario. The strong warming
band in the Eastern Equatorial Pacific suggests that this pattern corresponds to the El Nifio Southern Oscillation.
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Figure 3: Maximum likelihood estimate of the impact of the internal variability pattern on annual global mean surface temperature (GMST) anomalies using
1961-1990 as the reference period. This estimate neglects the indirect impact on the GMST due to how internal variability may affect sea ice concentrations.
The internal variability pattern corresponds well with the negative of the Southern Oscillation Index, suggesting that this mode of internal variability corresponds
to the El Nifio Southern Oscillation. The gray area corresponds to the 95% confidence region.
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Table 6: Summary of results of the estimated temperature climatology models. The best (lowest nAIC) temperature anomaly model of Table 5 was used in the
estimation of the impact of sea ice bias on global mean surface temperature (GMST) change. Sea ice bias estimates listed correspond to ensemble median estimates;

other estimates listed correspond to maximum likelihood estimates.

Impact of sea ice bias on the

GMST change from the late 1800s to Correlation c lati
Climatology Covariance 2018 (°C) of residuals orre ation Lapse Rate (°C
! . nAlC nBIC . decay length M
function function Neglecting ) ) between calendar km™)
. Using freezing (km)
freezing months
temperatures
temperatures
1 1 2.21 2.22 -0.061 -0.070 0.67 2481 5.86
1 2 1.74 1.76 -0.057 -0.063 0.70 2879 6.10
1 3 2.03 2.04 -0.057 -0.070 0.78 2506 6.36
1 4 1.56 1.58 -0.056 -0.063 0.75 2906 6.47
2 4 1.54 1.56 -0.087 -0.097 0.74 2334 6.46
3 4 1.50 1.54 -0.080 -0.089 0.74 2315 6.41
4 4 1.55 1.57 -0.057 -0.064 0.74 2924 6.44
5 4 1.51 1.54 -0.084 -0.094 0.75 2210 6.45
6 4 1.47 1.53 -0.085 -0.094 0.75 2228 6.40
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Figure 4: Ensemble median estimates of the impact of sea ice bias on estimates of annual global mean surface temperature (GMST) anomalies using 1961-
1990 as the reference period. The gray area corresponds to the 95% confidence region.

sea ice north of 60°N, the estimate of the impact of sea ice bias on
GMST change between the late 1800s and 2018 is -0.045°C. When
the resolution is changed to 1°, the estimate is reduced in magnitude
to -0.030°C. Since the use of a coarser resolution should result in a
greater overestimation of sea ice bias, this suggests that there could be
a 50% overestimation of sea ice bias. In addition, some overestimation
may remain as a 1° resolution is still somewhat coarse.

Asan additional test, empirical LAFs of regions of sea ice loss from
the late 1800s to 2018 were calculated. Combining the best temperature
anomaly model with the best temperature climatology model constructs
HadCRU_MLE. According to HadCRU_MLE, the median estimate of
the empirical LAF is 1.5 if no sea ice bias correction is included and 4.6 if
the sea ice bias correction is included. In comparison, the empirical LAF
is 2.7 for CCSM4 under the RCP6.0 scenario using a 5° resolution. This
suggests that while a sea ice bias correction is needed, HiddCRU_MLE
may overcorrect for sea ice bias by a factor of two.

Both local observations of temperatures in sea ice regions as well
as results of climate models can help quantify the magnitude of sea ice
bias. Rayner et al. [19] use local temperature observations to estimate
the relationship between temperature and SIC. Using their figure
7, I estimate by visual inspection that the difference in temperature
in going from 0% SIC to 100% SIC is likely between 2°C and 6°C.
Multiplying this by the change in average global sea ice extent between
the late 1800s and 2018 suggests a sea ice bias of between -0.03°C

and -0.08°C. Alternatively, Cowtan et al. [32] find, using CMIP5
output, that blending land and sea absolute temperatures instead of
blending land and sea temperature anomalies increases the estimated
GMST change by 3%. Since the GMST change over the instrumental
period is approximately 1°C, this suggests that sea ice bias may cause
an underestimation of GMST change of 0.03°C. Thus, both local
observations of temperatures in sea ice regions and results of climate
models confirm the order of magnitude of sea ice bias estimated in
this study.

Figure 4 shows the estimated impact of sea ice bias on annual
GMST anomalies. Figure 5 shows the distribution of the estimated
impact of sea ice bias on surface temperature change from the late
1800s to 2018. Regions that have experienced significant ice melt over
the instrumental period, such as the Norwegian Sea and parts of the
Southern Ocean, show the most bias.

It should be noted that HadISST?2 is imperfect. In the northern
hemisphere, it has no interannual change in SICs prior to 1901
and little interannual change in SICs prior to 1953. In the southern
hemisphere, it has no interannual change in SICs prior to 1939 and
little interannual change in SICs prior to 1973. This is caused by a lack
of data and infilling missing data with SIC climatologies estimated
using data from other years. As a result, HadISST2 underestimates
SIC change prior to 1973. Thus, the results of this study likely
underestimate variation in sea ice bias prior to 1973.
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The results of HadCRU_MLE give this study’s best estimate of GMST
change from the late 1800s to 2018: 1.20°C with a 95% confidence interval
of (1.11°C, 1.30°C). As an alternate estimate, if the freezing temperatures
of sea water and fresh water are applied, then the median estimate of
GMST change remains relatively unchanged at 1.20°C.

Figure 6 shows this study’s best estimates of annual GMST
anomalies. Figure 7 shows the distribution of local surface temperature
change from the late 1800s to 2018. HadCRU_MLE estimates more
warming than the 1.16°C of GMST change from the late 1800s to 2018
of BEST. This may be because BEST uses HadSST3, which shows less

Figure 5: Ensemble median estimates of the impact of sea ice bias on the change in local surface temperature (°C) from the late 1800s to 2018.
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Figure 6: Ensemble median estimates of annual global mean surface temperature anomalies using 1961-1990 as the reference period. The figure shows the
best estimates of this study (HadCRU_MLE) compared to the results of Cowtan and Way version 2 using HadSST4. The gray area corresponds to the 95%
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Figure 7: Ensemble median estimates of the change in local surface temperature (°C) from the late 1800s to 2018.
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warming over the instrumental period than HadSST4. The estimate of
GMST change increases from 1.03°C in C&W-HadSST3 to 1.11°C in
C&W, suggesting that the estimate of GMST change of BEST would
increase by a comparable amount if it is updated to use HadSST4.
As BEST accounts for changes in SICs, the larger estimate of GMST
change of BEST compared to C&W is partially explained by the sea
ice bias of C&W; the remaining difference could be due to different
homogenization procedures of LSATs or differences in statistical
infilling methods.

Figure 7 shows a large contrast in temperature change in the
Southern Ocean. This contrast is likely exaggerated since HadISST2
neglects interannual variation in SICs for the late 1800s. The large
change in SICs for the Southern Ocean is largely the result of a single
German 1929-1939 Antarctic sea ice climatology. Thus, the reliability
of this study’s estimate of temperature change since the late 1800s for
the Southern Ocean is largely dependent on this single 1929-1939
temperature climatology.

HadCRU_MLE may have a remaining bias due to using SSTs
instead of MATs. According to the results of climate models, this bias
may cause an underestimation of GMST change of 5% to 9% [32,33].
However, the top ocean layer of climate models is typically 10 m deep,
whereas the SSTs of HadSST4 use a buoy reference depth 20 cm below
the sea surface; so, the actual bias of HadCRU_MLE should be smaller
than the bias suggested by climate models. In addition, HadSST4 assumes
that MATs and SSTs warm at similar rates and uses MATS to correct for
SST biases. In particular, MATs are used to determine the fractions of
canvas and wooden buckets in the early part of the instrumental period.
So, itis unclear if there is any significant bias due to differences in warming
rates of SSTs and MATSs when using HadSST4.

While this paper outlines some improvements to the statistical
methodology of estimating past temperatures, there are still areas
where further improvements could be made. Firstly, uncertainties
in the estimates of the temperature climatology and SICs could be
quantified and taken into account. Secondly, the magnitude of sea
ice bias could be better quantified and verified using different lines
of evidence. Thirdly, attempts to better incorporate bias errors of
instrumental observations into the statistical model could be made.
Fourthly, amplification and temperature climatology functions of this
study are discontinuous between land-ice and sea regions, which is
physically unrealistic; further improvements to the functional forms
could be made. Lastly, other sources of observations, such as satellite
and paleoclimate data, could be used to further improve temperature
estimates.

Conclusions

This paper identifies two biases in GITDs: amplification bias and
sea ice bias. Amplification bias occurs when the underlying statistical
model of the GITD neglects the tendency of different regions of the
planet to warm at different rates. Since polar regions, which tend to
warm the fastest, were poorly observed during the instrumental period,
not accounting for amplification bias causes an underestimation of
GMST change over the instrumental period. Sea ice bias occurs when
the GITD neglects the impact of changes in sea ice on temperatures.
Since SICs have decreased over the instrumental period, neglecting
changes in SICs causes an underestimation of GMST change over the
instrumental period. To quantify the impact of these biases, a new
bias-corrected GITD was constructed, called HadCRU_MLE, which
used MLE to combine the LSAT anomalies of HadCRUT4 with the
SST anomalies of HadSST4.

HadCRU_MLE has improvements compared to C&W. Model
parameters were estimated using MLE, which provides a better
statistical foundation for parameter estimates and allows for
quantification of parameter uncertainty. HadCRU_MLE takes
advantage of temporal correlations and correlations between land-
ice and sea regions to improve temperature anomaly estimates.
More sources of uncertainty are accounted for, including parameter
estimation uncertainty and infilling uncertainty as well as all
uncertainties of HadCRUT4 and HadSST4.

To correct for amplification bias, an amplification function was
incorporated into the temperature anomaly model, which was fit to
observations. As El Niflo events correspond to warming concentrated
in the Eastern Equatorial Pacific Ocean, neglecting the behaviour of
ENSO could cause an attenuation bias towards the identity function
of the estimate of the amplification function. To avoid this attenuation
bias, an IVP for ENSO was obtained from CCSM4 output for a pre-
industrial control scenario and incorporated into the temperature
anomaly model. The inclusion of the amplification function and the
IVP for ENSO increases the estimate of GMST change from the late
1800s to 2018 by 0.01°C.

To correct for sea ice bias, a temperature climatology model
was fit to observations. Estimates of temperature climatologies and
temperature anomalies were combined to quantify sea ice bias.
Accounting for sea ice bias increases the estimate of GMST change
from the late 1800s to 2018 by 0.08°C. The use of a temperature field
that is discontinuous between sea and sea ice regions may cause an
overcorrection for sea ice bias. The results of sensitivity tests using IABP-
POLES data suggest that there may be a 50% overcorrection for sea ice
bias. A comparison of HadCRU_MLE with CCSM4 output under the
RCP6.0 scenario, which roughly corresponds to historic forcing, suggests
that there may be an overcorrection by a factor of two for sea ice bias.
Overall, the median estimate of GMST change from the late 1800s to
2018 is 1.20°C, with a 95% confidence interval of (1.11°C, 1.30°C).
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and Sea Ice Bias in Global Temperature Datasets”
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Source Data Availability

All source datasets used to produce HadCRU_MLE_v1.0 are publicly available; instructions for obtaining
these datasets are given in the code zip file of HadCRU_MLE_v1.0, which is available at the World Data
Center for Climate at DKRZ. Table S1 provides additional details about the source datasets used.

Dataset Version Types of Data Used First Month of Data | Last Month of Data
HadCRUT4 4600 | Surfacetemperature January 1850 September 2019
anomalies
CRUTEM4 4.6.0.0 LSAT anomalies January 1850 September 2019
HadSST3 3.1.1.0 SST anomalies January 1850 October 2019
HadSST3 3.1.1.0 SST climatology January 1961 December 1990
HadSsT4 4.0.0.0 SST anomalies January 1850 December 2018
HadISST1 1.0 Sea ice concentrations January 1870 July 2019
HadISST2 2.2.0.0 Sea ice concentrations January 1850 January 2019
OSTIA 1.0 Land mask N/A N/A
f
Jones et al. (1999) N/A sur acg temperature January 1961 December 1990
climatology
IABP-POLES N/A Surfacg temperature January 1979 December 1998
climatology
Cowtan and Way using Surface temperature
HadSST3 (long 2.0 p January 1850 August 2019
. anomalies
reconstruction)
Cowtan and Way using Surface temperature
HadSST4 (long 2.0 p January 1850 December 2018
. anomalies
reconstruction)
Berkeley Earth Surface Surface temperature
Temperature using LSATs N/A p January 1850 October 2019
. . anomalies
for sea ice regions
GMTED2010 N/A Surface elevation N/A N/A
CCSM4 output for the pre- .
industrial control scenario N/A SATs and se.a N January 800 December 1300
. concentrations
(ensemble member rlilp1)
CCSM4 output for the .
SAT d
RCP6.0 scenario N/A > andseaice January 1850 December 2100
. concentrations
(ensemble member rlilp1)
Southern Oscillati
Southern Oscillation Index N/A outhern sciiiation January 1876 June 2019

Index

Table S1: Additional details about the source datasets used to produce HadCRU_MLE_v1.0.




Code Availability

The code used to produce HadCRU_MLE_v1.0 was written in MATLAB and is publicly available; the code
is available in the code zip file of HadCRU_MLE_v1.0, which is available at the World Data Center for
Climate at DKRZ. Due to the high computational requirements of the code, the code must be run using a
graphics processing unit. Using a GeForce GTX 1050Ti graphics card, it takes about 44 days to execute
the code. In addition, after the code is run once, it takes about 12 days to update the HadCRU_MLE_v1
dataset using updated source data. All random numbers generated by the code are controlled using a
single random seed, which was generated using the system clock. Thus, results can be easily reproduced
using the same random seed or verified using a different random seed. In addition, the random numbers
are generated in such a way that the results should be relatively comparable if the dataset is updated
with newer source data provided that the same random seed is used.

Inferring Adjusted CRUTEM4

HadCRUT4 data blends HadSST3 data with CRUTEM4 data (with adjustments to account for biases and
uncertainties such as due to temperature homogenization and the urban heat island effect). If
observations exist for both HadSST3 and CRUTEMA4 at a given grid cell and month, then the HadCRUT4
temperature anomaly is a weighted average of the HadSST3 temperature anomaly and the adjusted
CRUTEM4 temperature anomaly. In this case, the adjusted CRUTEM4 weight is equal to the land fraction
of the grid cell or 0.25, whichever is greater.

Suppose that observations for both HadSST3 and CRUTEM4 exist at X for month t.

Let landweight; = max(0.25, landy). Then the adjusted CRUTEM4 temperature anomaly Y ; , can be
calculated from the HadCRUT4 temperature anomaly HadCRUT4; ; and the HadSST3 temperature
anomaly HadSST33, using Yz 1, = (HadCRUT4,;,t — (1 — landweightz)HadSST3; ) /landweight;.

Temperature Climatology Model

Functional Forms of the Temperature Climatology Model

Let G = 36 - 72 be the number of grid cells. For convenience, the convention m = 1 corresponds to
January and the normalization operator ( ) are used. () is the operator that returns the function minus
its weighted mean, where grid cells are weighted by their surface area. Definitions of the models of the
temperature climatology function are given by Table S2. Definitions of the models of the covariance
function of the temperature climatology residuals are given by Table S3.



Model XzmB

1 (e,l?a"dland,g +efottand(q landf)) By + (Biym + @1 5Bi3+m + a2,:Bas4m)

(e,l?a"dland,; + e;“’t landq _ land};)) B, + se—a,g,m(BHm + &y #B134m + az,,g325+m)

+ (landy +1Cez ) (Bs74m + @1,£Baosm + @2 #Bs14m)

(e,l;a"dland,g + el tand(q _ land,g)) B, + W,g,m(BHm + a3 3B134m + az‘,gB25+m)
3 + (landy + SH;1Ces 1, ) (Bs74m + @1,Baosm + ¥2,2Bg14m)
+ NHiWi,m(B73+m + a1 #Bgsem + az,fBg7+m)

(e};andland,g +efottand(q _ land,g)) B,

4
+ (Bl+m + a1 zB134m + @2 5Bosem + A3 B374m + 054,;2349+m)
(e,lzandland,g +efottand(q — land,;)) B;
5

+ Seai,m(Bl+m + a1 #Bizym + 2 i Bosim + @3 3B374m + a4,3?B49+m)
+ (land; + 1c€z ) (Bo14m + @1.B734m + @2.2Bgs5+m + @35Bo74m + XazB109+m)

(e,l;a”dland,g + efottand(q _ landf)) B,

6 +5€lg m (Bram + @12B13im + 02 Bosim + @3B3zsm + @4 xBaosm)

+ (land; + SH51C€5 1) (Bg1+m + @1,2B734m + 2 5Bgsem + @3 3Bozsm + A4 2B1004m)
+ NH31Cez 1 (Biz1+m + @12B133em + ¥ 5Biasim + @3B1574m + 4 B1694m)

Table S2: The different models of the temperature climatology function. These models were used to quantify the
2 2 4
sea ice bias of temperature anomaly estimates. a; z = (p; - 3%4),;, ayz = ((pfg - %(p,zz), azz = q); - 5:—6<pf,

4
ayz: = {(p2—3 7;—6<p,2?), @; is the latitude of X in radians, SH; is 1 if X is in the southern hemisphere and is
otherwise 0, and NHz; = 1 — SH;.

Model Vi mZ
1 Z1
2 z1 + (land,g + W,;,m)zz
3 Zy +ay37Z, + ay 523
4 7+ a1 325 + gy 523 + (landy + 1z ) (24 + @225 + A2226)

Table S3: The different models of the covariance function of temperature climatology residuals. These models
were used to quantify the sea ice bias of temperature anomaly estimates.

Notation for the Temperature Climatology Model

For convenience, the following notation is used:

-"is the transpose operator - o is the Hadamard product

- ® is the Kronecker product - I, is the identity matrix of size a X a
- 0 is the zeros matrix of sizea X b -1, p is the ones matrix of size a X b




- tr is the trace operator - vec is the vectorization operator

- sum is the operator that returns the sum of the elements of a matrix

- c is the operator that returns the lower triangular Cholesky matrix

- ¢’ is the operator that returns the upper triangular Cholesky matrix

- Ais the standard logistic function -G = 3672 is the number of grid cells

Let {x,, ..., X} be an ordering of the set of all grid cells, p = A(r), k = A(k),
pl=d11

R = : : ,and K = : : . To account for missing
pl=d121 .. pl=Oiz2 a5l . pelie—el

pl-0112 WlE=all L liE =gl

observations, let n be the number of observed grid subcells and N = 12n be the number of
temperature climatology observations. Define 7] as the G X n restriction matrix constructed by starting
with I; and then Vi € {1, ..., G} removing the i"" column from I;; if X; is unobserved, and define f as the
G X (G — n) restriction matrix constructed by starting with I; and then Vi € {1, ..., G} removing the i"
column from I;; if x; is observed.

Cz,i B Uz, i ~ - Xz,
Vi,jE{l, ,12} let Ci :ﬁ, ,Ul' = ,Ul' :ﬁ, ir Ui :(’Ui,Xi :ﬁ’ 'Xi,a be the ath
Cfa,i _UJEG,l X.f(;,l'
columnofX; Va € {1,...,ng}, 4;; = cov(T;, ﬁ]), 2;; = cov(U;, Uj) = 7' Ay j],
1
~, 0 DU : o
Vig = : 0 fva€{l,..,n,},
1
0 0 (Evfa,i)a
1
exp (E v,glliz) 0 0
Vl = 0 0 ) Vi = ﬁ,Viﬁ, and K = ﬁ’kﬁ
1
0 0 exp (E UfG,iZ)

_ C1 Uy _ U, Xq
In addition, letn = 11,17, { =11,Q¢,C=| : [[U=| ' |, U=]: |, X=]| |,
Ci2 Uy, U, X12
Vi Ogg - 0Ogg
Ay Apg _ loge . : ~
A= - L R=n'an V=T 0. . and V = n'Vn. For convenience,
A1 - Aizap ’ 66
Oge - Ogc Viz

Vi € {1, ,12} let Ai = Ai,i and .Qi = 'Qi,i'



Calculating the Log-Likelihood of the Temperature Climatology Model

The log-likelihood of the temperature climatology model is | = —gln(Zn) — %lnI.QI —%U’.Q‘lU. Nisa

matrix with nearly 1 billion numbers and, as a result, takes up nearly 8 GB of RAM. This is too large to
easily work with on today’s standard desktop computer, so (2 is broken down into smaller matrices.

RyiVi 'KVt -+ Ry VKV
0= : - : = V-1 (RK)VL.

Riz 1 Vi'KVi ' -+ Ryp Vi KV

=In|2| = In(JVYRQXK)V) =2In(|[VL]) + In(|RRK])

= —2In(|V]) + nIn(|R]) + 12In(|K]) = =2 X2, In(|V;]) + 12In(|K]) + nIn(|R])
But R has determinant |[R| = (1 — p)*1(1 + 11p).

= In|2| = =232, In(IVi) + 12In(|K|) + nIn((1 — p)*(1 + 11p))

ﬁﬂ_l — (V—l)—l(R®K)—1(V—1)—1 — V(R_1®K_1)V
= U0 =X 12, %52, (R™Y ;U ViK1V, U

=1 =—ZIn(2n) + %12 In(V;]) - 6 In(IK]) — ZIn((1 - p)**(1 + 11p))
ifi=j

else

1+10p

1 — — — 1-p)(1+11
— 5211312]121(12 l)i‘jUi’ViK IVjUj, where (R 1)i,j= ( p)£p+ p)

(1-p)(1+11p)

For large matrices, calculating the natural logarithm of the determinant can result in significant
computational error. However, In(|K|) = In(|c(K)c'(K)|) = 2sum (eln (diag(c(K)))), where eln is

the element-wise natural logarithm function and diag is the operator that converts a matrix into a
vector of its diagonal elements. Calculating 2 times the sum of the natural logarithm of the diagonals of
the lower triangular Cholesky matrix is more numerically stable than calculating the natural logarithm of
the determinant, so is performed instead. This method for computing the natural logarithm of the
determinant is used for other large matrices as well. Various other methods to reduce the



computational cost are employed in practice; some of these methods are not listed in this
supplementary information as they are relatively trivial and would reduce clarity.

Initial Guess of the Temperature Climatology Model

To create an initial guess of (B, r, k, z), the following method is used:

e Bisinitially estimated using ordinary least squares (OLS) regression: Cz , = Xz B + Uz .
e The residuals U of the OLS regression are obtained.
® 7y, ..,Zy, areinitially estimated as zero.

e Ifz,, .., 2, are zero, then the expected value of U%mis e 21 Y(x,m) € E, where F is the set of

all combinations of grid cells and calendar months that have observations. As a result, z; is
initially estimated as —In(X & myez(UZ m)/Z@myez 1)-

e risinitially estimated by comparing residuals U within the same grid cell and in different
calendar months. V(x,m;), (x,m;) € £, if m; # m;, then cov (U,g,mi, U,z’mj) =
A(r) exp (—0.5 (v,;,mi + v,g'mj) z). As a result, r is initially estimated as

Uz m. Uz

x,m;-x,m

A1 Z(x m;)€EE Z(x m])e'.d /Z(x m;)EE Z(x m])e

m ( 0. 5(uxm +vxm myEm;

e [k isinitially estimated by comparing residuals U within the same calendar month, within the
same longitudinal band, and in different and adjacent latitudinal bands. ¥ (x;, m), (fj,m) € 5, if

Yz, = 1,[),;]. and |<p,;i — 9z = %, where @3 and 1; are the latitude and longitude of x in

51
radians respectively, then cov (U,;l.,m, U,;j'm) = A(k)1s0 exp (—0.5 (v,;i,m + v,;j,m) z). As a
result, k is estimated as

180
51

Uz mUx
xi,m xj,m

A1 Z(J?i,m)esz (%jm)ez exp(—o 5( S m)z) Z(ii,m)esz (%jm)ez

Yz, =V, ¥z, =¥z,
\\ |¢xl (p’f 15;) |q)xl (px 180 / /

e Bisre-estimated using GLS regression: Ci ;, = X3, B + Uz . In particular, the GLS estimate is

INn— - I N— - ! - -1 - 12 —
X' x)tx'07c = (3, F21(R7D) ;X' ViK X)) X4 F21(R™D) ;X ViK1V €.




Estimating the Temperature Climatology Model

The first and second derivatives of the log-likelihood function are

y ;:a =-U'n7' = o = i1 L2 (R UK VX o Va € {1, ..., ng}
a__1 -109\ _ 1,007, _ 66np? 1 12 y12 oR™" e=1y.77.
* or th' ('Q 6T) ZU or U= (1+11p) 2 j= 1( or )i,j UiViK V]U],
22p%(1+5p) e
where (aR_l) R_l (1-p)) = (1-p)(1+11p)? ifi=j
ar Jij p PP p(1+110%)
Li (1-p)(1+11p)?
al _ 1, 100 1,.,00°t 10K 1 aK
*a TR (‘Q ak)_EU, o U= —otr (K ) Z 2R UV VjUj,
oK _ 9K — 0Kt 10K g
where ok = o k(1 — k) and ke K akK )
i __1 _16_.(2 _ 1. an1
* aZa N Ztr ('Q aza) ZU dzq u
=1 tr(vla) 12 }El(R_l)i,jUi’ViK_lvj,anUj Va €{1,..,n,}
021 ou' . _ aU B , B
®  3B.0By :_E‘Q ! = -3 12 1(R 1)i,in,aViK 11/}-Xj,b VYa,b € {1,..,ng}
ot au'an! 12 12 o~ , B
* dBgdr 3B, or Jj= 1( or )i,j Xi,aViK V}'Uj Va € {1, ...,nB}
921 au' a0~ 1
® Bk —5— = D12 012 (R XV VU Va€{l,..,ng}
o 2L _  au'ant
6Baazb - aBa azb

=Y 2R X Vi(vipK ™ + K7 ViU Va € {1, ..., np} Vb € {1, ..., n,}

2 2 -
° ﬂ:—%t—r(!)‘l(a_n_a_'o_rz—la_'o)>__Ula-Q U

or? oar? or or 2 ar?

66np2(1—p)(2+11p) / -
_ Lt (B, vy,

(1+11p)2
44p?%(1+7p+28p? cp .
9%R! 9%R™! (i)—([))(lfllp)’; : ifi=j
where ( ) = p(l—p)| = ) 5 .
orz Jij dpdr -p(1-11p+55p%-99p%)
' ij else
(1-p)(1+11p)3
921 1 1 ( 920 a0 ,_q an) 1,,0%2071
Y = —= _ — —_= [u—
arox 2T <Q ook ar il ok U o U

-1

= ST (%), U vy,



2 2 2n-1
. 2 =—ltr<(z-1(—“ —a—”Q-la—”)>—lU'a” U

0rdzg 2 ordzg, Or 0z, 2 0rdzg

= Y232 ("’S—r)” UVK10,,ViU; Va € {1, ..., n,}

o () 3t i i

wherezzTIZ{—ZKIZ K2(1 — K)2+£(1—2K)and — Lokt (251(-1‘;—’;—%)1{-1.
¢ st =t (07 (- e ) -2 St

0

- K™t
= — 11221 }El(R l)i,le’Via_kvj,anUj VYa e {1, ...,TLZ}

921 1 _ %0 a0 _4 00 1., 0%2071
. =——tr(0 1( -0 1—) —-U' ==y
02,0z 2 02,0z, 0z4 0zp 2 02,0z

= =214 Y2 (R UV (vigK ™ + K71 0)v;,, ViU Va, b € {1, ..., n,}

The derivatives of the log-likelihood function could, in principle, be used to obtain the maximum
likelihood estimates. However, it can be easier to obtain maximum likelihood estimates by instead using
the derivatives of a concentrated log-likelihood function (also called a profile log-likelihood function),
which is obtained by reducing the number of parameters in the log-likelihood function. One of the

conditions of the maximum likelihood estimates is :—; = 0, which implies that B is its GLS estimate

(X'071X)71X'N71C. Substituting this GLS estimate of B into the log-likelihood function yields a
concentrated log-likelihood function [.

The first and second derivatives of the concentrated log-likelihood function are

al _ al -1 0B _ al 12 12 -1 1 -1 0B
. ;——‘l‘U'-Q X—T—E‘FZ-— j21(R7) Ui ViK™V X —,
where— =X'01X) X — (m U.

oA _a
¢ ak_ak+U'Q Xa

0B _ yro-1yy-1yr 007"
whereak—(X.Q X)X P U.

§—£+2}§1 2 (R™Y),, U ViK1V X, 22

k Jak

al 0B
. a=a+Uﬂ E:_J’Z F21(R7D) ;U ViK™ 1VX Vae{l sy},
where—— X'Q7tx)" 1X’ n,}.




92l _ 9%l , 9B’ ,, 007!

08 i1y 38 9B
U arX.Q Xar+ar2X.Q U

a2z oarz | oar ° or
021 12 yv12 (ORY\ 9B’ 41,1 12 v12 (p-1y. 9B v 1, -1 0B
6_2+Zi=1 j=1( or )i,j_Xi VlK V]U] _Zi=1 ]‘=1(R )i,j?Xi VLK V]X]6—
;oA 1y (0?2071 o=t _oB
12,712 (R™ 1)U 25 X, VKU, where—=(X.Q 1x)-1x (Tu—z = X;).
2 _ 9% 9B, 007 ) )
® Grak arok T ok ar X - X a akX oy
_ azl -1 12 (p-1y. 9B w1 1
=+ TR (X ),jgxi ViK V,~U,~—2i:1 2R, X VKX 2
1 1
+ 12 2, (R 22 X, VKW,
_ 1 1 an~1 6_3_6!2'1 9B
Wherea ox = XXX (a o U~ Xok ~ ok ar)'
9T 0% jot 1 1
® %roz,  oroz, BzaX o U X a2 X a az aX QU
_ 94 12 yiz R "y =1 12 (p-1y. 9B 1 1
= oo+ i (a—r),’,TXi VK ijj—zi:l 2R, X VKX 2 -
+ Y2 12 (R 1)1,,aa X/ ViK~WV;U; Va € {1, ..., n,},
02B _ 1 -1 6.(2 1 6_3_6!2‘1 a_B
where 75— = (X077 X)°X (ara Za X o " om Xar) va €l ...nz}.
9’l _ 2% 3_3' 19071y 9B’ i1y 9B | 0By g
y W_akz-" X o U5 X0 X6k+6k2XQ u
12 cp-1y, 98"y .3K_'1,._ 12 1 1
akz+z 12.(R )U XV vy, 2-_ 2Ry, akX ViKWX; 2
12 1 1 1 1 007", 9B
+ T2 02 (R )wakzX ViK VU, where =2 —(XQ X)~ X(asz 2 ank).
2 _ ou  oB 907, aB 1
¢ akaza T 0kdz, + azaX ok u X 2" X + dkdzg X 2=y
— 1 1 1 -1 0B
6kaz +Z 12 1(R )l]a X V U Z 12 1(R )lj ok iViK Vija_Za
+ X2, X2 (R 1)1,] PP OB VK- 1VU Vae{l nz},
L : 1 1 ot 6_3_6!2_1 9B
where =% = (X071 )7’ (akazau = Xaza - Xak) Va€fl,..,n,}.
%1 _ 9% o8y, 007 1 1
®  9zj07, 02,07 azb oz U "%z aX 2" X azaasz QU
_ o4 12
_62 azp + 1(R 1)1,]6 X V( LaK + K~ Uja)VU

- X235 (R_l)i,ja_Xi,ViK_lvaj_

+ X2, X2 (R 1)%2 25 Xi "ViK™WV,U; Va, b € {1, ...,n,},
62B _ rura—1un—1vr 0207 _ o', 0B 007!, 0B
where S0z X'n'xX)—'x (6zaazb o7 X 92, oz XaZa) Va,b € {1,..,n,}.

These derivatives, combined with the initial guess of (r, k, z), are used to iteratively converge to the
maximum likelihood estimates using the saddle-free Newton’s method. The new value of (1, k, 2) is



(r,k, z) + min (1, WLJ’) [[H]]_lf’, where H = D'J is the Hessian of the concentrated log-likelihood
function, | = Dl is the Jacobian of the concentrated log-likelihood function, D= [;—r ;—k % ,and [ ]is

the operator that returns the matrix with the same eigen-decomposition, but after taking the absolute
value of each eigenvalue. The minimum function is used to reduce the step size if the step size is large
compared to the magnitude of the log-likelihood function; this increases the stability of the iteration
procedure when the determinant of the Hessian is close to zero. The new value of B is then calculated
using GLS: B = (X'271X)~1X'N~1C. 100 iterations are performed to achieve adequate convergence to
the maximum likelihood estimates.

Selecting the Temperature Climatology Model

After the estimation of each model is performed, the model with the lowest AIC is selected. More
complicated models may be better able to explain observations, but they come at the cost of higher
complexity and thus an increased risk of overfitting. The AIC is roughly a measure of the information lost
by the model and balances the increase in the ability of the model to explain observations with the
number of parameters in the model. The formula for the AICis AIC = 2n,4rqmeters — 21, where
Nparameters = Ng + N, + 2 is the number of model parameters. The BIC is calculated for comparison; it

is similar to the AIC except 27 grameters is replaced with In(N) npgrameters-

AIC = 2npgrameters — 21 = 2(ng +n, + 2) + NIn(2m) — 2 X2, In(|V;])
+12In(K]) + nIn((1 = )™ (1 + 11p)) + XiZ; X2, (R™D); ;U ViK1V, U;

Parameter Uncertainty of the Temperature Climatology Model

The maximum likelihood estimate of (B, 1, k, z) is asymptotically multivariate normal with covariance

matrix (- H)™1, where H = D'] is the Hessian of the log-likelihood function, ] = DI is the Jacobian of
9 9 i]. Since H is symmetric, the covariance matrix has
or 0k 0z

eigen-decomposition @A®~1 = @AP’, where @ is a matrix of eigenvectors and 4 is a diagonal matrix of
eigenvalues. Thus (-H) 1 = @ (-4)71@’ = & (=A4)7%5(® (—4)~%%)". This multivariate normal
approximation is used to quantify the uncertainty of the maximum likelihood estimates. For the selected

the log-likelihood function, and D = [aiB

temperature climatology model, 200 vectors of random numbers of length ny,qrqmeters are generated
from independent standard normal probability distributions. For each of these 200 vectors, ®(—A4)~%>
is multiplied by the random vector to obtain an ensemble member of the parameters (B, 1, k, z) of the
temperature climatology model.
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Estimating Residuals of the Temperature Climatology Model

Since some combinations of grid cells and calendar months are unobserved, their residuals must be
estimated. The simple kriging estimate of the unobserved climatology residuals U is {'Ao~1u.
Conditional on the estimate of the model parameters, the kriging estimate is the most-efficient linear
unbiased estimate as well as the maximum likelihood estimate of the unobserved climatology residuals.
12 X521 Ry S'VTRVT (R™Y) ViK1V, U;
{'Ann~tu = :
1212721 Ry (VR RV H(R™Y) j VK~V U
211'21 J'VIKAK VU X2 Ry (R™Y); 5
= : ButY{2 Ry ;(R™Y);; = 6, Ya €11, ...,12} since R and
]1'21 {'Vi' KAK WU X121 Ry (R™Y); 5
'V KAK Uy
R~1 are inverses of each other. Thus, the simple kriging estimate is {'An2~1U = : )
{'Vi' KAK~Vy,Us,

Infilling Uncertainty of the Temperature Climatology Model

The covariance matrix of {'AnQ~1U is {' Al — {' An~1n’ AJ. To account for uncertainties in the simple
kriging estimate of U, the 200 ensemble members of parameters are used to obtain 200 ensemble

members of U. For each ensemble member of U, a vector € = [ ] is generated from an independent
€12

standard normal probability distribution, where g; € RC™" Vi € {1, ...,12}.

For each ensemble member of U, an ensemble member of U can be generated as {'An2~1U +

T11 0 T112
c({'AL — 'm0~y AQe. Note that {'A — ' A~ In' AT =1 = ! ' : ], where
T121  *° T12,12
Ti,j = RL,}Z V V} ( 12 (Rlac V 1KV U)((R 1)abV K~ Vb)(Rb]n Vb 1KV 1()
=Ry {'Vi IRV — ZV 1K?ﬂ" 'KV N Bat1 Xb2q Rig(R™ g p Ry j
=Ry ;{'V (K — KK *'§'K)V*{ vi,j € {1,...,12}.
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To reduce computational rounding error, ¢(7) is calculated as

C(Tl,l) @G—n,G—n (D)G—TL,G—TL '1U1,1 (D)G—n,G—n (D)G—n,G—n
@G_n'G_n l. . M : l. 0 .
: (O)G—n,G—n : (O)G—n,G—n )
y ey
Og-nc-n 0¢-ng-n C(T12,12) 12,1 1212

= ¥ can be calculated iteratively using ¥; ; = C(IG_n - ;;11 ‘}’i_]-‘}’l-’,j) vi € {1,...,12} and

-1 -1 . _
W, :((c(m)) EGn) —zfl;llwi,aqg{a)wj’_j 'vie(t,.. 12} vj e {1,..,i—1}.

Y1

After c(7) is calculated, y = [ : ] = c¢(t)e is calculated using y; = C(Ti,i)(25~=1'¥’i,j€j) vie{1,..,12}.
V12

The ensemble member of U is then calculated as {'AnQ~1U +y.

These 200 ensemble members of climatology residuals are combined with the 200 ensemble members
of the temperature climatology function to produce 200 ensemble members of temperature
climatologies.

Obtaining Patterns of Internal Variability

Let G = 36+ 72 be the number of grid cells, t = 1 correspond to January 800, and M = 6012 be the
number months used from the pre-industrial control scenario of the CCSM4 model. Vj € {1, %} let

AT; ; be the weighted average of (4T z15;-11, .., 4T 12;), where each month is weighted by its
number of days. February is given a weight of 28 days for all years since CCSM4 does not contain leap
years. To calculate EOFs of these sea ice detrended annual average temperature anomalies, the

0.577 0.57
Area; ATy 1 - Areafc AT 3.1
weighted observation matrix 0 = : - : is calculated, where Area; is
rea; AT. m - Areaz’AT. m
Aread’AT Area’AT
T ¢ oy

the proportion of the Earth’s surface covered by grid cell X. Observations are weighted by the square
roots of the surface areas of their grid cells because this is standard practice and prevents the smaller
M2 AT

grid cells near the poles from having disproportionate weight. Since Zj= z,j = 0 forall grid cells X,

12
the EOFs can be calculated as the eigenvectors of the uncorrected sample covariance matrix, " 0 0.The

EOFs are ranked in descending order by eigenvalue to find the EOFs that contribute the most to
explaining the area-weighted variance of AT. In addition, the EOFs are normalized to have maximum
values of 1. The EOF that explains the most variance is used as the IVP to represent ENSO.

12



Temperature Anomaly Model

Functional Forms of the Temperature Anomaly Model

Definitions of the models of the amplification function are given by Table S4. Definitions of the models
of the covariance function of the weather residuals are given by Table S5. In Table S4, the convention
m = 1 corresponds to January, and the normalization operators ( ),, and () are used. ( ), is the
operator that returns the function minus its weighted mean, where grid subcells are weighted by their
surface area for calendar month m. () is the operator that returns the function minus its weighted mean,
where grid cells are weighted by their surface area. These normalization operators ensure that the
amplification function averages to one when integrated over the surface of the Earth for each calendar
month. If the amplification function were normalized to a different non-zero real number, then this
would not affect the final temperature estimates since the change in the definition of A would be offset
by a change in the estimates of 8. However, having the amplification function be normalized to one
allows for a more intuitive interpretation of results.

Model Fismf
1 0
2 (S)mfm
3 al,)?fm + “2,9?f12+m
4 al,)?fm + “2,9?f12+m + (5)mf24»+m + (S ) al,)?)mf36+m + (S i a2,9?>mf48+m
Table S4: The different models of the amplification function. a; ; = ;;' -3 %Zgo,g and ay 3 = ((pfg - "7240,22),

where @; is the latitude of X in radians. These models were used to estimate temperature anomalies.

Model Vi smZ
1 Z1
2 Al +s- Zy

Table S5: The different models of the covariance function of weather residuals. These models were used to
estimate temperature anomalies.

Notation for the Temperature Anomaly Model

For convenience, the following notation is used:
-"is the transpose operator - o is the Hadamard product
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- ® is the Kronecker product - I, is the identity matrix of size a X a
-0, is the zeros matrix of sizea X b -1, p is the ones matrix of size a X b

- tr is the trace operator - vec is the vectorization operator

- sum is the operator that returns the sum of the elements of a matrix

- ¢ is the operator that returns the lower triangular Cholesky matrix

- ¢’ is the operator that returns the upper triangular Cholesky matrix

- A is the standard logistic function -G = 3672 is the number of grid cells
- M is the number of months in the temperature anomaly dataset

- The convention t = 1 corresponds to January 1850 is used

Let {(X1,51), ..., (X26,S25)} be an ordering of the set of all grid subcells. Let g = [I;], p = A(r),
pll_ll cos pll_Ml _

K1 = A(ky), ko = A(ky), R = : i |, and K be the 2G X 2G matrix with entries
le_ll cee le_Ml

K= rc1||fi"zf||1c2|5i‘51'| Vi,j € {1,...,2G}. To account for missing observations, Vt € {1, ..., M} let n; be
the number of observed grid subcells for month t, N = YL n; be the number of temperature anomaly
observations, and define 1, as the 2G X n, restriction matrix constructed by starting with I,; and then
Vi € {1, ...,2G} removing the i* column from I, if (x;, s;) is unobserved for month t.

_ .7?1,51,1’ Efl,sl,i
Vl,]E{l,,M} IetKi’j=n{Kr]j, Wi= ,El'=T]£ :Ui=7h{Wi+Ei'
X26,5261 Ea?za,szg,i
!2. .
Ai,j = COU(WL', VV]), I-;,] = COU(Ei,Ej), 'Qi,j = COU(Ui, U]) = T]{ALJT]] + I}J, Si,j = #,
Yfl,sl,i Qfl Ffl,sl,mi
Y; = nj P, Qi=nll ¢ | Fi=n1) : , F; 4 be the a®” column of F; Va € {1, ..., ns},
YJEZG,Szg,l' szG FfZG:SZG'mi
1
(E vf1.s1pmi)a 0 e 0
0 : : :
A = Ilni,l + Fif; P = [Al Qi]; Via = 77{ : . 0 niVa € {1' -.-,nz},
1
O o 0 (E U2267SZG7mi)a
1
exp (E vfl,sl.miz) 0o - 0
5 0 : 0; . - -
Vi= : 0 L Pi = [ l], Vi = niVin;, and Z; = VKV
1
0 -+ 0 exp (E viza,sw,miz)

14



1 026n, (0)2(; N4

. . U
() . . 1
In addition, letn = 26mz . . 0 [ ] l =i
: . . 26 TlM ) U
M
@ZG,nM e (mZG,TlM
Ay o Ay Ly = DOy Y;
A=|: o~ i lr=|l: o~ i | e=pM+ry=|:i]
Ay Aum Iv1 = Tum Yu
! Oning+1 ®”1rflq+1 4 026,26 026,26
p ([Dnz.'nq+1 : = (0)2?,26 : ’
: N N ®nM_1,nq+1 : " N @26,26
| nM ng+1 nM ng+1 Py (U)ZG 2G @ZG 2G Vum
q= ] p= [ ] and V = n'Vn. For convenience, Vi € {1, ..., M} letK; = K;;, A; = Ay, I[; = T,

"Qi = ‘Qi,il and Si = Si,i'

As the bias uncertainties have a complicated covariance structure, do not have a multivariate normal
distribution, and have significant temporal correlation, only measurement and sampling uncertainties
are taken into account in E. Instead, bias uncertainties are taken into account later on in the estimation
of total uncertainty. Since the measurement and sampling uncertainties of HadCRUT4 and HadSST4
neglect temporal correlations between months, I is a block diagonal matrix.

Approximating the Log-Likelihood of the Temperature Anomaly Model

The log-likelihood of the temperature anomaly model is [ = —%ln(Zn) — %lnl.()l —%U’.Q‘lU. Nisa

matrix with more than 10 trillion numbers and, as a result, would take up more than 80 TB of memory.
Given current personal computer technology, it is not feasible to compute, store, or perform
computations with such a large matrix, so 2 needs to be approximated and broken down into smaller
matrices.

2 2

The second order Taylor approximation of |£2] around p = 0 is |2] |p=0 + %‘Zl o aapz e p?
- -102 2 (-1 ~12°2 _ -102 )1 00 o
= 10l] _, + 12ler (2 ap)|p=0p + (l!)ltr (e 2) +lar (2155 -0 50 ap)) 5

p:
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. p> _100 ,_100
— |n||p=0<1—7tr(n 10 15))

= (TT1241S; |)< MaxMis sum(sljosu)) where S;; = S71S; ;871 vi, j € {1, ..., M}.
li-jl=1

_(H =11Si |)( 1ZM] 1 tr(S 151151 15 ))

p=0 li-jl=1

In the special case where n; = 1,41 Vi € {1,...,M — 1} and E; = 0, ; Vi € {1, ..., M}, one can calculate

Ry Vi'Ki Vit - RyyVi'KymVig"
|2| exactly since, in this case, 2 = : : =V YR®K)V™L
RuiVar 'K Vit - RumVir 'KV
Thus |2] = [V"HRK)DV ™ = [V [RI™ K, MV 1.
But R is the Kac-Murdock-Szeg6 matrix, which has determinant |R| = (1 —p
= 10| = [V7(1 - p2)M-D]K, |M|V—1|
But nl(M - 1) - _Z 1ZM] 1 = Iivi1ZMj=1 tr(lni)
li-jl=1 li-jl=1
ZMle - (ST 18;;Si7tS; i) = %Zﬁlejzl sum(S;; °S;;)and
li-jl=1 [i-jl=1
VK MV = (TR v ) (T K D (TTRL Vi Y]) = (TTE S0

—Z{VI1Z j=1 sum(S-J-oSi_]-)

2)M—1_

Thus |2] = (TT4418:1) (1 — p?) li=jl=1
But;—p(l _ pz)n1<M—1)| =n (M - 1)(1 = p)M=D=1(=2p)| _ joo = 0and
0? 2y R (M=1) 4p n (M = D (M = 1) = (1 = p?)m®=v=2)
-z (1 —p%) | 2yn, (M—1)—-1 ==2n,(M - 1).
— 2n, (M — (1 - p2)yur-D1| o
Thus, the second order Taylor approximation of the above formula for [2| around p = 0 in the special
_ . . |0 3210 p?
case where E; = 0y, 1 Vi € {1, ...,12}is |.(2||p=0 + - Fra p=07 =
2
]_[l-lfllSil (1 - p*ny(M — 1)) = l_[i1£1|5i| <1 - %Zﬁlejzl sum(S{fj o Si,j)), which is the same as
li-jl=1

the second order Taylor approximation of |£2| around p = 0 in the general case.

Since the above formula for |£2] in the special case has the same second order Taylor approximation
around p = 0 as |2] does in the general case, it is used as the approximation of |£2].

= In(|2)) = ¥, In(S;]) + = 2 L 3Mizs sum(S;j o S;;)In(1 —p?)
li—-jl=1
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The first order Taylor approximation of 271 around p = 0 is

-1
07 oo + agp P =07 - Q‘l‘;—zﬂ‘l P
51_11 _psl_,llsl,zsz_,zl ®n1,n3 (U)nl,nM
—pS33821511 | :
(0)713:711 @nM—Z'nM
: —PSit i m—-1Sm-1,mSmm
@nM,nl (D)nM,nM_z _pSI\TI,lMsM,M—lslgl—l,M—l SlglM

In the special case where n; = 1,4, Vi € {1,..,M — 1} and E; = 0, , Vi € {1, ..., M}, one can calculate
071 exactly since, in this case, 271 = (V"Y(RQK,)V™1)™! = V(R"I®K{1)V. But R is the Kac-

1 —p 0 0
—-p 1+p? . :
Murdock-Szegd matrix, which has inverse R~ = 12 0 0l
: : 1+p%2 —p
0 0 —p 1
V1K1_1V1 _plel_lvz (U)nl,nl (D)nl,nl
—pVoKi Vi (1 + p? VoK'V, ‘ :
>0 = 1_1p2 Onyny ' Oryin,
: . (A + p* Wi KT Vo1 —pVuy—1 K7 Wy
| Onm, Onymy, =PV Wy VKT Vg
[ Sl_,ll _pS;,Z ®n1,n3 (O)nl,nM |
| A p*)S33 '
= 1-p2 @n3,n1 (O)nM—zlnM .
: . (A +p*)Sutim—1 —PSh-1m
_@nM,nl @nM,nM_Z _pS;\k/I,M—l 51\71,11\/1
9 1 2 0 14p? 4
Pty ay pm0 S rrer pmo e pmo - and
aa—:z 1:22 e = — % e = —1. Thus, the first order Taylor approximation of the above formula for

-1
027" around p = 0 in the special case where E; = 0,,; Vi € {1,...,12}is 07| ,oo + _agp P

p=0
51_11 _Psf,z @nl,n3 (O)nl,nM
—pS;1 ) :
=|0pyn, On,,_,ny |, which is the same as the first order Taylor
: | —PSm-1,m
@nM,nl @nM,nM_z _pSIT/I,M—l SlglM

approximation of 271 around p = 0 in the general case.
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Since the above formula for 271 in the special case has the same first order Taylor approximation
around p = 0 as 27! does in the general case, it is used as the approximation of £271. For convenience,
let 2* correspond to this approximation of 27 1.

S U0 ~ B R UST U+ T B o0 (R7Y),U{S75U;,

li-jl=1
1 .
1_p2 I’fl_] E{llM}
+p? . _ . B
where (R™Y);; =412 '~/ € {2,..,M -1}
0 else

-_N _1 _lypip~ N _lym .
=>1= > In(2m) > In|2| 2 Un—u= > In(2m) > =1 1n|S;]
In(1-p2 % 1 _ lo— 1 — I o*

- %Z?&Z%:l sum(Sg; o Sij) = 5 XL (R UiST U = S XL B oy (R7D,U{S15U;
li=jl=1 li-jl=1

Initial Guess of the Temperature Anomaly Model

To create an initial guess of (f,r, g, p), the following method is used:

e fisinitially estimated as a zero vector.
e pisinitially estimated using OLS regression: Y3 ¢, = 0, + Qzq¢ + Uz g ;-
e The residuals U of the OLS regression are obtained.

® 7y, ..,Zy, areinitially estimated as zero.

e Ifz,,...,2, arezero, then the expected value of UZ,is e % + 052 , V(X,s,t) € &, where Z is
the set of all combinations of grid subcells and months that have observations and UEJZ?” is the

variance of the measurement and sampling errors at (x, s) for month t. As a result, z; is initially
. 2 2
estimated as — In ((Z(f’s’t)eg (U,z,s,t - O-Ef,s,t))/z(f,s,t)ef 1)'

e risinitially estimated by comparing residuals U within the same grid subcell and in different and
consecutive months. r is estimated as

Uzst;Uxst;
1 i i St VXSt B R ~
A Z(x,s,ti)EE Z(x,s,tj)es . )Z)/Z(x,s,ti)E: Z(X,S,tj)e_: 1

X —O.S(UA AUz cp.
|fi—fj|=1 p( xstiT VxS |ti_tj|=1
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ek, isinitially estimated by comparing residuals U within the same surface type, within the same

month, within the same longitudinal band, and in different latitudinal bands. k, is estimated as
180

51

Uz, Uz
XpstoXjst

(oE—— Ligsnes X (xst)eu 1

_1 N —_ = =
A LEstes X (%)st)ez exp<—°5

¥z, =¥z; ’
STI
\\ |(pxl (px ~180 |(le (Px 180 / /

ek, is initially estimated by comparing residuals U within the same grid cell, within the same
month, and in different grid subcells. k, is estimated as

stlt XS

7 Lses T /2 D)
(%s4,t) (%, Ss;t)]eu ( N 5(”;?5 vz, t (%s4,t) (%, Sslj:s)]eu
o pisre-estimated using GLS regression: Yz, = (1 + Fggm, )0 + Qzqr + Wi se + Ez 5. This
is done by taking the estimate of f as given. In particular, the GLS estimate is
(P'Q1P) 1P~y = (P'Q*P)"1P'Q*Y =

! - 1 * —1
P{STiP —pPiS1,P; Ong+1ng+1 Ony+1,ng+1
—pP;S;,P (14 p*)P;S;,P, :
®nq+1,nq+1 ®nq+1,nq+1
: A+ pH)Py_1Sy—1m-1Pu-1 —PPu—1Sn—1,mPu
O gr1,ng+1 O yr1,ng+1 —PPySum-1Pu-1 PiySimPu
- - M - *
(R D11 PISTii+ 3 j=1 (R 1)1,jP1’S1,ij
; j1-jl=1
(1-p9) :

(R_l)M,MPJ(/ISJ\TI,IMYM + ZM j=1 (R_l)M,jPI(/ISIT/I.ij
[M—j|=1

Estimating the Temperature Anomaly Model

The first and second derivatives of the approximation to the log-likelihood function are

oL _yrg-1 9P
* o U
~ YL (R 1)”US 1an9 + 00 12M] 1 (R™ 1)1]U 5* b Vae{l }

li-jl=1
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l 1 _100 1,001 p? M M
a2t (Q _r) U U= £12"j=1 sum(S7; o S;)

d 2 | 2 or 2(1+p) U
li-jl=1
1wm (OR7? -1 M oR™1 /o
—52i=1(7)”l/i'5i Ui—3 Z =12 =1 (_ar )l.jUiSi,jU]"
’ li—-jl=1 ’
2p? e s
((1+p)(1—p2) ifi=jetLM)
1 1 _ 4t _
where (2—) =(Z—p1-p)) ={@mar 7/ €2 M1
ar Jij ap .. 2
| I e N [ S
(1+p)(1-p?)
0 else
a1 —1002| 1.,007"
a— L) U el
1 _105; In(1- p M 957 « 0S8y

o (55 g (e, 5, 22)

[i-jl=1

“YM (R g Sy _tym oym gy By e 2}, wh
— - Xi=1( )u 1 9g, (1T Z4i=14 j=1 ( )i,j 1 9g, ) a €{1,..,n, + 2}, where
li—jl=1
8S; d
24 =y YTl (1 - k) Va € {1,2), 65’ = 0,4 0Zi — ZiVig o Va € (3,..,n, + 2,
094 axa ’ ’
3S; es . 087t —10S; -
ag; = —vi‘a_zSi,j - Si'jvj a—2 Va € {3, (P + 2} if i i], E = _Si 1agaS and
aS; ; _10S;; as . ,
9Dij _ =195 ¢-1 _ ¢-195i ox _
PR S; 6gaSJ Si SJ Slla S ifi #J.
apL =U'Q7'P ~ (R, UiST P+ XMy (R™Y),;U/S; P Vi€ {1, ..., M}
li—-jl=1

%L _ _i9P' n-q 0P

P TR T
Z 1(R 1)119 FlaS 1Flb9 Iivil ZM]‘:l (R_l)i,jBiFi”aS{th}-,ij Va,b € {1, ...,nf}

li-jl=1
2L ,0P'an!
afaar_p af, or
~ VM orR”! 1 M M dR™! *
"’Zi:l( ar )i BFS U +2 12 j=1 (T)ljglFl,SlJUJ VCIE{l,...,Tlf}
li-jl=1 ’
%L _ ,a_P'a_Q__l 1 F! as;t M 1 P! BSU
afaagb_p 5fa 6gb 1(R )ll la a U +2 1Z| ] |11(R )lj laag U
i-j
Va € {1, ...,nf} vb e{l,..,n, + 2}
2L _ yig-19P _ 9P g
0fadpi dfa afaQ P
z(R_l)l'_iUi’Si_l[Fi,at (mni,nq]-l-ZMj:l (R_l)i,jUi,SEj[F}',a @nj,nq]
li—jl=1

— (R7Y)1i0;F ST P, — XM oy (R7Y);;6;F oS;iPiva € {1, .., nf} Vi€ {1,..,M}

li-jl=1
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021

or?

~ P22+p)(1-p)
2(1+p)?

where (aZR_l) 0°R
arz /i dopor

2(1+p)

_Lym ym (aR__l) U
2 =1 j=1 or ij 2

—_1 -1 (9%0
2 tr <Q (6r2

1M M 9%R™1
2 i=12 j=1 ( or2
li-jl=1

2 aS; j
P M M
=12 j=1 Sum ( PR

on
ar

_16_.0 _l a
o 6r)> ZU

1ZMJ 1 sum(Slj OSU)

[i-jl=1
U~'S-*-U-,
)i'j 9%

(

p(1 —p)) =

ij
_1( 0% 00 4 00)\)\
<Q (araga or aga)>

*

LoS; i+,
li-jl=1

2pn-1

U

ar2

M ((')ZR_1
ar2

2p%(2-p+p?)
(1+p)?(1-p?)
4p?(2-p+p?)
(1+p)2(1-p?)

-p(1+p*)(1-p+5p*-p?)

957
—U;Va e{l,...,
09a 1 {

). U{S7U;
ii

ifi=je{1,M}

i=je{2.,M—-1}

(1+p)2(1-p2) li—jl=1
0 else
,0%2071
0rdgqg
1wy (OR7T ;0871
)_E i=1(a )..Uial Ul
09a T /i da

n, + 2}

li-jl=1
%1 ,0071! (aR—l) 1 M (aR—l)
6r6pi_U ar P~ or Ji; UiSi P+ X J=1 or Jij UJSJ‘
li—jl=1
021 1 _ %0 00 . _q 00 1 92071
=—2or(07( e |k
09q99p 2 09a99p 99a 99p 2 09q99p

Q

2 * * *
_ ln(l P )Z 1ZM . sum( 0°S;; . 0S; o aS;j , 0S;j o 0Sij Sl-*- . ()ZSL'J )
IL] =1 99499 99a 99p 99p 0da J 09409
M 1 , 02s71 M wM A a%s]
— M g1y .yl 22 g _IZyM . (R7YY. . v €{1,. 2
l—1( )l,lUl agaagb L 2 l—lzllij—ll_l( )l,] i a a U a b { nZ + }I
. _1 0%K; 3S; i
where —4 = |71 ax;] K2(1—Kg)% + gla] (1 —2k,) Va € {1,2},
625‘1-,] -1 621(,:']' -1 .
s0o00r = Vi orax Kqo(1— Kk )Kkp(1 —kp) Va, b € {1,2}ifa # b,
925 ; 9Sij _ 0Si;
L = : v Vae{l,..,n,+2}Vbe{3,..,n, + 2},
agaagb i,b Zag ag ]b 2 { Z } { Z }
azs;t 1 0S8; o -1 0S; & —1 21 0S; o —10S; o1 1 938, .q
—Lt =G S; —’S- +S; ‘S- S5t —-85 " ——8"", and
09a0g9p ' 9ga " t : boage Tt L 9gqdgrt
6252‘,]' _ as;t aSi']’ y g1 0S5 0%s;j g1 -1 0S;j 65]'_1 _ as;t as; * _ o1 9%s; *
09409 09y 0da L' 09499y ) ' 0gq 99y  0gp 0ga M L' 9gq0gp Y
* * -1
-1 aSi 651-’]- aSi,j 651 -1 * 6 S] -1 * 651 65
-SG5 —5 — . To reduce the computational
L' 9gq0gyr 09y dga ) L 0gadgp ) i agq dgp P

1M -1

0°S; _( -1 aS;
09499p L

) (asl S
99p 09a

)

P,Vi€({l,.., M}
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. . o o FE
burden of calculating this second derivative, the approximation 0 = —— tr(ly,) =

8%s;; 0S;; 9s;; . 0S{; 8S;; 928
tr(S7tS:;S'S; )=Sum( oG i+ —Lo—p ot gr 0 )IS used.

6gaag 99409y " 9ga 99p 09p 09a Y 09499

221 , 0071
* ogaon U ag, P

,as : .
~ (R™Y);, U o P +3"i R™Yy; ]a’ Piva€e{l,..,n,+2}Vvie{l,.. M}
li-jl=1

921 'y _ _ - I ox ..

* von —P'07'P = =& j(R™) PSP, — 8j—jj . (R™D) jP{S{ ;P Vi, j € {1, ..., M}

The derivatives of the log-likelihood function could, in principle, be used to obtain the maximum
likelihood estimates. However, it can be easier to obtain maximum likelihood estimates by instead using
the derivatives of a concentrated log-likelihood function. One of the conditions of the maximum

likelihood estimates is g—; = 0, which implies that p is its GLS estimate (P'Q271P)"1P'Q~ 1Y ~

(P'2*P)~1P'N*Y. Substituting this GLS estimate of p into the log-likelihood function yields a
concentrated log-likelihood function I.

The first and second derivatives of the approximation to the concentrated log-likelihood function are

al 1 0D ~ 1 —1p 9pi M 1
E—@‘i‘(]ﬂ P— T —+Z 1(R )llUS Ptafl-l'z 1Z|] |11(R )l]USl]P]af
i—j

va € {1,..,n}, where— (P'Q*P)” 1( ;’[Z*U - P’.Q*:TPp) va € {1,..,n}.
a a

ol _ ap apl
s = +U-Q p—= P 5"‘2 L (R™D),U{STP; +Z 127\/11 Ill(R 1)UUSL]P] a
i-j

a_p~ rn* -1 ,6_.(2*
where Pl r'o*P)~'p p U.

ol

_ ap~ 1 1 6pl M 1
° 390 E+U.Q Pa _+Z ~1(R™ )llUS P; +Z 1Z|111|11(R )UUSUPJz?

Uva€e{l,..,n, +2}.

Va e{l,..,n, +2}, where7~ (P'0*P)” 1P,aﬂ

0%l 021 619 _1p Op , 0P’ 1 0P ' A—1 OP Op 1
= P ipl _pZpipl Lyt 20 POy
afaafb afaafb afa afb afa af afa afb afaafb
~ 0% 1y 9P 1p 9p; M M 1N Op; op;j
~afaafb_ 1(R )lla lPS Plaf - l=12|]=ll 1(R )lja lPSl]P]af
i—jl=

):H op; M _ aP opj
Z ~1(R™ 1)”23{6;5 1Pla_f;_ {Vilz j=1 (R 1)i,]pl’af Sl]P]af
li-jl=1

1 0P; Op; M oP; dp
+ DL RIS s+ Bl B RTDU1S) 57 5
li—jl=1
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6pl

M -1 1 M R-1 9%p;
+ LR D555 PIST Ui + 20 12| ; |11( diiarar PiSE Upva,b e {1,..,np},
i-j
op' . opP ap ) ~x OP Op
\ 0 g P+ B grp 22y prg 0P o0
where 22~ —(p'*p)-t| % b af“ b %a0lb \yg pe{l,..,
8fa0fp aP' ., 9P —QPap+P!2* aP dp
orl o P T ofa 3fp fa
9%l 9% 6_p’ , 0071 ap’ 1p0p , 8%p’ 1
Bf,0r  f,0r  f or 6faP'Q P +6fa Pa~u
" 021 M oR™? ap; 1 M dR dap;
~6fa6r+ i=1(ar)lafPS Ui + 221 2= (6r)”6faPS U

li-jl=1

d d
- MR Yy, ”lPs M P (R ”’PS P2

[i-jl=1

LixMier Ry
li— ]| 1
afaﬂ P
oP Bp
O0fq Or
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P/S7U; + XM 37a0r

0fa0r

Z l(R 1)ll

or' oa
dfq Or

- P —
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YN 4
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92 I N* -1
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p
Ofq0r ’ ai
9%l _ 921 a_p’ , 0071
0fa09p 0fa09p  Ofa 99p

621 1 pl ,6.5‘
31,095 1(R )lla Pl gy

Bp _
U= afa PaTtp dg 0fa09p

U +Z 1ZM] 1 (R 1)l
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J 6f
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l]]a
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.
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J
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— MR P P R S S (R, s S

[i-jl=1
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D PS Wi+ I RTYy,
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'J afaagb

+ Z l(R 1)116

or' o’

3fa

a%p z(P,.Q*P)_l 0fa 9gp

Vb e{],..
b { T 0fa09p
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,_Q*

.Q*P
aP ap _
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0fa 09p

va€e{l,..,n}vbefl,..,n, +2}

82l _ 9?1  ap' ,,007! ' 1 A1 0P , %D ) A1
52 =92 —PTU——PQ P—+—2P.Q U

~a_21 M OR™? apl 1 M OR™
= or2 i=1(6r )ii PS U+Z 12]1 (ar
’ li—jl=1
_ a
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0rdgg
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0ga ar a T99q
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0! 1 a—1p ODi _ ap;
— YL (RTY)y; z;Pisi 1Piﬁ_ LMo (R 1)11 "Lp/S; P2

ij ]6g
[i-jl=1
2p; 8%p; .
+ XL (R™ 1)116 —PiST Wi+ S 2 e (R l)i,jaraglapilsi,jUj Va€{l,..,n, +2},
li—jl=1
a%p ~ rn*py—1 I(azﬂ* 00" a_p_a_ﬂ* 6_p)
where Grag. (P'*P)~tpP —aragaU o Paga 6gaP6r Va e {l,..,n, +2}.
021 021 ap ap’ 1 a%p’ 1
= + 22 pr 227y 9P - Pl 2P _pig-iy
* 09a99p  09499p 6ga 69 09q 69 9gp
~ 621 1 ap ,65 M 1 6p ,aSLJ
~agaag 1(R )ll lPl agp 12 j=1 (R )l] - lagb
[i-jl=1
ap; p; ap;
_ZMl(R 1)11 lPS 1 Lagl ZMle =1 (R 1)1] lPSl] ]6g
li-jl=1
92 92
+ 2R 1)”6 pl PS W + 31 1ZM] 1 (R™ 1)‘16 pl PS iUjva,b €{1,..,n, + 2},
li-jl=1
an ap an* | dp
here ~ (P'0'P 1P( ——P———P—)Va,be 1,..,n,+2}.
W agaa ( R VP Rt PR Pet PR P { 2+ 2}

These derivatives, combined with the initial guess of (f,7, g), are used to iteratively converge to the
maximum likelihood estimates using the saddle-free Newton’s method. The new value of (f,r, g) is

(f,r,g) + min (1 m) [7] ' where H = D'J is the Hessian of the concentrated log-likelihood

function, J = Dl is the Jacobian of the concentrated log-likelihood function, and D= [% aa_r aag] The

new value of p is then calculated using GLS: p = (P'271P)"1P'0~1Y = (P'2*P)"1P'2*Y. Only 10
iterations are performed for each model due to the high computational cost of each iteration. Fewer
iterations are needed compared to the temperature climatology model due to the use of more data to
estimate the temperature anomaly model. In all cases, after 10 iterations the hessian is negative definite,
suggesting that 10 iterations provide satisfactory convergence to the maximum likelihood estimates.

Selecting the Temperature Anomaly Model

After the estimation of each model is performed, the model with the lowest AIC is selected. The BIC is
also calculated for comparison.

AIC = 2npgrameters — 2L = 2(ns + M - (ng + 1) + n, + 3) + NIn(2n) + X%, In(|S;])

In(1-
+ Oy My sum(S7 o ;) + ZHLRTDUIST U+ S Iy (R, UISEU;
[i—jl=1 li—jl=1
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Parameter Uncertainty of the Temperature Anomaly Model

The maximum likelihood estimate of (f,r, g, p) is asymptotically multivariate normal with covariance

matrix (—H)™1, where H = D'J is the Hessian of the log-likelihood function, ] = Dl is the Jacobian of

5}

d
the log-likelihood function, and D = [ ar 29 %]' This multivariate normal approximation is used

to quantify the uncertainty of the maximum likelihood estimates. From the covariance matrix (—H) %,

the sub-covariance matrices cov ([;] , [;D, cov ([);] , [);D, and cov ([2] , [];D can be obtained.

To greatly reduce the computational time of estimating infilling uncertainty while still accounting for the
uncertainty of the covariance function, only five ensemble members of the covariance function

T[T
parameters (r, g) are generated. Since cov ([g] , [g]) is symmetric, it has eigen-decomposition @A®’,

where @ is a matrix of eigenvectors and 4 is a diagonal matrix of eigenvalues. For the selected
temperature model, five vectors of random numbers of length (n, + 3) are generated from
independent standard normal probability distributions. For each of these five vectors, ®4° is
multiplied by the random vector to obtain an ensemble member of the parameters (7, g) of the
temperature anomaly model. The five ensemble members of (7, g) are then normalized such that their
sample means are equal to the means of the maximum likelihood estimates of (r, g), and their
uncorrected sample variances are equal to the variances of the maximum likelihood estimates of (r, g);
this ensures that the small sample size does not significantly skew the results.

Given an ensemble member (r, g) and maximum likelihood estimates (f,#, §,p), the expected value of

(f, p) under the conditional probability distribution is [g] + cov([ ] [gD <cov [g] [g] > [r _ r

In addition, under this conditional probability distribution, the covariance matrix of (r, g) is

cov ([7].[1]) ~cov ([1] [;])<cov([;],[;])>‘l cov ([3].[£]) since the covariance matriof - )

under the conditional probability distribution is symmetric, it has eigen-decomposition ®A®’, where @
is a matrix of eigenvectors and 4 is a diagonal matrix of eigenvalues. For each of the ensemble members

of (r, g), 40 vectors of length (npammeters -n,— 3) are generated from independent standard normal

91’9 9

the product of @A%5 with the random vector to obtain an ensemble member of the parameters (f, p)

probability distributions. For each of these 40 vectors, cov ([g] , [;D (cov ([T] , [r])>‘1 [r] is added to

of the temperature anomaly model. Overall, this produces 200 ensemble members of the parameters
(f,r, g,p) of the temperature anomaly model.
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Estimating Residuals of the Temperature Anomaly Model

The simple kriging estimate of the weather residuals W is An2~1U. Conditional on the estimate of the
model parameters, the kriging estimate is the most-efficient linear unbiased estimate as well as the
maximum likelihood estimate of the weather residuals. To calculate an approximation to the simple

B
kriging estimate, first an approximation to n!)‘lU, B = [ i |, is calculated, where 8; € R™
B

M
[ 51_11 _pSik,Z ®n1,n3 (O)nl,nM ]
|PSia e '
vie{l,..,M}and B =1 ®n3,n1 (O)nM—z'nM U.

1-p? 2yc—1 *
A+ p)Sy=1m-1 —PSh-1m

* -1
LM Onppnngs —PSMM-1 Sum

=B =1n; <(R_1)i,i5i_1Ui +3Mi (R_l)i,jSZjUj> vi€e({l,.., M}
li-jl=1

w1
Note that An2~1U ~ AR = V"1 (c(R)®I5) (¢ (R)®IL¢) (In®K)V 1. Next, w = [ =
Wy

(c’(R)®IZG)(IM®E)I7_1ﬁ is calculated, where w; € R?¢ Vi € {1, ..., M}. The lower triangular Cholesky
1-1
p O vee O

2-1 2-2 [ _ 2
matrix of the Kac-Murdock-Szegd matrix R is c(R) = p ) P .1 P 0

pM=1 pM=2 [T 52 .. pM-M [T_ 2
pr e p* g pM g

0 p272/1 — p2l,, :
: : . pM_z 1-— pZIZG
0 0 e pMTMYT = pPlyg

= wy = XL pM TRV, w = Y1 = p? B pM TRV By Vi€ (2, ., M)
= w can be calculated iteratively using wy = /1 — p2RV;;' By, w; = /1 — p2RV;7 18, + pwisq

Vi€ {2,..,M—1},and w, = KV, + —\/1‘:7‘”2-

(Iu®K)V 1B

Sw=
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$1
Next, § = [ : ] = (c(R)®I,;)w is calculated, where &; € R2¢ vi € {1, ..., M}.
$m

p g 0

0
£ = P> e pPTA1=pihe - : w

: : - 0
P e pMTA1 = pPhe o pMTM1 = p2lyg
=& =plw, +4/1—p? Z;'-:zpi_jwj vie{l,.., M}
= & can be calculated iteratively using §; = wy and §; = /1 — p?w; + pé;_1 Vi € {2, ..., M}.
Vit

Finally, the approximation to the simple kriging estimate is calculated as V~1& = : .
Vit "&u

For Table 5 of the paper, the maximum likelihood estimates of model parameters and the kriging
estimates of the unobserved weather residuals conditional on the maximum likelihood estimates of
model parameters were combined to approximate the maximum likelihood estimates of temperature
changes. The true maximum likelihood estimates of temperature changes may differ slightly due to a
combination of uncertainties in the estimates of model parameters and non-linearities in how the
estimates of model parameters interact with the estimates of the weather residuals. The generation of
ensemble members discussed in the next section does not depend on this approximation.

Infilling Uncertainty of the Temperature Anomaly Model

The covariance matrix of An2~1U is A — An2~1n’A. To account for uncertainties in the simple kriging
estimate of W, the 200 ensemble members of parameters are combined with the 200 ensemble
members of temperature anomaly data to obtain 200 ensemble members of W. For each ensemble
&
member of U, a vector € = [ :
&M
distribution, where ¢; € R2¢ vi € {1, ..., M}.

], is generated from an independent standard normal probability

A=A In'A = Ac(A™ =27 1n")c' (A~ —n~1n") A. Thus, for each ensemble member of U, an
ensemble member of W can be generated as An2~1U + Ac(A™ — n2~'n")e. To calculate an

approximation to c(A™* — n271n’), note that A™1 = (V‘%R@ﬁ)V‘l)_l =V(R™'®QK 1)V and
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A+ pH)Sutim-1 —PSm-1m
L Oy, (U —pSim-1 Sum

T11 T1,2 (0)711,113 (O)nl,nM

72,1 ’ :
A =0y 1= (0pyn, ™ Onpyynp |, where Vi, j € {1,..., M}

: . . . T
Onyn, = Onynpyen TMM-1 MM

Ty = Ry (VK™ —mSiitni) and 7, j = (R™Y) (ViKW — ;S jmj) if i — j| = 1.

To reduce computational rounding error, c(7) is calculated as

( ) 0 0 llUl,l ®n1,n2 ®n1,n3 (D)nl,nM
¢ Tl,l ny,ny nynm Y . . .
0 . . . 2,1 . .
npnq : : : 0 . 3 . ()]
H * . 0 nzn; ' * : Npy-2.Npm |
: ’ ’ nM-1.1m : . . . n n
: ' M-1.1Mm
lo 0 c(tum) |
nynq nyNp-1 ( M.M) l@)nmﬂh eee (O)nM'nM—Z lPM,M—l lIUM,M

= ¥ can be calculated iteratively using Wy 4 = I, ¥;; = c(In, — Wii-1%];—1) Vi € {2, .., M}, and

-1 -1 —
Vi1 = (C(Ti,i)) Tii-1 (C'(Ti—1,i—1)) (Wi 1i-1) "vie {2,..,M}.

V1

Ym
Yi = C(Ti,i)(lpi,i—lfsi—l + ‘I’i'isi) Vi € {2, ..., M}. Using the approximation 8 ~ n2~1U from the previous
section, one obtains An~U + Ac(A™! — 02~ n")e = A(B +y). A(B + y) is calculated similarly to the
previous section. First w is calculated iteratively using wy, = /1 — p2KVi*(By + V),

w; =1 —p2KV7 (B + i) + pwipq Vi € {2,...,M — 1}, and w; = KV[1p; + \/%pzwz.

Next, ¢ is calculated iteratively using §; = w; and é; = /1 — p?w; + pé;_, Vi € {2, ..., M}.
‘71_151

Virtém

After c(7) is calculated, y = = c(1)e is calculated using y; = ¢(71,1)¥1 1€ and

Finally, A(B + ¥) is calculated as VV~1& =

These 200 ensemble members of weather residuals are combined with the 200 ensemble members of
the temperature anomaly model parameters to produce 200 ensemble members of temperature
anomalies. The 200 ensemble members of temperature anomalies are then rebaselined to the 1961-
1990 reference period. Land-ice and sea temperature anomalies are then blended by using the average
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sea ice concentrations of 1961-1990 by calendar month. These 200 ensemble members are combined

with the 200 ensemble members of temperature climatologies to produce 200 ensemble members of

bias-corrected temperature anomalies.

After running the code, three minor issues were found related to the generation of ensemble

members of temperature anomalies. A future version of HadCRU_MLE is planned to correct for these

issues as well as update the dataset to use newer source data.

In the estimation of the temperature anomaly model and in the generation of infilling
uncertainty, the homogenization and climatological uncertainties of LSAT anomalies of
HadCRUT4 were unintentionally included in the error covariance matrix I" for the measurement
and sampling uncertainties. However, the ensemble members of LSAT anomalies of HadCRUT4
also include these homogenization and climatological uncertainties. As a result, the
uncertainties of LSAT anomalies in HadCRU_MLE may be slightly overestimated. As the
homogenization and climatological uncertainties are small relative to the measurement and
sampling uncertainties, this issue negligibly affects temperature estimates and does not affect
the conclusions of the study.

An error in the code caused the equation ¥; ; = C(Ini— ViicaWiiq ) on the previous page to be
calculatedas ¥; ; = c(Inl.— Viiea¥iios ) in most cases. As a result, the estimated infilling
uncertainty may not appropriately reflect the temporal correlation of weather residuals. The
maximum likelihood estimates of HadCRU_MLE still appropriately account for the temporal
correlation of weather residuals. As the estimated correlation of weather residuals between
consecutive months is very small (0.07), this issue negligibly affects temperature estimates

and does not affect the conclusions of the study.

For one in every 300 months, an error in the code caused (R_l)i,i+15{ii+1ui+1 to be incorrectly
added to the wrong ensemble members in the calculation of §; on page 26. The maximum
likelihood estimates of HadCRU_MLE are not affected by this error. As the estimated correlation
of weather residuals between consecutive months is very small (0.07), this issue negligibly
affects temperature estimates and does not affect the conclusions of the study.
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