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Abstract
To estimate changes in global mean surface temperature (GMST), 
one must infer past temperatures for regions of the planet that lacked 
observations. However, current global instrumental temperature 
datasets (GITDs) do not adequately account for the tendency of 
different regions of the planet to warm at different rates, creating a 
bias in their estimates, which this paper calls amplification bias. In 
addition, most GITDs do not adequately account for changes in sea 
ice, creating a bias in their estimates, which this paper calls sea ice 
bias. To estimate the impact of these two biases, a new GITD was 
created that used maximum likelihood estimation (MLE) to combine 
the land surface air temperature (LSAT) anomalies of HadCRUT4 
with the sea surface temperature (SST) anomalies of HadSST4. 
The new GITD has improvements compared to the Cowtan and 
Way version 2 dataset, including an improved statistical foundation 
for estimating model parameters, taking advantage of temporal 
correlations of observations, taking advantage of correlations 
between land and sea observations, accounting for more sources of 
uncertainty, and better treatment of the El Niño Southern Oscillation 
(ENSO). Corrections for amplification bias and sea ice bias in the 
new dataset increase the estimate of GMST change from the late 
1800s (1850-1899) to 2018 by 0.01°C and 0.08°C respectively, 
although tests suggest that there may be an overcorrection by a 
factor of two for sea ice bias. Overall, the median estimate of 
GMST change from the late 1800s to 2018 is 1.20°C, with a 95% 
confidence interval of (1.11°C, 1.30°C).
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Introduction
Estimating the evolution of global surface temperatures since 

the industrial revolution is important as it can help improve 
understanding of the Earth’s climate system. Currently, there are 
various GITDs, including HadCRUT4 [1] by the UK Met Office 
Hadley Centre (Met Office) in conjunction with the Climatic Research 
Unit (CRU) of the University of East Anglia, GISTEMPv4 [2] by 
NASA’s Goddard Institute of Space Studies, and NOAAGlobalTempv5 
[3-5] by NOAA’s National Climate Data Centre. One major issue with 
estimating past temperatures is that not all regions of the Earth have 
complete observational records. As a result, one must statistically infer 

temperatures of unobserved regions of the planet using available data 
to properly understand the evolution of global surface temperatures 
since the industrial revolution.

In the past decade, two new GITDs have been created that use a 
geostatistical technique known as kriging [6,7] to infill temperatures 
for unobserved regions of the Earth: Berkeley Earth Surface 
Temperature [8-10], and Cowtan and Way [11,12]. For convenience, 
this paper refers to Berkeley Earth Surface Temperature using LSATs 
for sea ice regions as BEST, and refers to the long reconstructions of 
Cowtan and Way version 2 using HadSST3 [13,14] and HadSST4 
[15] as C&W-HadSST3 and C&W respectively. Kriging has desirable 
statistical properties: if covariances between temperature observations 
are known with certainty, then kriging provides the most-efficient 
linear unbiased estimates of temperatures of unobserved regions. 
In addition, the kriging estimates are identical to the maximum 
likelihood estimates if the distribution of residuals is multivariate 
normal.

While kriging has desirable statistical properties when covariances 
between temperature observations are known with certainty, in 
reality, these covariances are unknown and must be empirically 
estimated from available data. Ordinary kriging, by itself, does not 
provide a method to empirically estimate these covariances, nor does 
it account for the uncertainty due to estimating these covariances. 
To address these issues, this study uses MLE to estimate parameters 
in the covariance function and quantify their uncertainty. MLE has 
very desirable statistical properties when the number of observations 
is large: consistency, asymptotic efficiency, and asymptotic normality.

The underlying statistical models of BEST and C&W do not 
adequately account for the statistical tendency of different regions 
of the planet to warm at different rates and, therefore, are subject to 
amplification bias. In addition, C&W does not account for changes in 
sea ice and so is subject to sea ice bias. To quantify these biases, the 
Akaike information criterion (AIC) [16] was used to select the best of 
16 different temperature anomaly models and the best of 24 different 
temperature climatology models. Using AIC to pick from a large set 
of models helps reduce omitted variable bias and avoid the statistical 
issue of overfitting. The best models were combined to construct a 
new GITD. This GITD is given the name HadCRU_MLE, to reflect its 
use of MLE and data primarily from the Met Office and CRU. Similar 
to C&W, LSAT anomalies of HadCRUT4 and SST anomalies of 
HadSST4 were used, so the results of this study are most comparable 
to the results of C&W.

Data

5° by 5° gridded monthly temperature anomalies of HadCRUT4 
and HadSST3 were obtained from the Met Office website. This 
includes 100 ensemble members as well as ensemble medians. These 
datasets were used to infer LSAT anomalies of HadCRUT4, which are 
essentially CRUTEM4 [17] but with adjustments to account for biases 
and uncertainties such as due to temperature homogenization and the 
urban heat island effect. Measurement and sampling uncertainties of 
CRUTEM4 were also obtained.

5° by 5° gridded monthly temperature anomalies of HadSST4 
were obtained from the Met Office website. This includes 200 
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ensemble members, which account for bias uncertainties, as well as 
the ensemble median. The 100 ensemble members of HadCRUT4 
LSAT anomalies were combined with the 200 ensemble members of 
HadSST4 to produce 200 ensemble members of temperature anomaly 
observations; each LSAT ensemble member was used twice. Error 
covariance matrices and total uncertainty of HadSST4, which account 
for measurement and sampling uncertainties, were also obtained.

0.25° by 0.25° gridded land mask data of OSTIA [18] was obtained 
from the Copernicus Marine Environment Monitoring Service 
website. OSTIA data was integrated to a 5° by 5° grid to replicate 
the land fraction data used in HadCRUT4. OSTIA data was also 
integrated to a 1° by 1° grid. OSTIA was used in combination with the 
HadCRUT4, HadSST3, and CRUTEM4 data to infer LSAT anomalies 
of HadCRUT4.

1° by 1° gridded monthly sea ice concentrations (SICs) of 
HadISST1 [19] and HadISST2 [20] were obtained from the Met Office 
website. These SICs were component-wise multiplied by the non-land 
fraction to obtain sea ice fractions (SIFs). This paper defines the SIF of 
a grid cell as the fraction of the total surface area of a grid cell covered 
by sea ice. SIFs were integrated to a 5° by 5° grid. HadISST2 was used 
as the main SIC dataset of this study; HadISST1 was used only to 
determine how much sea ice extent varies between datasets.

The 5° by 5° gridded 1961-1990 temperature climatology of Jones 
et al. [21] and 100 ensemble members of the 5° by 5° gridded 1961-
1990 temperature climatology of HadSST3 were obtained from the 
Met Office website. These temperature climatologies were used to help 
estimate and correct for sea ice bias. The 1° by 1° gridded 1979-1998 
temperature climatology of IABP-POLES [22] was obtained from the 
University of Washington website. IABP-POLES was used to test for 
the impact of spatial resolution on the estimate of sea ice bias.

Time series data of the ensemble medians of C&W-HadSST3 and 
C&W was obtained from the University of York website. In addition, 
time series data of BEST was obtained from the Berkeley Earth website. 
These datasets were used for comparison with the results of this study.

30 arc-second resolution GMTED2010 surface elevation data 
[23] was obtained from the US Geological Survey website. This was 
integrated to a 0.25° by 0.25° grid. This was combined with the land 
fraction data and integrated to a 5° by 5° grid to produce average 
surface elevation data for land regions and non-land regions. This 
average surface elevation data was used to help explain variation in 
the temperature climatology.

CCSM4 output for the pre-industrial control scenario and for the 
RCP6.0 scenario was obtained from the University Corporation of 
Atmospheric Research website. This includes monthly gridded surface 
air temperatures (SATs) 2 m above the surface and monthly gridded 
SICs. The climate model output for the pre-industrial control scenario 
was used to estimate temperature patterns of internal variability. As the 
RCP6.0 scenario roughly corresponds to historic forcing, the output 
for the RCP6.0 scenario was used for comparison with the corrections 
for sea ice bias of this study. CCSM4 was chosen because it “has been 
analysed the most extensively of any current climate model with 
regards to [interdecadal Pacific variability] processes and mechanisms, 
and compares favourably in those aspects to observations” [24]. Only 
the last 501 years (800-1300) of the pre-industrial control scenario 
were used because the model was not necessarily in equilibrium at the 
beginning of the model run.

SICs of CCSM4 are given in a Greenland pole grid, where the 

North Pole is moved to Greenland to avoid singularity problems in 
the sea ice model. Nearest neighbour interpolation was performed to 
convert SICs to a 0.125° by 0.125° grid; this small grid size was used 
to reduce interpolation error. These SICs were integrated to a 0.25° by 
0.25° grid and component-wise multiplied by the non-land fraction 
to obtain SIFs. Similarly, SATs, which are given in a 1.25° longitude by 
0.9375° latitude grid, were converted to a 0.125° by 0.125° grid using 
nearest neighbour interpolation. SIFs and SATs were integrated to 
a 5° by 5° grid. 5° by 5° climatologies of SIFs and SATs for the pre-
industrial control scenario were constructed by taking averages by 
calendar month.

Monthly Southern Oscillation Index (SOI) [25] data was obtained 
from the Australian Government website. The SOI is based upon 
the pressure difference between Darwin, Australia and Tahiti, and 
is strongly correlated with ENSO. This index was compared with the 
estimated ENSO behaviour of this study.

The versions of the datasets used in this study were their most up-
to-date versions at the time of download. Data after December 2018 
was not used as HadSST4 data after December 2018 was not available 
at the time of download. Results of this study are often given as the 
change from the late 1800s to 2018; the entire late 1800s is used as 
uncertainties of annual GMST anomalies in the late 1800s are large 
and 2018 is used as it is the most recent year with data for all calendar 
months.  

Methods
Amplification bias

Adopting the notation of Berkeley Earth, the temperature ,x tT at a 
position on the Earth’s surface  x and time in months t is 

, , ,t tx t x m x tT C W  q= + +                  (1)

where mt is the calendar month of t, , tx mC is the temperature 
climatology at x  for calendar month mt, θt is a constant for month t, 
and W  is a weather residual term.

For this paper, θ can differ from the GMST and   is replaced with 
( ),x s , where x  corresponds to the mid latitude and mid longitude of 
a 5° by 5° grid cell, and s is the surface type; s=0 for open sea (referred 
to as sea) and s=1 for land or sea ice (referred to as land-ice). For 
convenience, x is called a grid cell and ( ),x s is called a grid subcell. 
This study adopts the convention of GISTEMP, BEST, and C&W of 
treating SATs above sea ice similarly to LSATs since SATs above sea ice 
tend to more closely resemble LSATs than SATs above sea (also called 
marine air temperatures (MATs)). Thus, (1) becomes

, , , , , ,t tx s t x s m x s tT C W  q= + +                (2)

Similar to C&W, C is taken to be the 1961-1990 temperature 
climatology. Thus, (2) simplifies to become

, , , , , , , ,t tx s t x s t x s m x s tT T C W   qD = - = +                (3)

where , ,x s tTD is the local temperature anomaly at ( , )x s  for month t.

In reality, observations of temperature anomalies are subject to 
measurement, sampling, and bias uncertainties. Thus, (3) is modified 
to become

, , , , , , , , , ,tx s t x s t x s t x s t x s tY T E W E    q=D + = + +               (4)

where , ,x s tY  is the temperature anomaly observation at ( ),x s for 
month t and , ,x s tE  is the error due to measurement, sampling, and 

x
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bias uncertainties at ( ),x s  for month t.

Equation (4) implicitly assumes that all regions of the Earth have 
a statistical tendency to warm at the same rate. However, polar regions 
tend to warm faster due to the snow-albedo feedback and because 
global warming increases heat transfer from equatorial regions to 
polar regions. This increased heat transfer occurs partly because 
warmer air can hold more water vapour and thus can have a higher 
heat capacity. In addition, sea regions tend to warm more slowly than 
land regions, as water has a higher heat capacity than land. As a result, 
the assumption that all regions have a statistical tendency to warm 
at the same rate can lead to amplification bias. When amplification 
bias is ignored, unobserved regions are infilled with temperature 
anomalies that are biased towards the GMST anomaly. Since polar 
regions such as Antarctica, the Southern Ocean, and the Arctic Ocean 
were poorly observed during the instrumental period, not accounting 
for amplification bias should cause an underestimation of the rate of 
GMST change as these regions tend to have high local amplification 
factors (LAFs).

To try to correct for amplification bias, (4) is modified to become

, , , , , , , ,t tx s t x s m x s t x s tY A W E   q= + +               (5)

where , ,x s mA  is called the LAF at ( ),  x s for calendar month m and 
is defined to have a surface area weighted mean of one over the 
Earth’s surface for each calendar month (assuming that SICs are 
the 1961-1990 HadISST2 mean by calendar month). In reality, the 
amplification function A could change from one year to the next. 
However, modelling studies find that the assumption of unchanging 
LAFs over the instrumental period is reasonable [26,27] and find that 
LAFs are mostly independent of the type of climate driver [28]. This 
suggests that (5) should correct for most amplification bias.

This study tested four different functional forms of the 
amplification function (Table 1) to determine if LAFs are affected by 
calendar month, latitude, or surface type. For simplicity, the impact 
of latitude on A was treated as a polynomial of order at most four. In 
addition, the derivative of A with respect to latitude was restricted to 
zero at the poles to ensure smoothness at the poles. All four functional 
forms can be expressed as

, , , ,1x s m x s mA F f = +                 (6)

where fnf Î , fn


Î , 1
, ,

fn
x s mF 

´Î , and F  has a surface area 
weighted mean of zero for each calendar month.

Internal variability, such as from ENSO, may cause issues in 
estimating A. Polar regions tend to warm faster than equatorial 
regions. However, an El Niño event causes significant short term 

warming that is concentrated in equatorial regions, particularly in 
the Eastern Equatorial Pacific Ocean. As a result, if one estimates A 
using (5) and (6), then ENSO could bias the estimate of A towards the 
identity function.

To try to avoid this ENSO bias and allow for internal variability to 
be incorporated into the model, (5) is modified to become

( ), , , , , , , ,1 t t tx s t x s m x x s t x s tY F f Q q W E    q= + + + +             (7)

where  

é ù
ê ú

= Îê ú
ê ú
ê úë û

,1

,

q

q

t
n

t

t n

q
q

q
, Îqn  is the number of internal variability 

patterns (IVPs) in the model, qt,i is an index for month t that 
corresponds to the ith  IVP, 1

,1 ,
q

q
n

x x x nQ Q Q  

 

´é ù= Îë û , and 
,x iQ  is the value of the ith IVP at x . One IVP was obtained (see later 

subsection on IVPs), corresponding to ENSO, and this study tested 
models that contain zero or one IVPs. While only one IVP was used, 
the statistical framework of this study can be easily extended to 
incorporate more IVPs.

To estimate model parameters in (7) using MLE, a model of W is 
needed. W is assumed to be multivariate normal with a mean of zero 
and with covariance function

( )

( ) ( ) ( )

, , , ,

, , , ,
1 2

cov ,

exp
2

i i i j j j

i i t j j ti j i j i j i j

x s t x s t

x s m x s mt t x x s s

W W
v v

r k k z

 

 

 

l l l- - -

=
æ ö+ ÷ç ÷-ç ÷ç ÷çè ø

           (8)

where r k k 
Î , 
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, zn +Î , 1
, ,

z
x s mv 



´Î , l  

is the standard logistic function, and i jx x− 

is the great circle 
distance between ix  and jx . In this model, r determines the temporal 
autocorrelation of weather residuals, k1 determines the spatial 
correlation of weather residuals, k2 affects the correlation between 
land-ice and sea weather residuals, and z determines the variances. 
The standard logistic function constrains temporal and spatial 
correlations between zero and one, which ensures physically sensible 
results and improves numeric stability of the estimation procedure.

Two different models of the covariance function were tested 
(Table 2) to determine if the variance of weather residuals is affected 
by surface type. The models of the covariance function are simple 
compared to the models of the amplification function since additional 
parameters in the covariance function are more computationally 
intensive than additional parameters in the amplification function.

GISTEMP, BEST, and C&W infill land-ice and sea regions 
separately as it was found to give better results. However, the 

Model Amplification function depends on latitude? Amplification function depends on surface 
type?

Amplification function depends on calendar 
month?

1 No No No
2 No Yes Yes
3 Polynomial of order four No Yes
4 Polynomial of order four Yes Yes

Table 1: The different models of the amplification function. These models were used to estimate temperature anomalies.

Model Covariance function depends on latitude? Covariance function depends on surface 
type?

Covariance function depends on calendar 
month?

1 No No No
2 No Yes No

Table 2: The different models of the covariance function of weather residuals. These models were used to estimate temperature anomalies.

, ,1 2 = Î




n
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introduction of the amplification function puts this practice into 
doubt. Perhaps this approach gave better results due to differences in 
LAFs between land-ice and sea regions. The statistical models tested in 
this study account for correlations between land-ice and sea weather 
residuals, which can improve temperature anomaly estimates.

Alternatively, perhaps infilling land-ice and sea regions separately 
gave better results due to differences in their correlation decay 
lengths. This paper defines the correlation decay length as the distance 
between two locations required to reduce the spatial correlation of 
their residuals to e-1. However, C&W estimate similar correlation 
decay lengths for weather residuals: 767 km and 860 km for land-ice 
and sea regions respectively. Similarly, BEST has similar maximum 
correlation lengths: 3310 km and 2680 km for land-ice and sea regions 
respectively, corresponding to correlation decay lengths of 1497 km 
and 1212 km respectively. Having different correlation decay lengths 
for land-ice and sea regions was considered, but this approach was not 
taken due to its high computational cost. As C&W and BEST estimate 
similar correlation decay lengths for land-ice and sea regions, the 
impact of using identical correlation decay lengths for land-ice and 
sea regions should be minimal.

The four models of the amplification function were combined 
with the two models of the covariance function and using zero or 
one IVPs to produce 16 different temperature anomaly models. To 
estimate a temperature anomaly model, an iterative approach to MLE 
was taken, where a reasonable first guess was calculated and used in 
combination with a saddle-free Newton’s method [29,30]. To make 
the procedure computationally feasible, numeric approximations to 
the log-likelihood function were used and their derivations are given 
in the supplementary information. As the bias uncertainties of E have 
a complicated covariance structure, do not have a multivariate normal 
distribution, and have significant temporal correlation, numeric 
approximations that account for bias uncertainties could not be 
derived. As a result, bias uncertainties were neglected in the estimation 
of the temperature anomaly model. However, bias uncertainties were 
still taken into account in the estimation of total uncertainty.

The best of the 16 models was chosen by minimizing the AIC. To 
reduce computation time, only six of the 16 models were estimated and 
the best temperature anomaly model was chosen in a stepwise manner. 
Firstly, the best covariance function was chosen by estimating the two 
covariance functions with the first amplification function and zero 
IVPs and picking the model with the lowest AIC. Secondly, the best 
amplification function was chosen by estimating the best covariance 
function with the other three amplification functions and zero IVPs, 
and picking the model with the lowest AIC. Finally, the best covariance 
function was estimated with the best amplification function and the 
IVP for ENSO. For comparison, Bayesian information criterion (BIC) 
[31] values were also calculated. This paper presents normalized 
AIC and BIC values (nAIC and nBIC), which are normalized by the 
number of observations.

For each of the six models, maximum likelihood estimates of 
temperature anomalies were calculated for all combinations of grid 
subcells and months. Land-ice and sea temperature anomalies were 
then blended, by weighting observations using SICs of the 1961-1990 
HadISST2 mean by calendar month. For the model with the lowest 
AIC, its uncertainty was evaluated using a Monte Carlo approach. 
The Monte Carlo approach produced 200 ensemble members of 
temperature anomalies, which account for measurement, sampling, 
model parameter, infilling, and bias uncertainties.

Sea Ice Bias

When sea ice is replaced with open sea, an increase in SATs is 
observed empirically [22] and in climate models [32,33]. This is 
because sea water has a lower albedo than sea ice and because sea 
ice acts as an insulator that prevents heat transfer between colder air 
and warmer water. As a result, not accounting for changes in sea ice 
can lead to sea ice bias. In particular, as warming has caused sea ice 
to melt, neglecting sea ice bias leads to an underestimation of GMST 
change over the instrumental period. C&W assumes constant SICs 
for each calendar month and uses the 1981-2010 HadISST1 median 
by calendar month. As a result, C&W may underestimate GMST 
change over the instrumental period. In comparison, BEST varies 
SICs according to HadISST2 and, partially as a result, shows more 
warming over the instrumental period than C&W.

To correct for sea ice bias, a temperature climatology model was 
combined with the best temperature anomaly model to estimate 
temperature differences between sea ice and open sea. The estimated 
temperature differences were used to estimate and correct for sea 
ice bias. Since HadSST4 and CRUTEM4 are temperature anomaly 
datasets, suitable temperature climatology datasets that correspond 
to these temperature anomaly datasets should be used to estimate a 
temperature climatology model. Since a temperature climatology for 
HadSST4 was not available, the HadSST3 climatology was used as the 
temperature climatology corresponding to HadSST4.

CRUTEM4 does not have a corresponding LSAT climatology. 
However, the Met Office website lists the 1961-1990 temperature 
climatology of Jones et al. along with its main temperature anomaly 
datasets of HadCRUT4, HadSST3, and CRUTEM4. The Jones et al. 
climatology was constructed using CRUCL1 [34] for land regions 
north of 60°S, IABP-POLES for sea ice regions north of 60°N, a 
combination of MAT and SST observations for sea regions north of 
60°S, and LSAT observations of Antarctica for land regions south of 
60°S.

Climatologies corresponding to CRUTEM4 were inferred from 
the Jones et al. climatology. The following model was used to explain 
variation in the temperature climatology

= +              (9)

where  is the temperature climatology at  for calendar month 
m, BnB Î , Bn Î , 1

,
Bn

x mX 



´Î  contains explanatory variables 
at x  for calendar month m, and U is a term for the temperature 
climatology residual. In particular, ,x mX B  is given the functional 
form

,1 ,
,

,, ,

sea
x mx x m

x m land ice
x mx x m

e B sea X B
X B

land X B ice X B

+
=

+ +













 

            (10)

where xe  is the average surface elevation at , xland   is the fraction 
of grid cell x  covered by land, ,x mice   is the SIF of grid cell x  for 
calendar month m using SICs of the 1961-1990 HadISST2 mean by 
calendar month, , ,1x m x mxsea land ice 

= - - seaX , landX  and 
iceX  are defined implicitly.

U is assumed to be multivariate normal with a mean of zero and 
with covariance function

( )
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where ,r k Î , znz Î , zn +Î , 1
,

zn
x mv 

´Î , and δ is the 
Kronecker delta. In this model, r determines the temporal correlation 
of residuals, k determines the spatial correlation of residuals, and z 
determines the variances. Variables in (8) are repeated in (11) for ease 
of communication; however, temperature climatology models and 
temperature anomaly models were estimated independently.

Six different models of the climatology function (Table 3) and 
four different models of the covariance function (Table 4) were 
combined to produce a total of 24 models. The different models of 
the climatology function determine how the temperature climatology 
varies by surface elevation, latitude, calendar month, and surface 
type. The different models of the covariance function determine 
how variance varies by latitude and surface type. The derivatives of 
the climatology function and the covariance function with respect to 
latitude were restricted to zero at the poles. Model parameters were 
estimated using MLE.

For some of the climatology functions, the temperature 
climatology can differ between sea ice and land regions for the 
northern hemisphere. This allows for the possibility that temperatures 
of land and sea ice regions may behave differently. However, this 
distinction is not made for the southern hemisphere since, unlike in 
the northern hemisphere, Jones et al. did not use direct observations 
of temperatures of sea ice regions in the southern hemisphere. Instead, 
Jones et al. extended nearby LSAT estimates to sea ice regions in the 
southern hemisphere.

Jones et al. linearly interpolated between sea temperatures at 
60°S and estimated temperatures at the sea ice edge to estimate sea 
temperatures south of 60°S. However, Jones et al. noted that their 
temperature estimates for sea ice regions might be unphysical as 
“the field is likely to exhibit a sharp increase in air temperature at 
the margin of the continental ice sheet.” To prevent sea temperatures 
south of 60°S from biasing estimates of sea ice bias, the Jones et al.  
climatology was considered missing for grid cells south of 60°S that 
have less 90% of their area covered by land or sea ice for any calendar 
month.

To reduce computation time, only 9 of the 24 models were 
estimated and the best temperature climatology model was chosen in 
a stepwise manner. Firstly, the best covariance function was chosen 
by estimating the four covariance functions with the first climatology 

function and picking the model with the lowest AIC. Next, the best 
climatology function was chosen by estimating the best covariance 
function with the five other climatology functions and picking the 
model with the lowest AIC. 

The temperature climatology of sea regions Csea, the temperature 
climatology of land regions Cland, and the temperature climatology of 
sea ice regions Cice were estimated as

( )1, ,, ,
not landsea sea

x m x mx m x x mC e B X B U 

  m= + +               (12)

1 ,, ,
land land land

x mx m x x mC e B X B U 

  = + +               (13)

1 ,, ,
not landice ice

x mx m x x mC e B X B U 

  = + +                (14)

where m  is a function that returns the HadSST3 climatology at x  
for calendar month m if it is available, but is otherwise the identity 
function, land

xe  is the average land elevation at x and not land
xe  is 

the average surface elevation of non-land regions at x . Csea mostly 
reflects the HadSST3 climatology, except for a few grid cells where the 
HadSST3 climatology is not available.

Sea ice bias can be estimated as the change in SIF multiplied by 
the difference between sea temperatures and sea ice temperatures. For 
this study, sea ice bias was estimated as
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where ,x tSIB  is the sea ice bias at x for month t, ,x tice  is the SIF at 
x  for month t. Sea ice bias-corrected temperatures of grid cells were 

estimated as
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                (16)

Temperatures inferred using (15) may be physically unrealistic, 
such as inferred sea temperatures below the freezing temperature of sea 
water or inferred sea ice temperatures above the freezing temperature 
of fresh water. Therefore, one may want to use the following to estimate 
sea ice bias while preventing unphysical temperatures.
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Model Climatology function depends on 
latitude?

Climatology function depends 
on surface type?

Special treatment for northern 
hemisphere sea ice?

Climatology function depends 
on calendar month?

1 Polynomial of order four No No Yes
2 Polynomial of order four Yes No Yes
3 Polynomial of order four Yes Yes Yes
4 Polynomial of order six No No Yes
5 Polynomial of order six Yes No Yes
6 Polynomial of order six Yes Yes Yes

Table 3: The different models of the temperature climatology function. These models were used to quantify the sea ice bias of temperature anomaly estimates.

Model Covariance function depends on latitude? Covariance function depends on surface 
type?

Covariance function depends on calendar 
month?

1 No No No
2 No Yes No
3 Polynomial of order four No No
4 Polynomial of order four Yes No

Table 4: The different models of the covariance function of temperature climatology residuals. These models were used to quantify the sea ice bias of temperature 
anomaly estimates.

T C T  land



x t

,x m



Citation: Calvert BTT (2021) Correcting for Amplification Bias and Sea Ice Bias in Global Temperature Datasets. Geoinfor Geostat: An Overview 9:5.

• Page 6 of 12 •Volume 9 • Issue 5 • 1000299

Bias-corrected temperatures that are physically realistic could 
then be estimated as
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            (18)

The maximum function restricts temperatures of sea water to 
at least -1.8°C, which is the freezing temperature of sea water with 
a salinity of 35 parts per thousand, and the minimum function 
restricts temperatures of sea ice to at most 0°C, which is the freezing 
temperature of fresh water. While SATs above sea and sea ice can 
exceed these limits, they cannot significantly exceed these limits for 
monthly temperature averages. Restricting sea temperatures to at least 
-1.8°C is standard practice and is performed in HadISST1, KOBE-
SST1 [35], ERSSTv5 [4], and BEST. Also, sea ice regions tend to have 
isothermal summers with temperatures close to 0°C [22].

While sea ice bias and temperature estimates using (17) and 
(18) would be physically realistic, they might be statistically biased. 
Estimating (9) and (11) using MLE would correspond to B being 
estimated using generalized least squares (GLS) given the estimate of 
the covariance function. GLS is unbiased if the covariance function 
is known; therefore, estimates of (15) and (16) may be relatively 
unbiased. Applying minimum and maximum functions to GLS 
estimates could result in biased estimates; in particular, the magnitude 
of sea ice bias could be overestimated. In addition, it is unclear if the 
use of freezing temperatures in (17) and (18)  is appropriate as the 
temperature climatology datasets used have measurement error and 
do not correspond perfectly with the temperature anomaly datasets. 
Therefore, the results of (15) and (16) are presented as the main 
estimates of this study and the results of (17) and (18) are presented 
as alternate estimates.

Changes in SICs can cause changes in local temperatures. Changes 
in local temperatures can cause changes in SICs. In addition, changes 
in SICs can cause temperature changes in nearby regions due to heat 
transfer. The sea ice bias estimated using the above methodology 
may capture all three of these mechanisms and does not necessarily 
reflect the impact of SICs on local temperatures alone. This lack of 
distinction of these mechanisms in the statistical model can make 
physically interpretability of results difficult. However, for the purpose 
of statistically inferring temperatures using available data, it is not 
necessary to identify how much of the correlation between SICs and 
local temperatures is caused by each of these mechanisms since what 
matters is the existence of the correlation.

If SICs are correlated with the temperatures of nearby regions 
and if the statistical model used assumes a temperature field that is 
discontinuous between sea and sea ice regions, then this could cause 
an overcorrection for sea ice bias. This is because the temperature 
anomaly observations of nearby land or sea regions may already 
reflect the higher regional warming due to melting sea ice. If the 
temperature climatology function is estimated from blended data 
and a coarse resolution is used, then this may cause the temperature 
climatology model to overestimate the impact of SICs on local 
temperatures, resulting in a further overcorrection for sea ice bias. To 
test for this potential issue, IABP-POLES data north of 60°N was used. 
Using ordinary least squares, the temperature climatology function 
was re-estimated twice: once using a 5° resolution of IABP-POLES 
and once using a 1° resolution of IABP-POLES. For simplicity, these 
tests neglect differences in ∆T between land-ice and sea regions in 

(15). The impact of sea ice bias on GMST change due to changes in 
SICs north of 60°N was estimated for each of these resolutions. To be 
consistent with Jones et al., IABP-POLES was treated as a 1961-1990 
climatology.

As an additional test, empirical LAFs of regions of sea ice loss 
were calculated for HadCRU_MLE and for CCSM4 under the RCP6.0 
scenario using a 5° resolution. For each calendar month, weighted 
averages of temperature change from the late 1800s to 2018, weighted 
by the surface area of net sea ice loss for each grid cell, were calculated. 
These weighted temperature changes were averaged over the calendar 
year and divided by the annual GMST change to produce empirical 
LAFs of regions of sea ice loss. For simplicity, leap days were neglected 
in this calculation. While these empirical LAFs may underestimate 
the true LAF of regions of sea ice loss due to using a coarse resolution 
of 5°, they provide useful metrics for comparison.

For each of the temperature climatology models, its uncertainty was 
evaluated using a Monte Carlo approach. The Monte Carlo approach 
produced 200 ensemble members of temperature climatologies. To 
generate these ensemble members, each of the 100 ensemble members 
of the HadSST3 climatology was used twice. The HadSST3 ensemble 
accounts for bias uncertainties, but not other uncertainties such as 
measurement or sampling uncertainties. 200 ensemble members of 
sea ice bias and 200 ensemble members of blended temperatures 
were then calculated. While this Monte Carlo approach accounts for 
parameter estimation uncertainty and infilling uncertainty, bias and 
uncertainty due to a possible methodological overcorrection for sea 
ice bias were neglected. In addition, measurement uncertainties of 
temperature climatologies and uncertainties of SICs were neglected 
since they were not quantified. Uncertainties of SICs may be large 
as SICs vary greatly between datasets; the change in average global 
sea ice extent between the late 1800s and 2018 is -0.7% of the Earth’s 
surface according to HadISST1, which is approximately half of the 
-1.3% change according to HadISST2.

Patterns of Internal Variability

Temperature patterns that correspond to modes of internal 
variability are needed to use (7) to obtain amplification bias-corrected 
estimates of past temperatures. One approach to obtain IVPs is to use 
the method of empirical orthogonal teleconnections (EOTs) [36]. This 
is used extensively by NOAA in ERSSTv5, where 140 EOTs are used to 
reconstruct SSTs. NOAA calculates its EOTs using OISSTv2 [37] data 
for the period 1982-2011. OISSTv2 combines satellite data with SST 
data and is spatially complete. A second approach is to use empirical 
orthogonal functions (EOFs) [38]. Methodologies where one first 
obtains internal variability indices from observed temperatures and 
then looks for IVPs that are orthogonal to these indices have also been 
used [24,39,40].

The approach of NOAA of using OISSTv2 data to calculate IVPs 
has three problems. Firstly, as global warming has occurred over the 
instrumental period, estimates of these IVPs might contain warming 
signals. Secondly, estimates of these IVPs are not independent of 
instrumental temperature data, thus proper error analysis using these 
IVPs becomes more difficult. Thirdly, estimates of these IVPs include 
weather residuals for the period 1982-2011. Thus, the use of such 
estimated IVPs in (7) could result in zero-biased estimates of internal 
variability indices due to attenuation bias [41]. Even worse, because of 
how such IVPs are calculated, estimates of internal variability indices 
could contain more attenuation bias prior to 1982 than after 1982, 
which might affect estimates of changes in ENSO variability over 

land C Tx
  
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time. The use of climate model output for scenarios with constant 
forcing over time can avoid these three problems. This approach 
has been performed using CMIP5 output for pre-industrial control 
scenarios [24,39,40].

Warmer temperatures due to internal variability can cause sea ice 
to melt, which could cause high localized warming in areas where sea 
ice melts. However, the correlation between SICs and temperature is 
included in the correction for sea ice bias. If IVPs include temperature 
changes explained by SIC changes, then this could result in double 
counting. Therefore, it is desirable to remove temperature changes 
explained by SIC changes from temperature anomalies before 
obtaining IVPs.

To remove temperature changes explained by SIC changes, the 
results of the best climatology model estimated using Jones et al. data 
were used. In particular, sea ice detrended temperature anomalies for 
CCSM4 under the pre-industrial control scenario were estimated as

 ( )( ), ,, , , ,t t t

sea ice
x t x mx t x t x m x mT T ice ice C C



 

 D =D + - -                        (19)

where ,x tTD   is the CCSM4 temperature anomaly at x  for month t, 

and  ,x tT D  is the detrended temperature anomaly at x  for month t. 
SICs of CCSM4 were used for ice and ice , whereas the ensemble of the 
best temperature climatology model estimated using Jones et al. data 
was used for Csea and Cice.

EOFs were calculated from annual averages of the ensemble 
median of detrended CCSM4 temperature anomalies using the 
approach given in the supplementary information. Annual averages 
were used to remove temperature variation on a timescale of less than 
a year. Throughout this study, annual averages were calculated by 
weighted each month by its number of days while accounting for leap 
years. An EOF approach was used instead of an EOT approach since 
the EOT approach would involve the selection of a set of reference 
grid cells, which can be somewhat arbitrary.

Results and Discussion
Table 5 summarizes the results of the estimated temperature 

anomaly models. For the best (lowest AIC) model with a constant 
amplification function (amplification function 1), the maximum 
likelihood estimate of GMST change from the late 1800s to 2018 is 
1.11°C, which is similar to the 1.11°C estimate of GMST change of 
C&W. When the best amplification function is introduced into the 
model, the estimate of GMST change increases by 0.01°C to 1.12°C. 
This is expected as polar regions, which tend to be poorly observed, 
have high LAFs. Introducing the IVP for ENSO leaves the estimate of 
GMST change relatively unchanged at 1.12°C. For the best temperature 
anomaly model, the maximum likelihood estimate of GMST change is 
slightly greater than the ensemble median estimate of GMST change: 
1.11°C, with a 95% confidence interval of (1.04°C, 1.20°C).

Amplification 
function

Covariance 
function

Number  
of IVPs nAIC nBIC GMST change from the 

late 1800s to 2018 (°C)

Correlation 
of residuals 

between 
consecutive 

months

Correlation 
decay length 

(km)

Correlation of 
residuals between 
land-ice and sea 

regions

1 1 0 2.279 2.288 1.103 0.08 970 0.36
1 2 0 2.194 2.203 1.107 0.08 975 0.53
2 2 0 2.194 2.203 1.108 0.08 974 0.53
3 2 0 2.194 2.203 1.106 0.08 974 0.53
4 2 0 2.194 2.203 1.116 0.08 969 0.53
4 2 1 2.190 2.207 1.117 0.07 945 0.52

Table 5:  Summary of results of the estimated temperature anomaly models. Estimates listed correspond to maximum likelihood estimates. The global mean surface 
temperature (GMST) change values listed in this table do not correct for sea ice bias and include the impact of the internal variability pattern (IVP) if applicable.

Figure 1: Weighted average of the maximum likelihood estimates of local amplification factors by meteorological season: (a) December-January-February, 
(b) March-April-May, (c) June-July-August, and (d) September-October-November. Calendar months were weighted by their average number of days. These 
estimated local amplification factors neglect changes in sea ice. The shaded areas correspond to the 95% confidence regions.
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Figure 2: The dominant temperature pattern of internal variability obtained from CCSM4 output under the pre-industrial control scenario. The strong warming 
band in the Eastern Equatorial Pacific suggests that this pattern corresponds to the El Niño Southern Oscillation.

Figure 3: Maximum likelihood estimate of the impact of the internal variability pattern on annual global mean surface temperature (GMST) anomalies using 
1961-1990 as the reference period. This estimate neglects the indirect impact on the GMST due to how internal variability may affect sea ice concentrations.
The internal variability pattern corresponds well with the negative of the Southern Oscillation Index, suggesting that this mode of internal variability corresponds 
to the El Niño Southern Oscillation. The gray area corresponds to the 95% confidence region.

Figure 1 shows averages of the estimated amplification functions 
for each meteorological season; for simplicity, amplification functions 
are shown by meteorological season instead of by calendar month. 
As expected, polar regions tend to have higher estimated LAFs than 
equatorial regions and land-ice regions tend to have higher estimated 
LAFs than sea regions. The northern hemisphere tends to have higher 
estimated LAFs than the southern hemisphere.

The estimated LAFs are often far from unity, with Arctic land 
regions having LAFs of two or greater. This suggests that accounting 
for LAFs is important for temperature estimates of unobserved 
regions. Of the GITDs discussed in the introduction, none of their 
statistical models adequately account for LAFs, so all should be 
subject to amplification bias. GISTEMPv4 and NOAAGlobalTempv5 
use ERSSTv5 for SSTs; ERSSTv5 might indirectly account for some 
amplification bias through its use of EOTs. In addition, GISTEMPv4 
averages temperature anomalies zonally before averaging globally, 
which may cause GISTEMPv4 to have reduced amplification bias 
compared to other GITDs.

Figure 2 shows the first EOF of the CCSM4 detrended temperature 
anomalies under the pre-industrial control scenario. This EOF 
appears to correspond to the temperature pattern of ENSO due to its 
strong warming band in the Eastern Equatorial Pacific. If temperature 
variation explained by SICs is excluded, this EOF explains 18% of 
the variation in local annual mean SATs and 51% of the variation 

in annual GMSTs for the CCSM4 output under the pre-industrial 
control scenario.

Figure 3 shows the estimated impact of the IVP on annual 
GMST anomalies. It appears that this IVP causes fluctuations in 
annual GMSTs with an amplitude of approximately 0.1°C. The GMST 
variability explained by this IVP corresponds well with the SOI, 
suggesting that this mode of internal variability corresponds well to 
ENSO.

Table 6 summarizes the results of the estimated temperature 
climatology models. For the model with the lowest AIC, the median 
estimate of the impact of sea ice bias on GMST change from the late 
1800s to 2018 is -0.08°C, with a 95% confidence interval of (-0.04°C, 
-0.13°C). The maximum likelihood estimate of the lapse rate of the 
best model is 6.4°C km-1, corresponding to a typical wet lapse rate for 
Earth; the retrieval of a physically sensible lapse rate adds confidence 
to the results of the temperature climatology model. When the 
freezing temperatures of sea water and fresh water are applied, the median 
estimate remains relatively unchanged at -0.09°C. Thus, 

To test for a possible overestimation of sea ice bias due to using a 
temperature field that is discontinuous between sea and sea ice regions, 
the climatology function was re-estimated twice using IABP-POLES. 
When the resolution is 5° and when only accounting for changes in 

while the use of
 the freezing temperatures has an impact on the estimated 
 change the order of magnitude of estimated bias.

bias, it does 
not
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sea ice north of 60°N, the estimate of the impact of sea ice bias on 
GMST change between the late 1800s and 2018 is -0.045°C. When 
the resolution is changed to 1°, the estimate is reduced in magnitude 
to -0.030°C. Since the use of a coarser resolution should result in a 
greater overestimation of sea ice bias, this suggests that there could be 
a 50% overestimation of sea ice bias. In addition, some overestimation 
may remain as a 1° resolution is still somewhat coarse.

As an additional test, empirical LAFs of regions of sea ice loss from 
the late 1800s to 2018 were calculated. Combining the best temperature 
anomaly model with the best temperature climatology model constructs 
HadCRU_MLE. According to HadCRU_MLE, the median estimate of 
the empirical LAF is 1.5 if no sea ice bias correction is included and 4.6 if 
the sea ice bias correction is included. In comparison, the empirical LAF 
is 2.7 for CCSM4 under the RCP6.0 scenario using a 5° resolution. This 
suggests that while a sea ice bias correction is needed, HadCRU_MLE 
may overcorrect for sea ice bias by a factor of two.

Both local observations of temperatures in sea ice regions as 

19] use local temperature observations to 

7, I estimate by visual inspection that the difference in temperature 
in going from 0% SIC to 100% SIC is likely between 2°C and 6°C. 
Multiplying this by the change in average global sea ice extent between 
the late 1800s and 2018 suggests a sea ice bias of between -0.03°C 

and -0.08°C. Alternatively, Cowtan et al. [32] find, using CMIP5 
output, that blending land and sea absolute temperatures instead of 
blending land and sea temperature anomalies increases the estimated 
GMST change by 3%. Since the GMST change over the instrumental 
period is approximately 1°C, this suggests that sea ice bias may cause 
an underestimation of GMST change of 0.03°C. Thus, both local 
observations of temperatures in sea ice regions and results of climate 
models confirm the order of magnitude of sea ice bias estimated in 
this study.

Figure 4 shows the estimated impact of sea ice bias on annual 
GMST anomalies. Figure 5 shows the distribution of the estimated 
impact of sea ice bias on surface temperature change from the late 
1800s to 2018. Regions that have experienced significant ice melt over 
the instrumental period, such as the Norwegian Sea and parts of the 
Southern Ocean, show the most bias.

It should be noted that HadISST2 is imperfect. In the northern 
hemisphere, it has no interannual change in SICs prior to 1901 
and little interannual change in SICs prior to 1953. In the southern 
hemisphere, it has no interannual change in SICs prior to 1939 and 
little interannual change in SICs prior to 1973. This is caused by a lack 
of data and infilling missing data with SIC climatologies estimated 
using data from other years. As a result, HadISST2 underestimates 
SIC change prior to 1973. Thus, the results of this study likely 
underestimate variation in sea ice bias prior to 1973.

Figure 4: Ensemble median estimates of the impact of sea ice bias on estimates of annual global mean surface temperature (GMST) anomalies using 1961-
1990 as the reference period. The gray area corresponds to the 95% confidence region.

Climatology 
function

Covariance 
function nAIC nBIC

Impact of sea ice bias on the 
GMST change from the late 1800s to 

2018 (°C)
Correlation 
of residuals 

between calendar 
months

Correlation 
decay length 

(km)

Lapse Rate (°C 
km-1)Neglecting 

freezing 
temperatures

Using freezing 
temperatures

1 1 2.21 2.22 -0.061 -0.070 0.67 2481 5.86
1 2 1.74 1.76 -0.057 -0.063 0.70 2879 6.10
1 3 2.03 2.04 -0.057 -0.070 0.78 2506 6.36
1 4 1.56 1.58 -0.056 -0.063 0.75 2906 6.47
2 4 1.54 1.56 -0.087 -0.097 0.74 2334 6.46
3 4 1.50 1.54 -0.080 -0.089 0.74 2315 6.41
4 4 1.55 1.57 -0.057 -0.064 0.74 2924 6.44
5 4 1.51 1.54 -0.084 -0.094 0.75 2210 6.45
6 4 1.47 1.53 -0.085 -0.094 0.75 2228 6.40

Table 6:  Summary of results of the estimated temperature climatology models. The best (lowest nAIC) temperature anomaly model of Table 5 was used in the 
estimation of the impact of sea ice bias on global mean surface temperature (GMST) change. Sea ice bias estimates listed correspond to ensemble median estimates; 
other estimates listed correspond to maximum likelihood estimates.

their

well
 as results of climate models can help quantify the magnitude of sea ice

 bias. Rayner et al. [ estimate
 the relationship between temperature and SIC. Using figure 
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Figure 6: Ensemble median estimates of annual global mean surface temperature anomalies using 1961-1990 as the reference period. The figure shows the 
best estimates of this study (HadCRU_MLE) compared to the results of Cowtan and Way version 2 using HadSST4. The gray area corresponds to the 95% 
confidence region.

Figure 7: Ensemble median estimates of the change in local surface temperature (°C) from the late 1800s to 2018.

The results of HadCRU_MLE give this study’s best estimate of GMST 
change from the late 1800s to 2018: 1.20°C with a 95% confidence interval 
of (1.11°C, 1.30°C). As an alternate estimate, if the freezing temperatures 
of sea water and fresh water are applied, then the median estimate of 
GMST change remains relatively unchanged at 1.20°C.

Figure 6 shows this study’s best estimates of annual GMST 
anomalies. Figure 7 shows the distribution of local surface temperature 
change from the late 1800s to 2018. HadCRU_MLE estimates more 
warming than the 1.16°C of GMST change from the late 1800s to 2018 
of BEST. This may be because BEST uses HadSST3, which shows less 

Figure 5: Ensemble median estimates of the impact of sea ice bias on the change in local surface temperature (°C) from the late 1800s to 2018.
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warming over the instrumental period than HadSST4. The estimate of 
GMST change increases from 1.03°C in C&W-HadSST3 to 1.11°C in 
C&W, suggesting that the estimate of GMST change of BEST would 
increase by a comparable amount if it is updated to use HadSST4. 
As BEST accounts for changes in SICs, the larger estimate of GMST 
change of BEST compared to C&W is partially explained by the sea 
ice bias of C&W; the remaining difference could be due to different 
homogenization procedures of LSATs or differences in statistical 
infilling methods.

Figure 7 shows a large contrast in temperature change in the 
Southern Ocean. This contrast is likely exaggerated since HadISST2 
neglects interannual variation in SICs for the late 1800s. The large 
change in SICs for the Southern Ocean is largely the result of a single 
German 1929-1939 Antarctic sea ice climatology. Thus, the reliability 
of this study’s estimate of temperature change since the late 1800s for 
the Southern Ocean is largely dependent on this single 1929-1939 
temperature climatology.

HadCRU_MLE may have a remaining bias due to using SSTs 
instead of MATs. According to the results of climate models, this bias 
may cause an underestimation of GMST change of 5% to 9% [32,33]. 
However, the top ocean layer of climate models is typically 10 m deep, 
whereas the SSTs of HadSST4 use a buoy reference depth 20 cm below 
the sea surface; so, the actual bias of HadCRU_MLE should be smaller 
than the bias suggested by climate models. In addition, HadSST4 assumes 
that MATs and SSTs warm at similar rates and uses MATs to correct for 
SST biases. In particular, MATs are used to determine the fractions of 
canvas and wooden buckets in the early part of the instrumental period. 
So, it is unclear if there is any significant bias due to differences in warming 
rates of SSTs and MATs when using HadSST4.

While this paper outlines some improvements to the statistical 
methodology of estimating past temperatures, there are still areas 
where further improvements could be made. Firstly, uncertainties 
in the estimates of the temperature climatology and SICs could be 
quantified and taken into account. Secondly, the magnitude of sea 
ice bias could be better quantified and verified using different lines 
of evidence. Thirdly, attempts to better incorporate bias errors of 
instrumental observations into the statistical model could be made. 
Fourthly, amplification and temperature climatology functions of this 
study are discontinuous between land-ice and sea regions, which is 
physically unrealistic; further improvements to the functional forms 
could be made. Lastly, other sources of observations, such as satellite 
and paleoclimate data, could be used to further improve temperature 
estimates.

Conclusions
This paper identifies two biases in GITDs: amplification bias and 

sea ice bias. Amplification bias occurs when the underlying statistical 
model of the GITD neglects the tendency of different regions of the 
planet to warm at different rates. Since polar regions, which tend to 
warm the fastest, were poorly observed during the instrumental period, 
not accounting for amplification bias causes an underestimation of 
GMST change over the instrumental period. Sea ice bias occurs when 
the GITD neglects the impact of changes in sea ice on temperatures. 
Since SICs have decreased over the instrumental period, neglecting 
changes in SICs causes an underestimation of GMST change over the 
instrumental period. To quantify the impact of these biases, a new 
bias-corrected GITD was constructed, called HadCRU_MLE, which 
used MLE to combine the LSAT anomalies of HadCRUT4 with the 
SST anomalies of HadSST4.

HadCRU_MLE has improvements compared to C&W. Model 
parameters were estimated using MLE, which provides a better 
statistical foundation for parameter estimates and allows for 
quantification of parameter uncertainty. HadCRU_MLE takes 
advantage of temporal correlations and correlations between land-
ice and sea regions to improve temperature anomaly estimates. 
More sources of uncertainty are accounted for, including parameter 
estimation uncertainty and infilling uncertainty as well as all 
uncertainties of HadCRUT4 and HadSST4.

To correct for amplification bias, an amplification function was 
incorporated into the temperature anomaly model, which was fit to 
observations. As El Niño events correspond to warming concentrated 
in the Eastern Equatorial Pacific Ocean, neglecting the behaviour of 
ENSO could cause an attenuation bias towards the identity function 
of the estimate of the amplification function. To avoid this attenuation 
bias, an IVP for ENSO was obtained from CCSM4 output for a pre-
industrial control scenario and incorporated into the temperature 
anomaly model. The inclusion of the amplification function and the 
IVP for ENSO increases the estimate of GMST change from the late 
1800s to 2018 by 0.01°C.

To correct for sea ice bias, a temperature climatology model 
was fit to observations. Estimates of temperature climatologies and 
temperature anomalies were combined to quantify sea ice bias. 
Accounting for sea ice bias increases the estimate of GMST change 
from the late 1800s to 2018 by 0.08°C. The use of a temperature field 
that is discontinuous between sea and sea ice regions may cause an 
overcorrection for sea ice bias. The results of sensitivity tests using IABP-
POLES data suggest that there may be a 50% overcorrection for sea ice 
bias. A comparison of HadCRU_MLE with CCSM4 output under the 
RCP6.0 scenario, which roughly corresponds to historic forcing, suggests 
that there may be an overcorrection by a factor of two for sea ice bias. 
Overall, the median estimate of GMST change from the late 1800s to 
2018 is 1.20°C, with a 95% confidence interval of (1.11°C, 1.30°C).
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Supplementary Information for “Correcting for Amplification Bias 

and Sea Ice Bias in Global Temperature Datasets” 

by Bruce T. T. Calvert 

 

Source Data Availability 

All source datasets used to produce HadCRU_MLE_v1.0 are publicly available; instructions for obtaining 

these datasets are given in the code zip file of HadCRU_MLE_v1.0, which is available at the World Data 

Center for Climate at DKRZ. Table S1 provides additional details about the source datasets used. 

 

Dataset Version Types of Data Used First Month of Data Last Month of Data 

HadCRUT4 4.6.0.0 
Surface temperature 

anomalies 
January 1850 September 2019 

CRUTEM4 4.6.0.0 LSAT anomalies January 1850 September 2019 

HadSST3 3.1.1.0 SST anomalies January 1850 October 2019 

HadSST3 3.1.1.0 SST climatology January 1961 December 1990 

HadSST4 4.0.0.0 SST anomalies January 1850 December 2018 

HadISST1 1.0 Sea ice concentrations January 1870 July 2019 

HadISST2 2.2.0.0 Sea ice concentrations January 1850 January 2019 

OSTIA 1.0 Land mask N/A N/A 

Jones et al. (1999) N/A 
Surface temperature 

climatology 
January 1961 December 1990 

IABP-POLES N/A 
Surface temperature 

climatology 
January 1979 December 1998 

Cowtan and Way using 
HadSST3 (long 

reconstruction) 
2.0 

Surface temperature 
anomalies 

January 1850 August 2019 

Cowtan and Way using 
HadSST4 (long 

reconstruction) 
2.0 

Surface temperature 
anomalies 

January 1850 December 2018 

Berkeley Earth Surface 
Temperature using LSATs 

for sea ice regions 
N/A 

Surface temperature 
anomalies 

January 1850 October 2019 

GMTED2010 N/A Surface elevation N/A N/A 

CCSM4 output for the pre-
industrial control scenario 
(ensemble member r1i1p1) 

N/A 
SATs and sea ice 
concentrations 

January 800 December 1300 

CCSM4 output for the 
RCP6.0 scenario 

(ensemble member r1i1p1) 
N/A 

SATs and sea ice 
concentrations 

January 1850 December 2100 

Southern Oscillation Index N/A 
Southern Oscillation 

Index 
January 1876 June 2019 

Table S1: Additional details about the source datasets used to produce HadCRU_MLE_v1.0. 
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Code Availability 

The code used to produce HadCRU_MLE_v1.0 was written in MATLAB and is publicly available; the code 

is available in the code zip file of HadCRU_MLE_v1.0, which is available at the World Data Center for 

Climate at DKRZ. Due to the high computational requirements of the code, the code must be run using a 

graphics processing unit. Using a GeForce GTX 1050Ti graphics card, it takes about 44 days to execute 

the code. In addition, after the code is run once, it takes about 12 days to update the HadCRU_MLE_v1 

dataset using updated source data. All random numbers generated by the code are controlled using a 

single random seed, which was generated using the system clock. Thus, results can be easily reproduced 

using the same random seed or verified using a different random seed. In addition, the random numbers 

are generated in such a way that the results should be relatively comparable if the dataset is updated 

with newer source data provided that the same random seed is used. 

 

 

Inferring Adjusted CRUTEM4 

HadCRUT4 data blends HadSST3 data with CRUTEM4 data (with adjustments to account for biases and 

uncertainties such as due to temperature homogenization and the urban heat island effect). If 

observations exist for both HadSST3 and CRUTEM4 at a given grid cell and month, then the HadCRUT4 

temperature anomaly is a weighted average of the HadSST3 temperature anomaly and the adjusted 

CRUTEM4 temperature anomaly. In this case, the adjusted CRUTEM4 weight is equal to the land fraction 

of the grid cell or 0.25, whichever is greater. 

 

Suppose that observations for both HadSST3 and CRUTEM4 exist at 𝑥⃑ for month 𝑡.  

Let 𝑙𝑎𝑛𝑑𝑤𝑒𝑖𝑔ℎ𝑡𝑥 = max(0.25, 𝑙𝑎𝑛𝑑𝑥). Then the adjusted CRUTEM4 temperature anomaly 𝑌𝑥,1,𝑡 can be 

calculated from the HadCRUT4 temperature anomaly 𝐻𝑎𝑑𝐶𝑅𝑈𝑇4𝑥,𝑡 and the HadSST3 temperature 

anomaly 𝐻𝑎𝑑𝑆𝑆𝑇3𝑥,𝑡 using 𝑌𝑥,1,𝑡 = (𝐻𝑎𝑑𝐶𝑅𝑈𝑇4𝑥,𝑡 − (1 − 𝑙𝑎𝑛𝑑𝑤𝑒𝑖𝑔ℎ𝑡𝑥)𝐻𝑎𝑑𝑆𝑆𝑇3𝑥⃑,𝑡)/𝑙𝑎𝑛𝑑𝑤𝑒𝑖𝑔ℎ𝑡𝑥. 

 

 

Temperature Climatology Model 

Functional Forms of the Temperature Climatology Model 

Let 𝐺 = 36 ∙ 72 be the number of grid cells. For convenience, the convention 𝑚 = 1 corresponds to 

January and the normalization operator 〈 〉 are used. 〈 〉 is the operator that returns the function minus 

its weighted mean, where grid cells are weighted by their surface area. Definitions of the models of the 

temperature climatology function are given by Table S2. Definitions of the models of the covariance 

function of the temperature climatology residuals are given by Table S3. 
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Model 𝑿𝒙⃑⃑⃑,𝒎𝑩 

1 (𝑒𝑥
𝑙𝑎𝑛𝑑𝑙𝑎𝑛𝑑𝑥 + 𝑒𝑥

𝑛𝑜𝑡 𝑙𝑎𝑛𝑑(1 − 𝑙𝑎𝑛𝑑𝑥))𝐵1 + (𝐵1+𝑚 + 𝛼1,𝑥⃑𝐵13+𝑚 + 𝛼2,𝑥⃑𝐵25+𝑚) 

2 
(𝑒𝑥

𝑙𝑎𝑛𝑑𝑙𝑎𝑛𝑑𝑥⃑ + 𝑒𝑥
𝑛𝑜𝑡 𝑙𝑎𝑛𝑑(1 − 𝑙𝑎𝑛𝑑𝑥))𝐵1 + 𝑠𝑒𝑎̅̅ ̅̅̅𝑥,𝑚(𝐵1+𝑚 + 𝛼1,𝑥𝐵13+𝑚 + 𝛼2,𝑥𝐵25+𝑚) 

+ (𝑙𝑎𝑛𝑑𝑥 + 𝑖𝑐𝑒̅̅ ̅̅ 𝑥,𝑚)(𝐵37+𝑚 + 𝛼1,𝑥𝐵49+𝑚 + 𝛼2,𝑥𝐵61+𝑚) 

3 

(𝑒𝑥
𝑙𝑎𝑛𝑑𝑙𝑎𝑛𝑑𝑥⃑ + 𝑒𝑥

𝑛𝑜𝑡 𝑙𝑎𝑛𝑑(1 − 𝑙𝑎𝑛𝑑𝑥))𝐵1 + 𝑠𝑒𝑎̅̅ ̅̅̅𝑥,𝑚(𝐵1+𝑚 + 𝛼1,𝑥𝐵13+𝑚 + 𝛼2,𝑥𝐵25+𝑚) 

+ (𝑙𝑎𝑛𝑑𝑥 + 𝑆𝐻𝑥⃑𝑖𝑐𝑒̅̅ ̅̅ 𝑥⃑,𝑚)(𝐵37+𝑚 + 𝛼1,𝑥𝐵49+𝑚 + 𝛼2,𝑥𝐵61+𝑚) 

+ 𝑁𝐻𝑥𝑖𝑐𝑒̅̅ ̅̅ 𝑥⃑,𝑚(𝐵73+𝑚 + 𝛼1,𝑥⃑𝐵85+𝑚 + 𝛼2,𝑥𝐵97+𝑚) 

4 
(𝑒𝑥

𝑙𝑎𝑛𝑑𝑙𝑎𝑛𝑑𝑥 + 𝑒𝑥
𝑛𝑜𝑡 𝑙𝑎𝑛𝑑(1 − 𝑙𝑎𝑛𝑑𝑥))𝐵1 

+ (𝐵1+𝑚 + 𝛼1,𝑥𝐵13+𝑚 + 𝛼2,𝑥𝐵25+𝑚 + 𝛼3,𝑥⃑𝐵37+𝑚 + 𝛼4,𝑥𝐵49+𝑚) 

5 

(𝑒𝑥
𝑙𝑎𝑛𝑑𝑙𝑎𝑛𝑑𝑥 + 𝑒𝑥

𝑛𝑜𝑡 𝑙𝑎𝑛𝑑(1 − 𝑙𝑎𝑛𝑑𝑥))𝐵1 

+ 𝑠𝑒𝑎̅̅ ̅̅̅𝑥,𝑚(𝐵1+𝑚 + 𝛼1,𝑥𝐵13+𝑚 + 𝛼2,𝑥⃑𝐵25+𝑚 + 𝛼3,𝑥𝐵37+𝑚 + 𝛼4,𝑥⃑𝐵49+𝑚) 

+ (𝑙𝑎𝑛𝑑𝑥 + 𝑖𝑐𝑒̅̅ ̅̅ 𝑥,𝑚)(𝐵61+𝑚 + 𝛼1,𝑥⃑𝐵73+𝑚 + 𝛼2,𝑥𝐵85+𝑚 + 𝛼3,𝑥𝐵97+𝑚 + 𝛼4,𝑥𝐵109+𝑚) 

6 

(𝑒𝑥
𝑙𝑎𝑛𝑑𝑙𝑎𝑛𝑑𝑥 + 𝑒𝑥

𝑛𝑜𝑡 𝑙𝑎𝑛𝑑(1 − 𝑙𝑎𝑛𝑑𝑥))𝐵1 

+ 𝑠𝑒𝑎̅̅ ̅̅̅𝑥,𝑚(𝐵1+𝑚 + 𝛼1,𝑥𝐵13+𝑚 + 𝛼2,𝑥⃑𝐵25+𝑚 + 𝛼3,𝑥𝐵37+𝑚 + 𝛼4,𝑥⃑𝐵49+𝑚) 

+ (𝑙𝑎𝑛𝑑𝑥 + 𝑆𝐻𝑥𝑖𝑐𝑒̅̅ ̅̅ 𝑥⃑,𝑚)(𝐵61+𝑚 + 𝛼1,𝑥⃑𝐵73+𝑚 + 𝛼2,𝑥𝐵85+𝑚 + 𝛼3,𝑥⃑𝐵97+𝑚 + 𝛼4,𝑥𝐵109+𝑚) 

+ 𝑁𝐻𝑥𝑖𝑐𝑒̅̅ ̅̅ 𝑥,𝑚(𝐵121+𝑚 + 𝛼1,𝑥𝐵133+𝑚 + 𝛼2,𝑥𝐵145+𝑚 + 𝛼3,𝑥𝐵157+𝑚 + 𝛼4,𝑥𝐵169+𝑚) 
Table S2: The different models of the temperature climatology function. These models were used to quantify the 

sea ice bias of temperature anomaly estimates. 𝛼1,𝑥 = 𝜑𝑥
3 − 3

𝜋2

4
𝜑𝑥, 𝛼2,𝑥 = 〈𝜑𝑥

4 −
𝜋2

2
𝜑𝑥
2〉, 𝛼3,𝑥 = 𝜑𝑥

5 − 5
𝜋4

16
𝜑𝑥, 

𝛼4,𝑥 = 〈𝜑𝑥
6 − 3

𝜋4

16
𝜑𝑥
2〉, 𝜑𝑥  is the latitude of 𝑥⃑ in radians, 𝑆𝐻𝑥  is 1 if 𝑥⃑ is in the southern hemisphere and is 

otherwise 0, and 𝑁𝐻𝑥 = 1 − 𝑆𝐻𝑥. 

 

Model 𝒗𝒙⃑⃑⃑,𝒎𝒛 

1 𝑧1 

2 𝑧1 + (𝑙𝑎𝑛𝑑𝑥 + 𝑖𝑐𝑒̅̅ ̅̅ 𝑥,𝑚)𝑧2 

3 𝑧1 + 𝛼1,𝑥⃑𝑧2 + 𝛼2,𝑥⃑𝑧3 

4 𝑧1 + 𝛼1,𝑥𝑧2 + 𝛼2,𝑥𝑧3 + (𝑙𝑎𝑛𝑑𝑥 + 𝑖𝑐𝑒̅̅ ̅̅ 𝑥,𝑚)(𝑧4 + 𝛼1,𝑥𝑧5 + 𝛼2,𝑥⃑𝑧6) 
Table S3: The different models of the covariance function of temperature climatology residuals. These models 

were used to quantify the sea ice bias of temperature anomaly estimates. 

 

 

Notation for the Temperature Climatology Model 

For convenience, the following notation is used:  

- ′ is the transpose operator   - ∘ is the Hadamard product 

- ⨂ is the Kronecker product   - 𝐼𝑎 is the identity matrix of size 𝑎 × 𝑎 

- 𝟘𝑎,𝑏 is the zeros matrix of size 𝑎 × 𝑏  - 𝟙𝑎,𝑏 is the ones matrix of size 𝑎 × 𝑏 
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- 𝑡𝑟 is the trace operator   - 𝑣𝑒𝑐 is the vectorization operator  

- 𝑠𝑢𝑚 is the operator that returns the sum of the elements of a matrix 

- 𝑐 is the operator that returns the lower triangular Cholesky matrix 

- 𝑐′ is the operator that returns the upper triangular Cholesky matrix 

- 𝜆 is the standard logistic function  - 𝐺 = 36 ∙ 72 is the number of grid cells 

 

Let {𝑥⃑1, … , 𝑥⃑𝐺} be an ordering of the set of all grid cells, 𝜌 = 𝜆(𝑟), 𝜅 = 𝜆(𝜅),  

𝑅 = [
𝜌1−𝛿1,1 ⋯ 𝜌1−𝛿1,12

⋮ ⋱ ⋮
𝜌1−𝛿12,1 ⋯ 𝜌1−𝛿12,12

], and 𝐾̃ = [
𝜅‖𝑥1−𝑥1‖ ⋯ 𝜅‖𝑥1−𝑥⃑𝐺‖

⋮ ⋱ ⋮

𝜅‖𝑥𝐺−𝑥⃑1‖ ⋯ 𝜅‖𝑥𝐺−𝑥𝐺‖
]. To account for missing 

observations, let 𝑛 be the number of observed grid subcells and 𝑁 = 12𝑛 be the number of 

temperature climatology observations. Define 𝜂̃ as the 𝐺 × 𝑛 restriction matrix constructed by starting 

with 𝐼𝐺 and then ∀𝑖 ∈ {1,… , 𝐺} removing the 𝑖th column from 𝐼𝐺 if 𝑥⃑𝑖 is unobserved, and define 𝜁 as the 

𝐺 × (𝐺 − 𝑛) restriction matrix constructed by starting with 𝐼𝐺 and then ∀𝑖 ∈ {1,… , 𝐺} removing the 𝑖th 

column from 𝐼𝐺 if 𝑥⃑𝑖 is observed. 

 

∀𝑖, 𝑗 ∈ {1,… ,12} let 𝐶𝑖 = 𝜂̃
′ [

𝐶𝑥1,𝑖
⋮

𝐶𝑥𝐺,𝑖

], 𝑈̃𝑖 = [

𝑈𝑥1,𝑖
⋮

𝑈𝑥𝐺,𝑖

], 𝑈𝑖 = 𝜂̃
′𝑈̃𝑖, 𝑈̌𝑖 = 𝜁

′𝑈̃𝑖, 𝑋𝑖 = 𝜂̃
′ [

𝑋𝑥1,𝑖
⋮

𝑋𝑥𝐺,𝑖

], 𝑋𝑖,𝑎 be the 𝑎th 

column of 𝑋𝑖  ∀𝑎 ∈ {1,… , 𝑛𝐵}, 𝛬𝑖,𝑗 = 𝑐𝑜𝑣(𝑈̃𝑖 , 𝑈̃𝑗), 𝛺𝑖,𝑗 = 𝑐𝑜𝑣(𝑈𝑖 , 𝑈𝑗) = 𝜂̃
′𝛬𝑖,𝑗𝜂̃,  

𝑣𝑖,𝑎 = 𝜂̃′ 

[
 
 
 
 
 (
1

2
𝑣𝑥1,𝑖)𝑎

0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

0 ⋯ 0 (
1

2
𝑣𝑥𝐺,𝑖)𝑎]

 
 
 
 
 

𝜂̃ ∀𝑎 ∈ {1,… , 𝑛𝑧},  

𝑉̃𝑖 =

[
 
 
 
 exp (

1

2
𝑣𝑥1,𝑖𝑧) 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

0 ⋯ 0 exp (
1

2
𝑣𝑥𝐺,𝑖𝑧)]

 
 
 
 

, 𝑉𝑖 = 𝜂̃
′𝑉̃𝑖𝜂̃, and 𝐾 = 𝜂̃′𝐾̃𝜂̃. 

 

In addition, let 𝜂 = 𝐼12⨂𝜂̃, 𝜁 = 𝐼12⨂𝜁, 𝐶 = [
𝐶1
⋮
𝐶12

], 𝑈 = [
𝑈1
⋮
𝑈12

], 𝑈̌ = [
𝑈̌1
⋮
𝑈̌12

], 𝑋 = [
𝑋1
⋮
𝑋12

],  

𝛬 = [

𝛬1,1 ⋯ 𝛬1,12
⋮ ⋱ ⋮

𝛬12,1 ⋯ 𝛬12,12

], 𝛺 = 𝜂′𝛬𝜂, 𝑉̃ =

[
 
 
 
 
𝑉̃1 𝟘𝐺,𝐺 ⋯ 𝟘𝐺,𝐺
𝟘𝐺,𝐺 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 𝟘𝐺,𝐺

𝟘𝐺,𝐺 ⋯ 𝟘𝐺,𝐺 𝑉̃12 ]
 
 
 
 

, and 𝑉 = 𝜂′𝑉̃𝜂. For convenience, 

∀𝑖 ∈ {1,… ,12} let 𝛬𝑖 = 𝛬𝑖,𝑖 and 𝛺𝑖 = 𝛺𝑖,𝑖. 
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Calculating the Log-Likelihood of the Temperature Climatology Model 

The log-likelihood of the temperature climatology model is 𝑙 = −
𝑁

2
ln(2𝜋) −

1

2
ln|𝛺| −

1

2
𝑈′𝛺−1𝑈. 𝛺 is a 

matrix with nearly 1 billion numbers and, as a result, takes up nearly 8 GB of RAM. This is too large to 

easily work with on today’s standard desktop computer, so 𝛺 is broken down into smaller matrices. 

 

𝛺 = [
𝑅1,1𝑉1

−1𝐾𝑉1
−1 ⋯ 𝑅1,12𝑉1

−1𝐾𝑉12
−1

⋮ ⋱ ⋮
𝑅12,1𝑉12

−1𝐾𝑉1
−1 ⋯ 𝑅12,12𝑉12

−1𝐾𝑉12
−1
] = 𝑉−1(𝑅⨂𝐾)𝑉−1. 

 

⇒ ln|𝛺| = ln(|𝑉−1(𝑅⨂𝐾)𝑉−1|) = 2 ln(|𝑉−1|) + ln(|𝑅⨂𝐾|)  

= −2 ln(|𝑉|) + 𝑛 ln(|𝑅|) + 12 ln(|𝐾|) = −2∑ ln(|𝑉𝑖|)
12
𝑖=1 + 12 ln(|𝐾|) + 𝑛 ln(|𝑅|)  

But 𝑅 has determinant |𝑅| = (1 − 𝜌)11(1 + 11𝜌). 

⇒ ln|𝛺| = −2∑ ln(|𝑉𝑖|)
12
𝑖=1 + 12 ln(|𝐾|) + 𝑛 ln((1 − 𝜌)11(1 + 11𝜌)) 

 

⇒ 𝛺−1 = (𝑉−1)−1(𝑅⨂𝐾)−1(𝑉−1)−1 = 𝑉(𝑅−1⨂𝐾−1)𝑉 

⇒ 𝑈′𝛺−1𝑈 = ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  

 

⇒ 𝑙 = −
𝑁

2
ln(2𝜋) + ∑ ln(|𝑉𝑖|)

12
𝑖=1 − 6 ln(|𝐾|) −

𝑛

2
ln((1 − 𝜌)11(1 + 11𝜌)) 

− 
1

2
∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑉𝑖𝐾
−1𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1 , where (𝑅−1)𝑖,𝑗 = {

1+10𝜌

(1−𝜌)(1+11𝜌)
𝑖𝑓 𝑖 = 𝑗

−𝜌

(1−𝜌)(1+11𝜌)
𝑒𝑙𝑠𝑒

. 

 

For large matrices, calculating the natural logarithm of the determinant can result in significant 

computational error. However, ln(|𝐾|) = ln(|𝑐(𝐾)𝑐′(𝐾)|) = 2𝑠𝑢𝑚(eln (𝑑𝑖𝑎𝑔(𝑐(𝐾)))), where eln is 

the element-wise natural logarithm function and 𝑑𝑖𝑎𝑔 is the operator that converts a matrix into a 

vector of its diagonal elements. Calculating 2 times the sum of the natural logarithm of the diagonals of 

the lower triangular Cholesky matrix is more numerically stable than calculating the natural logarithm of 

the determinant, so is performed instead. This method for computing the natural logarithm of the 

determinant is used for other large matrices as well. Various other methods to reduce the 
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computational cost are employed in practice; some of these methods are not listed in this 

supplementary information as they are relatively trivial and would reduce clarity. 

 

 

Initial Guess of the Temperature Climatology Model 

To create an initial guess of (𝐵, 𝑟, 𝑘, 𝑧), the following method is used: 

• 𝐵 is initially estimated using ordinary least squares (OLS) regression: 𝐶𝑥,𝑚 = 𝑋𝑥,𝑚𝐵 + 𝑈𝑥,𝑚. 

• The residuals 𝑈 of the OLS regression are obtained. 

• 𝑧2, … , 𝑧𝑛𝑧 are initially estimated as zero. 

• If 𝑧2, … , 𝑧𝑛𝑧 are zero, then the expected value of 𝑈𝑥,𝑚
2 is 𝑒−𝑧1 ∀(𝑥⃑,𝑚) ∈ 𝛯, where 𝛯 is the set of 

all combinations of grid cells and calendar months that have observations. As a result, 𝑧1 is 

initially estimated as − ln(∑ (𝑈𝑥,𝑚
2 )(𝑥,𝑚)∈𝛯 ∑ 1(𝑥,𝑚)∈𝛯⁄ ). 

• 𝑟 is initially estimated by comparing residuals 𝑈 within the same grid cell and in different 

calendar months. ∀(𝑥⃑,𝑚𝑖), (𝑥⃑,𝑚𝑗) ∈ 𝛯, if 𝑚𝑖 ≠ 𝑚𝑗, then 𝑐𝑜𝑣 (𝑈𝑥,𝑚𝑖
, 𝑈𝑥,𝑚𝑗

) =

𝜆(𝑟) exp (−0.5 (𝑣𝑥,𝑚𝑖
+ 𝑣𝑥,𝑚𝑗

) 𝑧). As a result, 𝑟 is initially estimated as 

𝜆−1(∑ ∑
𝑈𝑥⃑⃑⃑,𝑚𝑖

𝑈𝑥⃑⃑⃑,𝑚𝑗

exp(−0.5(𝑣𝑥⃑⃑⃑,𝑚𝑖
+𝑣𝑥⃑⃑⃑,𝑚𝑗

)𝑧)
(𝑥,𝑚𝑗)∈𝛯

𝑚𝑖≠𝑚𝑗

(𝑥,𝑚𝑖)∈𝛯
∑ ∑ 1(𝑥,𝑚𝑗)∈𝛯

𝑚𝑖≠𝑚𝑗

(𝑥⃑,𝑚𝑖)∈𝛯
⁄ ). 

• 𝑘 is initially estimated by comparing residuals 𝑈 within the same calendar month, within the 

same longitudinal band, and in different and adjacent latitudinal bands. ∀(𝑥⃑𝑖, 𝑚), (𝑥⃑𝑗, 𝑚) ∈ 𝛯, if 

𝜓𝑥𝑖 = 𝜓𝑥𝑗 and |𝜑𝑥𝑖 − 𝜑𝑥𝑗| =
5𝜋

180
, where 𝜑𝑥 and 𝜓𝑥 are the latitude and longitude of 𝑥⃑ in 

radians respectively, then 𝑐𝑜𝑣 (𝑈𝑥𝑖,𝑚, 𝑈𝑥𝑗,𝑚) = 𝜆(𝑘)
5𝜋

180 exp (−0.5 (𝑣𝑥𝑖,𝑚 + 𝑣𝑥𝑗,𝑚) 𝑧). As a 

result, 𝑘 is estimated as 

𝜆−1

(

 
 
 
 
 

(

 
 
 
 

∑ ∑
𝑈𝑥⃑⃑⃑𝑖,𝑚

𝑈𝑥⃑⃑⃑𝑗,𝑚

exp(−0.5(𝑣𝑥⃑⃑⃑𝑖,𝑚
+𝑣𝑥⃑⃑⃑𝑗,𝑚

)𝑧)
(𝑥𝑗,𝑚)∈𝛯

𝜓𝑥⃑⃑⃑𝑖
=𝜓𝑥⃑⃑⃑𝑗

|𝜑𝑥⃑⃑⃑𝑖
−𝜑𝑥⃑⃑⃑𝑗

|=
5𝜋

180

(𝑥⃑𝑖,𝑚)∈𝛯
∑ ∑ 1(𝑥𝑗,𝑚)∈𝛯

𝜓𝑥⃑⃑⃑𝑖
=𝜓𝑥⃑⃑⃑𝑗

|𝜑𝑥⃑⃑⃑𝑖
−𝜑𝑥⃑⃑⃑𝑗

|=
5𝜋

180

(𝑥⃑𝑖,𝑚)∈𝛯
⁄

)

 
 
 
 

180

5𝜋

)

 
 
 
 
 

. 

• 𝐵 is re-estimated using GLS regression: 𝐶𝑥,𝑚 = 𝑋𝑥,𝑚𝐵 + 𝑈𝑥,𝑚. In particular, the GLS estimate is 

(𝑋′𝛺−1𝑋)−1𝑋′𝛺−1𝐶 = (∑ ∑ (𝑅−1)𝑖,𝑗𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑋𝑗
12
𝑗=1

12
𝑖=1 )

−1
∑ ∑ (𝑅−1)𝑖,𝑗𝑋𝑖

′𝑉𝑖𝐾
−1𝑉𝑗𝐶𝑗

12
𝑗=1

12
𝑖=1 . 
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Estimating the Temperature Climatology Model 

The first and second derivatives of the log-likelihood function are 

• 
𝜕𝑙

𝜕𝐵𝑎
= −𝑈′𝛺−1

𝜕𝑈

𝜕𝐵𝑎
= ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑉𝑖𝐾
−1𝑉𝑗𝑋𝑗,𝑎

12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝐵} 

• 
𝜕𝑙

𝜕𝑟
= −

1

2
𝑡𝑟 (𝛺−1

𝜕𝛺

𝜕𝑟
) −

1

2
𝑈′

𝜕𝛺−1

𝜕𝑟
𝑈 =

66𝑛𝜌2

(1+11𝜌)
−
1

2
∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
𝑈𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1 , 

where (
𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
= (

𝜕𝑅−1

𝜕𝜌
𝜌(1 − 𝜌))

𝑖,𝑗

= {

22𝜌2(1+5𝜌)

(1−𝜌)(1+11𝜌)2
𝑖𝑓 𝑖 = 𝑗

−𝜌(1+11𝜌2)

(1−𝜌)(1+11𝜌)2
𝑒𝑙𝑠𝑒

. 

• 
𝜕𝑙

𝜕𝑘
= −

1

2
𝑡𝑟 (𝛺−1

𝜕𝛺

𝜕𝑘
) −

1

2
𝑈′

𝜕𝛺−1

𝜕𝑘
𝑈 = −6𝑡𝑟 (𝐾−1

𝜕𝐾

𝜕𝑘
) −

1

2
∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑉𝑖
𝜕𝐾−1

𝜕𝑘
𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1 , 

where 
𝜕𝐾

𝜕𝑘
=

𝜕𝐾

𝜕𝜅
𝜅(1 − 𝜅) and 

𝜕𝐾−1

𝜕𝑘
= −𝐾−1

𝜕𝐾

𝜕𝑘
𝐾−1. 

• 
𝜕𝑙

𝜕𝑧𝑎
= −

1

2
𝑡𝑟 (𝛺−1

𝜕𝛺

𝜕𝑧𝑎
) −

1

2
𝑈′

𝜕𝛺−1

𝜕𝑧𝑎
𝑈  

= ∑ 𝑡𝑟(𝑣𝑖,𝑎)
12
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑉𝑖𝐾
−1𝑣𝑗,𝑎𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧} 

• 
𝜕2𝑙

𝜕𝐵𝑎𝜕𝐵𝑏
= −

𝜕𝑈′

𝜕𝐵𝑎
𝛺−1

𝜕𝑈

𝜕𝐵𝑏
= −∑ ∑ (𝑅−1)𝑖,𝑗𝑋𝑖,𝑎

′ 𝑉𝑖𝐾
−1𝑉𝑗𝑋𝑗,𝑏

12
𝑗=1

12
𝑖=1  ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝐵} 

• 
𝜕2𝑙

𝜕𝐵𝑎𝜕𝑟
= −

𝜕𝑈′

𝜕𝐵𝑎

𝜕𝛺−1

𝜕𝑟
𝑈 = ∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
𝑋𝑖,𝑎
′ 𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝐵} 

• 
𝜕2𝑙

𝜕𝐵𝑎𝜕𝑘
= −

𝜕𝑈′

𝜕𝐵𝑎

𝜕𝛺−1

𝜕𝑘
𝑈 = ∑ ∑ (𝑅−1)𝑖,𝑗𝑋𝑖

′𝑉𝑖
𝜕𝐾−1

𝜕𝑘
𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝐵} 

• 
𝜕2𝑙

𝜕𝐵𝑎𝜕𝑧𝑏
= −

𝜕𝑈′

𝜕𝐵𝑎

𝜕𝛺−1

𝜕𝑧𝑏
𝑈  

= ∑ ∑ (𝑅−1)𝑖,𝑗𝑋𝑖,𝑎
′ 𝑉𝑖(𝑣𝑖,𝑏𝐾

−1 + 𝐾−1𝑣𝑗,𝑏)𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝐵} ∀𝑏 ∈ {1,… , 𝑛𝑧} 

• 
𝜕2𝑙

𝜕𝑟2
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑟2
−
𝜕𝛺

𝜕𝑟
𝛺−1

𝜕𝛺

𝜕𝑟
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑟2
𝑈  

=
66𝑛𝜌2(1−𝜌)(2+11𝜌)

(1+11𝜌)2
−
1

2
∑ ∑ (

𝜕2𝑅−1

𝜕𝑟2
)
𝑖,𝑗
𝑈𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1 ,  

where (
𝜕2𝑅−1

𝜕𝑟2
)
𝑖,𝑗
= (

𝜕2𝑅−1

𝜕𝜌𝜕𝑟
𝜌(1 − 𝜌))

𝑖,𝑗

= {

44𝜌2(1+7𝜌+28𝜌2)

(1−𝜌)(1+11𝜌)3
𝑖𝑓 𝑖 = 𝑗

−𝜌(1−11𝜌+55𝜌2−99𝜌3)

(1−𝜌)(1+11𝜌)3
𝑒𝑙𝑠𝑒

. 

• 
𝜕2𝑙

𝜕𝑟𝜕𝑘
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑟𝜕𝑘
−
𝜕𝛺

𝜕𝑟
𝛺−1

𝜕𝛺

𝜕𝑘
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑟𝜕𝑘
𝑈  

= −
1

2
∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
𝑈𝑖
′𝑉𝑖

𝜕𝐾−1

𝜕𝑘
𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1   
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• 
𝜕2𝑙

𝜕𝑟𝜕𝑧𝑎
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑟𝜕𝑧𝑎
−
𝜕𝛺

𝜕𝑟
𝛺−1

𝜕𝛺

𝜕𝑧𝑎
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑟𝜕𝑧𝑎
𝑈  

= −∑ ∑ (
𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
𝑈𝑖
′𝑉𝑖𝐾

−1𝑣𝑗,𝑎𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧} 

• 
𝜕2𝑙

𝜕𝑘2
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑘2
−
𝜕𝛺

𝜕𝑘
𝛺−1

𝜕𝛺

𝜕𝑘
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑘2
𝑈  

= −6𝑡𝑟 (𝐾−1
𝜕2𝐾

𝜕𝑘2
− 𝐾−1

𝜕𝐾

𝜕𝑘
𝐾−1

𝜕𝐾

𝜕𝑘
) −

1

2
∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑉𝑖
𝜕2𝐾−1

𝜕𝑘2
𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1 ,  

where 
𝜕2𝐾

𝜕𝑘2
=

𝜕2𝐾

 𝜕𝜅2
𝜅2(1 − 𝜅)2 +

𝜕𝐾

𝜕𝑘
(1 − 2𝜅) and 

𝜕2𝐾−1

𝜕𝑘2
= 𝐾−1 (2

𝜕𝐾

𝜕𝑘
𝐾−1

𝜕𝐾

𝜕𝑘
−

𝜕2𝐾

 𝜕𝑘2
)𝐾−1. 

• 
𝜕2𝑙

𝜕𝑘𝜕𝑧𝑎
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑘𝜕𝑧𝑎
−
𝜕𝛺

𝜕𝑘
𝛺−1

𝜕𝛺

𝜕𝑧𝑎
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑘𝜕𝑧𝑎
𝑈  

= −∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖
′𝑉𝑖

𝜕𝐾−1

𝜕𝑘
𝑣𝑗,𝑎𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧} 

• 
𝜕2𝑙

𝜕𝑧𝑎𝜕𝑧𝑏
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑧𝑎𝜕𝑧𝑏
−

𝜕𝛺

𝜕𝑧𝑎
𝛺−1

𝜕𝛺

𝜕𝑧𝑏
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑧𝑎𝜕𝑧𝑏
𝑈  

= −∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖
′𝑉𝑖(𝑣𝑖,𝑎𝐾

−1 + 𝐾−1𝑣𝑗,𝑎)𝑣𝑗,𝑏𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝑧} 

 

The derivatives of the log-likelihood function could, in principle, be used to obtain the maximum 

likelihood estimates. However, it can be easier to obtain maximum likelihood estimates by instead using 

the derivatives of a concentrated log-likelihood function (also called a profile log-likelihood function), 

which is obtained by reducing the number of parameters in the log-likelihood function. One of the 

conditions of the maximum likelihood estimates is 
𝜕𝑙

𝜕𝐵
= 0, which implies that 𝐵 is its GLS estimate 

(𝑋′𝛺−1𝑋)−1𝑋′𝛺−1𝐶. Substituting this GLS estimate of 𝐵 into the log-likelihood function yields a 

concentrated log-likelihood function 𝑙. 

 

The first and second derivatives of the concentrated log-likelihood function are 

• 
𝜕𝑙

𝜕𝑟
=

𝜕𝑙

𝜕𝑟
+𝑈′𝛺−1𝑋

𝜕𝐵

𝜕𝑟
=

𝜕𝑙

𝜕𝑟
+ ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑉𝑖𝐾
−1𝑉𝑗𝑋𝑗

12
𝑗=1

𝜕𝐵

𝜕𝑟
12
𝑖=1 ,  

where 
𝜕𝐵

𝜕𝑟
= (𝑋′𝛺−1𝑋)−1𝑋′

𝜕𝛺−1

𝜕𝑟
𝑈. 

• 
𝜕𝑙

𝜕𝑘
=

𝜕𝑙

𝜕𝑘
+ 𝑈′𝛺−1𝑋

𝜕𝐵

𝜕𝑘
=

𝜕𝑙

𝜕𝑘
+ ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑉𝑖𝐾
−1𝑉𝑗𝑋𝑗

𝜕𝐵

𝜕𝑘
12
𝑗=1

12
𝑖=1 ,  

where 
𝜕𝐵

𝜕𝑘
= (𝑋′𝛺−1𝑋)−1𝑋′

𝜕𝛺−1

𝜕𝑘
𝑈. 

• 
𝜕𝑙

𝜕𝑧𝑎
=

𝜕𝑙

𝜕𝑧𝑎
+ 𝑈′𝛺−1𝑋

𝜕𝐵

𝜕𝑧𝑎
=

𝜕𝑙

𝜕𝑧𝑎
+ ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑉𝑖𝐾
−1𝑉𝑗𝑋𝑗

𝜕𝐵

𝜕𝑧𝑎

12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧},  

where 
𝜕𝐵

𝜕𝑧𝑎
= (𝑋′𝛺−1𝑋)−1𝑋′

𝜕𝛺−1

𝜕𝑧𝑎
𝑈 ∀𝑎 ∈ {1,… , 𝑛𝑧}. 
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• 
𝜕2𝑙

𝜕𝑟2
=

𝜕2𝑙

𝜕𝑟2
+
𝜕𝐵′

𝜕𝑟
𝑋′

𝜕𝛺−1

𝜕𝑟
𝑈 −

𝜕𝐵′

𝜕𝑟
𝑋′𝛺−1𝑋

𝜕𝐵

𝜕𝑟
+
𝜕2𝐵′

𝜕𝑟2
𝑋′𝛺−1𝑈  

=
𝜕2𝑙

𝜕𝑟2
+ ∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗

𝜕𝐵′

𝜕𝑟
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝐵′

𝜕𝑟
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑋𝑗
𝜕𝐵

𝜕𝑟
12
𝑗=1

12
𝑖=1  

+ ∑ ∑ (𝑅−1)𝑖,𝑗
𝜕2𝐵′

𝜕𝑟2
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1 , where 

𝜕2𝐵

𝜕𝑟2
= (𝑋′𝛺−1𝑋)−1𝑋′ (

𝜕2𝛺−1

𝜕𝑟2
𝑈 − 2

𝜕𝛺−1

𝜕𝑟
𝑋
𝜕𝐵

𝜕𝑟
). 

• 
𝜕2𝑙

𝜕𝑟𝜕𝑘
=

𝜕2𝑙

𝜕𝑟𝜕𝑘
+
𝜕𝐵′

𝜕𝑘
𝑋′

𝜕𝛺−1

𝜕𝑟
𝑈 −

𝜕𝐵′

𝜕𝑟
𝑋′𝛺−1𝑋

𝜕𝐵

𝜕𝑘
+

𝜕2𝐵′

𝜕𝑟𝜕𝑘
𝑋′𝛺−1𝑈  

=
𝜕2𝑙

𝜕𝑟𝜕𝑘
+ ∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗

𝜕𝐵′

𝜕𝑘
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1 −∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝐵′

𝜕𝑟
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑋𝑗
𝜕𝐵

𝜕𝑘
12
𝑗=1

12
𝑖=1   

+ ∑ ∑ (𝑅−1)𝑖,𝑗
𝜕2𝐵′

𝜕𝑟𝜕𝑘
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1 ,  

where 
𝜕2𝐵

𝜕𝑟𝜕𝑘
= (𝑋′𝛺−1𝑋)−1𝑋′ (

𝜕2𝛺−1

𝜕𝑟𝜕𝑘
𝑈 −

𝜕𝛺−1

𝜕𝑟
𝑋
𝜕𝐵

𝜕𝑘
−
𝜕𝛺−1

𝜕𝑘
𝑋
𝜕𝐵

𝜕𝑟
). 

• 
𝜕2𝑙

𝜕𝑟𝜕𝑧𝑎
=

𝜕2𝑙

𝜕𝑟𝜕𝑧𝑎
+
𝜕𝐵′

𝜕𝑧𝑎
𝑋′

𝜕𝛺−1

𝜕𝑟
𝑈 −

𝜕𝐵′

𝜕𝑟
𝑋′𝛺−1𝑋

𝜕𝐵

𝜕𝑧𝑎
+

𝜕2𝐵′

𝜕𝑟𝜕𝑧𝑎
𝑋′𝛺−1𝑈  

=
𝜕2𝑙

𝜕𝑟𝜕𝑧𝑎
+ ∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗

𝜕𝐵′

𝜕𝑧𝑎
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝐵′

𝜕𝑟
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑋𝑗
𝜕𝐵

𝜕𝑧𝑎

12
𝑗=1

12
𝑖=1   

+ ∑ ∑ (𝑅−1)𝑖,𝑗
𝜕2𝐵′

𝜕𝑟𝜕𝑧𝑎
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧},  

where 
𝜕2𝐵

𝜕𝑟𝜕𝑧𝑎
= (𝑋′𝛺−1𝑋)−1𝑋′ (

𝜕2𝛺−1

𝜕𝑟𝜕𝑧𝑎
𝑈 −

𝜕𝛺−1

𝜕𝑟
𝑋
𝜕𝐵

𝜕𝑧𝑎
−
𝜕𝛺−1

𝜕𝑧𝑎
𝑋
𝜕𝐵

𝜕𝑟
) ∀𝑎 ∈ {1,… , 𝑛𝑧}. 

• 
𝜕2𝑙

𝜕𝑘2
=

𝜕2𝑙

𝜕𝑘2
+
𝜕𝐵′

𝜕𝑘
𝑋′

𝜕𝛺−1

𝜕𝑘
𝑈 −

𝜕𝐵′

𝜕𝑘
𝑋′𝛺−1𝑋

𝜕𝐵

𝜕𝑘
+
𝜕2𝐵′

𝜕𝑘2
𝑋′𝛺−1𝑈  

=
𝜕2𝑙

𝜕𝑘2
+∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝐵′

𝜕𝑘
𝑋𝑖
′𝑉𝑖

𝜕𝐾−1

𝜕𝑘
𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝐵′

𝜕𝑘
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑋𝑗
𝜕𝐵

𝜕𝑘
12
𝑗=1

12
𝑖=1   

+ ∑ ∑ (𝑅−1)𝑖,𝑗
𝜕2𝐵′

𝜕𝑘2
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1 , where 

𝜕2𝐵

𝜕𝑘2
= (𝑋′𝛺−1𝑋)−1𝑋′ (

𝜕2𝛺−1

𝜕𝑘2
𝑈 − 2

𝜕𝛺−1

𝜕𝑘
𝑋
𝜕𝐵

𝜕𝑘
). 

• 
𝜕2𝑙

𝜕𝑘𝜕𝑧𝑎
=

𝜕2𝑙

𝜕𝑘𝜕𝑧𝑎
+
𝜕𝐵′

𝜕𝑧𝑎
𝑋′

𝜕𝛺−1

𝜕𝑘
𝑈 −

𝜕𝐵′

𝜕𝑘
𝑋′𝛺−1𝑋

𝜕𝐵

𝜕𝑧𝑎
+

𝜕2𝐵′

𝜕𝑘𝜕𝑧𝑎
𝑋′𝛺−1𝑈  

=
𝜕2𝑙

𝜕𝑘𝜕𝑧𝑎
+ ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝐵′

𝜕𝑧𝑎
𝑋𝑖
′𝑉𝑖

𝜕𝐾−1

𝜕𝑘
𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝐵′

𝜕𝑘
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑋𝑗
𝜕𝐵

𝜕𝑧𝑎

12
𝑗=1

12
𝑖=1   

+ ∑ ∑ (𝑅−1)𝑖,𝑗
𝜕2𝐵′

𝜕𝑘𝜕𝑧𝑎
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧},  

where 
𝜕2𝐵

𝜕𝑘𝜕𝑧𝑎
= (𝑋′𝛺−1𝑋)−1𝑋′ (

𝜕2𝛺−1

𝜕𝑘𝜕𝑧𝑎
𝑈 −

𝜕𝛺−1

𝜕𝑘
𝑋
𝜕𝐵

𝜕𝑧𝑎
−
𝜕𝛺−1

𝜕𝑧𝑎
𝑋
𝜕𝐵

𝜕𝑘
) ∀𝑎 ∈ {1,… , 𝑛𝑧}. 

• 
𝜕2𝑙

𝜕𝑧𝑎𝜕𝑧𝑏
=

𝜕2𝑙

𝜕𝑧𝑎𝜕𝑧𝑏
+
𝜕𝐵′

𝜕𝑧𝑏
𝑋′

𝜕𝛺−1

𝜕𝑧𝑎
𝑈 −

𝜕𝐵′

𝜕𝑧𝑎
𝑋′𝛺−1𝑋

𝜕𝐵

𝜕𝑧𝑏
+

𝜕2𝐵′

𝜕𝑧𝑎𝜕𝑧𝑏
𝑋′𝛺−1𝑈  

=
𝜕2𝑙

𝜕𝑧𝑎𝜕𝑧𝑏
+∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝐵′

𝜕𝑧𝑏
𝑋𝑖
′𝑉𝑖(𝑣𝑖,𝑎𝐾

−1 + 𝐾−1𝑣𝑗,𝑎)𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  

− ∑ ∑ (𝑅−1)𝑖,𝑗
𝜕𝐵′

𝜕𝑧𝑎
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑋𝑗
𝜕𝐵

𝜕𝑧𝑏

12
𝑗=1

12
𝑖=1   

+ ∑ ∑ (𝑅−1)𝑖,𝑗
𝜕2𝐵′

𝜕𝑧𝑎𝜕𝑧𝑏
𝑋𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1  ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝑧},  

where 
𝜕2𝐵

𝜕𝑧𝑎𝜕𝑧𝑏
= (𝑋′𝛺−1𝑋)−1𝑋′ (

𝜕2𝛺−1

𝜕𝑧𝑎𝜕𝑧𝑏
𝑈 −

𝜕𝛺−1

𝜕𝑧𝑎
𝑋
𝜕𝐵

𝜕𝑧𝑏
−
𝜕𝛺−1

𝜕𝑧𝑏
𝑋
𝜕𝐵

𝜕𝑧𝑎
) ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝑧}. 

 

These derivatives, combined with the initial guess of (𝑟, 𝑘, 𝑧), are used to iteratively converge to the 

maximum likelihood estimates using the saddle-free Newton’s method. The new value of (𝑟, 𝑘, 𝑧) is 
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(𝑟, 𝑘, 𝑧) + min(1,
−𝑙

𝐽⟦𝐻̃⟧−1𝐽′
) ⟦𝐻̃⟧

−1
𝐽′, where 𝐻̃ = 𝐷̃′𝐽 is the Hessian of the concentrated log-likelihood 

function, 𝐽 = 𝐷̃𝑙 is the Jacobian of the concentrated log-likelihood function, 𝐷̃ = [
𝜕

𝜕𝑟

𝜕

𝜕𝑘

𝜕

𝜕𝑧
], and ⟦ ⟧ is 

the operator that returns the matrix with the same eigen-decomposition, but after taking the absolute 

value of each eigenvalue. The minimum function is used to reduce the step size if the step size is large 

compared to the magnitude of the log-likelihood function; this increases the stability of the iteration 

procedure when the determinant of the Hessian is close to zero. The new value of 𝐵 is then calculated 

using GLS: 𝐵 = (𝑋′𝛺−1𝑋)−1𝑋′𝛺−1𝐶. 100 iterations are performed to achieve adequate convergence to 

the maximum likelihood estimates. 

 

 

Selecting the Temperature Climatology Model 

After the estimation of each model is performed, the model with the lowest AIC is selected. More 

complicated models may be better able to explain observations, but they come at the cost of higher 

complexity and thus an increased risk of overfitting. The AIC is roughly a measure of the information lost 

by the model and balances the increase in the ability of the model to explain observations with the 

number of parameters in the model. The formula for the AIC is 𝐴𝐼𝐶 = 2𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 − 2𝑙, where 

𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝑛𝛽 + 𝑛𝑧 + 2 is the number of model parameters. The BIC is calculated for comparison; it 

is similar to the AIC except 2𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 is replaced with ln(𝑁) 𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. 

𝐴𝐼𝐶 = 2𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 − 2𝑙 = 2(𝑛𝐵 + 𝑛𝑧 + 2) + 𝑁 ln(2𝜋) − 2∑ ln(|𝑉𝑖|)
12
𝑖=1   

+ 12 ln(|𝐾|) + 𝑛 ln((1 − 𝜌)11(1 + 11𝜌)) + ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖
′𝑉𝑖𝐾

−1𝑉𝑗𝑈𝑗
12
𝑗=1

12
𝑖=1   

 

 

Parameter Uncertainty of the Temperature Climatology Model 

The maximum likelihood estimate of (𝐵, 𝑟, 𝑘, 𝑧) is asymptotically multivariate normal with covariance 

matrix (–𝐻)−1, where 𝐻 = 𝐷′𝐽 is the Hessian of the log-likelihood function, 𝐽 = 𝐷𝑙 is the Jacobian of 

the log-likelihood function, and 𝐷 = [
𝜕

𝜕𝐵

𝜕

𝜕𝑟

𝜕

𝜕𝑘

𝜕

𝜕𝑧
]. Since 𝐻 is symmetric, the covariance matrix has 

eigen-decomposition 𝛷𝛥𝛷−1 = 𝛷𝛥𝛷′, where 𝛷 is a matrix of eigenvectors and 𝛥 is a diagonal matrix of 

eigenvalues. Thus (–𝐻)−1 = 𝛷 (– 𝛥)−1𝛷′ = 𝛷 (−𝛥)−0.5(𝛷 (−𝛥)−0.5)′. This multivariate normal 

approximation is used to quantify the uncertainty of the maximum likelihood estimates. For the selected 

temperature climatology model, 200 vectors of random numbers of length 𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 are generated 

from independent standard normal probability distributions. For each of these 200 vectors,  𝛷(−𝛥)−0.5 

is multiplied by the random vector to obtain an ensemble member of the parameters (𝐵, 𝑟, 𝑘, 𝑧) of the 

temperature climatology model. 
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Estimating Residuals of the Temperature Climatology Model 

Since some combinations of grid cells and calendar months are unobserved, their residuals must be 

estimated. The simple kriging estimate of the unobserved climatology residuals 𝑈̌ is 𝜁′𝛬𝜂𝛺−1𝑈. 

Conditional on the estimate of the model parameters, the kriging estimate is the most-efficient linear 

unbiased estimate as well as the maximum likelihood estimate of the unobserved climatology residuals. 

𝜁′𝛬𝜂𝛺−1𝑈 = [

∑ ∑ 𝑅1,𝑖𝜁
′𝑉̃1
−1𝐾̃𝑉̃𝑖

−1𝜂̃(𝑅−1)𝑖,𝑗𝑉𝑖𝐾
−1𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1

⋮
∑ ∑ 𝑅12,𝑖𝜁

′𝑉̃12
−1𝐾̃𝑉̃𝑖

−1𝜂̃(𝑅−1)𝑖,𝑗𝑉𝑖𝐾
−1𝑉𝑗𝑈𝑗

12
𝑗=1

12
𝑖=1

]  

= [

∑ 𝜁′𝑉̃1
−1𝐾̃𝜂̃𝐾−1𝑉𝑗𝑈𝑗 ∑ 𝑅1,𝑖(𝑅

−1)𝑖,𝑗
12
𝑖=1

12
𝑗=1

⋮
∑ 𝜁′𝑉̃12

−1𝐾̃𝜂̃𝐾−1𝑉𝑗𝑈𝑗 ∑ 𝑅12,𝑖(𝑅
−1)𝑖,𝑗

12
𝑖=1

12
𝑗=1

]. But ∑ 𝑅𝑎,𝑖(𝑅
−1)𝑖,𝑗

12
𝑖=1 = 𝛿𝑎,𝑗 ∀𝑎 ∈ {1,… ,12} since 𝑅 and 

𝑅−1 are inverses of each other. Thus, the simple kriging estimate is 𝜁′𝛬𝜂𝛺−1𝑈 = [
𝜁′𝑉̃1

−1𝐾̃𝜂̃𝐾−1𝑉1𝑈1
⋮

𝜁′𝑉̃12
−1𝐾̃𝜂̃𝐾−1𝑉12𝑈12

]. 

 

 

Infilling Uncertainty of the Temperature Climatology Model 

The covariance matrix of 𝜁′𝛬𝜂𝛺−1𝑈 is 𝜁′𝛬𝜁 − 𝜁′𝛬𝜂𝛺−1𝜂′𝛬𝜁. To account for uncertainties in the simple 

kriging estimate of 𝑈̌, the 200 ensemble members of parameters are used to obtain 200 ensemble 

members of 𝑈̌. For each ensemble member of 𝑈, a vector 𝜀 = [

𝜀1
⋮
𝜀12
], is generated from an independent 

standard normal probability distribution, where 𝜀𝑖 ∈ ℝ
𝐺−𝑛 ∀𝑖 ∈ {1,… ,12}. 

 

For each ensemble member of 𝑈, an ensemble member of 𝑈̌ can be generated as 𝜁′𝛬𝜂𝛺−1𝑈 +

𝑐(𝜁′𝛬𝜁 − 𝜁′𝛬𝜂𝛺−1𝜂′𝛬𝜁)𝜀. Note that 𝜁′𝛬𝜁 − 𝜁′𝛬𝜂𝛺−1𝜂′𝛬𝜁 = 𝜏 = [

𝜏1,1 ⋯ 𝜏1,12
⋮ ⋱ ⋮

𝜏12,1 ⋯ 𝜏12,12
], where  

𝜏𝑖,𝑗 = 𝑅𝑖,𝑗𝜁
′𝑉̃𝑖
−1𝐾̃𝑉̃𝑗

−1𝜁 − ∑ ∑ (𝑅𝑖,𝑎𝜁
′𝑉̃𝑖
−1𝐾̃𝑉̃𝑎

−1𝜂̃)((𝑅−1)𝑎,𝑏𝑉𝑎𝐾
−1𝑉𝑏)(𝑅𝑏,𝑗𝜂̃

′𝑉̃𝑏
−1𝐾̃𝑉̃𝑗

−1𝜁)12
𝑏=1

12
𝑎=1   

= 𝑅𝑖,𝑗𝜁
′𝑉̃𝑖
−1𝐾̃𝑉̃𝑗

−1𝜁 − 𝜁′𝑉̃𝑖
−1𝐾̃𝜂̃𝐾−1𝜂̃′𝐾̃𝑉̃𝑗

−1𝜁 ∑ ∑ 𝑅𝑖,𝑎(𝑅
−1)𝑎,𝑏𝑅𝑏,𝑗

12
𝑏=1

12
𝑎=1   

= 𝑅𝑖,𝑗𝜁
′𝑉̃𝑖
−1(𝐾̃ − 𝐾̃𝜂̃𝐾−1𝜂̃′𝐾̃)𝑉̃𝑗

−1𝜁 ∀𝑖, 𝑗 ∈ {1,… ,12}. 
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To reduce computational rounding error, 𝑐(𝜏) is calculated as 

[
 
 
 
 
𝑐(𝜏1,1) 𝟘𝐺−𝑛,𝐺−𝑛 ⋯ 𝟘𝐺−𝑛,𝐺−𝑛
𝟘𝐺−𝑛,𝐺−𝑛 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 𝟘𝐺−𝑛,𝐺−𝑛

𝟘𝐺−𝑛,𝐺−𝑛 ⋯ 𝟘𝐺−𝑛,𝐺−𝑛 𝑐(𝜏12,12)]
 
 
 
 

[
 
 
 
𝛹1,1 𝟘𝐺−𝑛,𝐺−𝑛 ⋯ 𝟘𝐺−𝑛,𝐺−𝑛
⋮ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝟘𝐺−𝑛,𝐺−𝑛

𝛹12,1 ⋯ ⋯ 𝛹12,12 ]
 
 
 
. 

⇒ 𝛹 can be calculated iteratively using 𝛹𝑖,𝑖 = 𝑐(𝐼𝐺−𝑛 − ∑ 𝛹𝑖,𝑗𝛹𝑖,𝑗
′𝑖−1

𝑗=1 ) ∀𝑖 ∈ {1,… ,12} and  

𝛹𝑖,𝑗 = ((𝑐(𝜏𝑖,𝑖))
−1
𝜏𝑖,𝑗 (𝑐

′(𝜏𝑗,𝑗))
−1
−∑ 𝛹𝑖,𝑎𝛹𝑗,𝑎

′𝑗−1
𝑎=1 )𝛹𝑗,𝑗

′ −1 ∀𝑖 ∈ {1,… ,12} ∀𝑗 ∈ {1,… , 𝑖 − 1}. 

 

After 𝑐(𝜏) is calculated, 𝛾 = [

𝛾1
⋮
𝛾12
] = 𝑐(𝜏)𝜀 is calculated using 𝛾𝑖 = 𝑐(𝜏𝑖,𝑖)(∑ 𝛹𝑖,𝑗𝜀𝑗

𝑖
𝑗=1 ) ∀𝑖 ∈ {1,… ,12}. 

The ensemble member of 𝑈̌ is then calculated as 𝜁′𝛬𝜂𝛺−1𝑈 + 𝛾. 

 

These 200 ensemble members of climatology residuals are combined with the 200 ensemble members 

of the temperature climatology function to produce 200 ensemble members of temperature 

climatologies. 

 

 

Obtaining Patterns of Internal Variability 

Let 𝐺 = 36 ∙ 72 be the number of grid cells, 𝑡 = 1 correspond to January 800, and 𝑀 = 6012 be the 

number months used from the pre-industrial control scenario of the CCSM4 model. ∀𝑗 ∈ {1,… ,
𝑀

12
} let 

𝛥𝑇̅̅̅̅ 𝑥,𝑗 be the weighted average of (𝛥𝑇̃𝑥,12𝑗−11, … , 𝛥𝑇̃𝑥,12𝑗), where each month is weighted by its 

number of days. February is given a weight of 28 days for all years since CCSM4 does not contain leap 

years. To calculate EOFs of these sea ice detrended annual average temperature anomalies, the 

weighted observation matrix 𝑂 = [

𝐴𝑟𝑒𝑎𝑥1
0.5𝛥𝑇̅̅̅̅ 𝑥1,1 ⋯ 𝐴𝑟𝑒𝑎𝑥𝐺

0.5𝛥𝑇̅̅̅̅ 𝑥𝐺,1
⋮ ⋱ ⋮

𝐴𝑟𝑒𝑎𝑥1
0.5𝛥𝑇̅̅̅̅

𝑥1,
𝑀

12

⋯ 𝐴𝑟𝑒𝑎𝑥𝐺
0.5𝛥𝑇̅̅̅̅

𝑥𝐺,
𝑀

12

] is calculated, where 𝐴𝑟𝑒𝑎𝑥⃑ is 

the proportion of the Earth’s surface covered by grid cell 𝑥⃑. Observations are weighted by the square 

roots of the surface areas of their grid cells because this is standard practice and prevents the smaller 

grid cells near the poles from having disproportionate weight. Since ∑ 𝛥𝑇̅̅̅̅ 𝑥,𝑗
𝑀 12⁄
𝑗=1 = 0 for all grid cells 𝑥⃑, 

the EOFs can be calculated as the eigenvectors of the uncorrected sample covariance matrix, 
12

𝑀
𝑂′𝑂. The 

EOFs are ranked in descending order by eigenvalue to find the EOFs that contribute the most to 

explaining the area-weighted variance of 𝛥𝑇̅̅̅̅ . In addition, the EOFs are normalized to have maximum 

values of 1. The EOF that explains the most variance is used as the IVP to represent ENSO. 
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Temperature Anomaly Model 

Functional Forms of the Temperature Anomaly Model 

Definitions of the models of the amplification function are given by Table S4. Definitions of the models 

of the covariance function of the weather residuals are given by Table S5. In Table S4, the convention 

𝑚 = 1 corresponds to January, and the normalization operators 〈 〉𝑚 and 〈 〉 are used. 〈 〉𝑚 is the 

operator that returns the function minus its weighted mean, where grid subcells are weighted by their 

surface area for calendar month 𝑚. 〈 〉 is the operator that returns the function minus its weighted mean, 

where grid cells are weighted by their surface area. These normalization operators ensure that the 

amplification function averages to one when integrated over the surface of the Earth for each calendar 

month. If the amplification function were normalized to a different non-zero real number, then this 

would not affect the final temperature estimates since the change in the definition of 𝐴 would be offset 

by a change in the estimates of 𝜃. However, having the amplification function be normalized to one 

allows for a more intuitive interpretation of results. 

 

Model 𝑭𝒙⃑⃑⃑,𝒔,𝒎 𝒇 

1 0 

2 〈𝑠〉𝑚𝑓𝑚 

3 𝛼1,𝑥𝑓𝑚 + 𝛼2,𝑥𝑓12+𝑚 

4 𝛼1,𝑥𝑓𝑚 + 𝛼2,𝑥𝑓12+𝑚 + 〈𝑠〉𝑚𝑓24+𝑚 + 〈𝑠 ∙ 𝛼1,𝑥⃑〉𝑚𝑓36+𝑚 + 〈𝑠 ∙ 𝛼2,𝑥⃑〉𝑚𝑓48+𝑚 

Table S4: The different models of the amplification function. 𝛼1,𝑥 = 𝜑𝑥
3 − 3

𝜋2

4
𝜑𝑥 and 𝛼2,𝑥 = 〈𝜑𝑥

4 −
𝜋2

2
𝜑𝑥
2〉,  

where 𝜑𝑥 is the latitude of 𝑥⃑ in radians. These models were used to estimate temperature anomalies. 

 

Model 𝒗𝒙⃑⃑⃑,𝒔,𝒎𝒛 

1 𝑧1 

2 𝑧1 + 𝑠 ∙ 𝑧2 
Table S5: The different models of the covariance function of weather residuals. These models were used to 

estimate temperature anomalies. 

 

 

Notation for the Temperature Anomaly Model 

For convenience, the following notation is used:  

- ′ is the transpose operator   - ∘ is the Hadamard product 
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- ⨂ is the Kronecker product   - 𝐼𝑎 is the identity matrix of size 𝑎 × 𝑎 

- 𝟘𝑎,𝑏 is the zeros matrix of size 𝑎 × 𝑏  - 𝟙𝑎,𝑏 is the ones matrix of size 𝑎 × 𝑏 

- 𝑡𝑟 is the trace operator   - 𝑣𝑒𝑐 is the vectorization operator  

- 𝑠𝑢𝑚 is the operator that returns the sum of the elements of a matrix 

- 𝑐 is the operator that returns the lower triangular Cholesky matrix 

- 𝑐′ is the operator that returns the upper triangular Cholesky matrix 

- 𝜆 is the standard logistic function  - 𝐺 = 36 ∙ 72 is the number of grid cells 

- 𝑀 is the number of months in the temperature anomaly dataset 

- The convention 𝑡 = 1 corresponds to January 1850 is used 

 

Let {(𝑥⃑1, 𝑠1), … , (𝑥⃑2𝐺 , 𝑠2𝐺)} be an ordering of the set of all grid subcells. Let 𝑔 = [
𝑘
𝑧
], 𝜌 = 𝜆(𝑟),  

𝜅1 = 𝜆(𝑘1), 𝜅2 = 𝜆(𝑘2), 𝑅 = [
𝜌|1−1| ⋯ 𝜌|1−𝑀|

⋮ ⋱ ⋮
𝜌|𝑀−1| ⋯ 𝜌|𝑀−𝑀|

], and 𝐾̃ be the 2𝐺 × 2𝐺 matrix with entries  

𝐾̃𝑖,𝑗 = 𝜅1
‖𝑥⃑𝑖−𝑥⃑𝑗‖𝜅2

|𝑠𝑖−𝑠𝑗| ∀𝑖, 𝑗 ∈ {1,… ,2𝐺}. To account for missing observations, ∀𝑡 ∈ {1,… ,𝑀} let 𝑛𝑡 be 

the number of observed grid subcells for month 𝑡, 𝑁 = ∑ 𝑛𝑡
𝑀
𝑡=1  be the number of temperature anomaly 

observations, and define 𝜂𝑡 as the 2𝐺 × 𝑛𝑡 restriction matrix constructed by starting with 𝐼2𝐺 and then 

∀𝑖 ∈ {1,… ,2𝐺} removing the 𝑖th column from 𝐼2𝐺 if (𝑥⃑𝑖, 𝑠𝑖) is unobserved for month 𝑡. 

 

∀𝑖, 𝑗 ∈ {1,… ,𝑀} let 𝐾𝑖,𝑗 = 𝜂𝑖
′𝐾̃𝜂𝑗, 𝑊𝑖 = [

𝑊𝑥1,𝑠1,𝑖

⋮
𝑊𝑥2𝐺,𝑠2𝐺 ,𝑖

], 𝐸𝑖 = 𝜂𝑖
′ [

𝐸𝑥1,𝑠1,𝑖
⋮

𝐸𝑥2𝐺,𝑠2𝐺,𝑖

], 𝑈𝑖 = 𝜂𝑖
′𝑊𝑖 + 𝐸𝑖,  

𝛬𝑖,𝑗 = 𝑐𝑜𝑣(𝑊𝑖, 𝑊𝑗), 𝛤𝑖,𝑗 = 𝑐𝑜𝑣(𝐸𝑖 , 𝐸𝑗), 𝛺𝑖,𝑗 = 𝑐𝑜𝑣(𝑈𝑖 , 𝑈𝑗) = 𝜂𝑖
′𝛬𝑖,𝑗𝜂𝑗 + 𝛤𝑖,𝑗, 𝑆𝑖,𝑗 =

𝛺𝑖,𝑗

𝑅𝑖,𝑗
,  

𝑌𝑖 = 𝜂𝑖
′ [

𝑌𝑥1,𝑠1,𝑖
⋮

𝑌𝑥2𝐺,𝑠2𝐺,𝑖

], 𝑄𝑖 = 𝜂𝑖
′ [

𝑄𝑥1
⋮

𝑄𝑥2𝐺

], 𝐹𝑖 = 𝜂𝑖
′ [

𝐹𝑥1,𝑠1,𝑚𝑖

⋮
𝐹𝑥2𝐺,𝑠2𝐺,𝑚𝑖

], 𝐹𝑖,𝑎 be the 𝑎th column of 𝐹𝑖 ∀𝑎 ∈ {1,… , 𝑛𝑓}, 

𝐴𝑖 = 𝟙𝑛𝑖,1 + 𝐹𝑖𝑓, 𝑃𝑖 = [𝐴𝑖 𝑄𝑖], 𝑣𝑖,𝑎 = 𝜂𝑖
′

[
 
 
 
 
 (
1

2
𝑣𝑥1,𝑠1,𝑚𝑖

)
𝑎

0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

0 ⋯ 0 (
1

2
𝑣𝑥2𝐺,𝑠2𝐺,𝑚𝑖

)
𝑎]
 
 
 
 
 

𝜂𝑖 ∀𝑎 ∈ {1,… , 𝑛𝑧},  

𝑉̃𝑖 =

[
 
 
 
 exp (

1

2
𝑣𝑥1,𝑠1,𝑚𝑖

𝑧) 0 ⋯ 0

0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

0 ⋯ 0 exp (
1

2
𝑣𝑥2𝐺,𝑠2𝐺,𝑚𝑖

𝑧)]
 
 
 
 

, 𝑝𝑖 = [
𝜃𝑖
𝑞𝑖
], 𝑉𝑖 = 𝜂𝑖

′𝑉̃𝑖𝜂𝑖, and 𝑍𝑖 = 𝑉𝑖
−1𝐾𝑖𝑉𝑖

−1. 
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In addition, let 𝜂 =

[
 
 
 
 
𝜂1 𝟘2𝐺,𝑛1 ⋯ 𝟘2𝐺,𝑛1

𝟘2𝐺,𝑛2 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 𝟘2𝐺,𝑛𝑀−1
𝟘2𝐺,𝑛𝑀 ⋯ 𝟘2𝐺,𝑛𝑀 𝜂𝑀 ]

 
 
 
 

, 𝑊 = [
𝑊1
⋮
𝑊𝑀

], 𝐸 = [
𝐸1
⋮
𝐸𝑀

], 𝑈 = [
𝑈1
⋮
𝑈𝑀

],  

𝛬 = [

𝛬1,1 ⋯ 𝛬1,𝑀
⋮ ⋱ ⋮

𝛬𝑀,1 ⋯ 𝛬𝑀,𝑀

], 𝛤 = [

𝛤1,1 ⋯ 𝛤1,𝑀
⋮ ⋱ ⋮
𝛤𝑀,1 ⋯ 𝛤𝑀,𝑀

], 𝛺 = 𝜂′𝛬𝜂 + 𝛤, 𝑌 = [
𝑌1
⋮
𝑌𝑀

],  

𝑃 =

[
 
 
 
 

𝑃1 𝟘𝑛1,𝑛𝑞+1 ⋯ 𝟘𝑛1,𝑛𝑞+1

𝟘𝑛2,𝑛𝑞+1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 𝟘𝑛𝑀−1,𝑛𝑞+1

𝟘𝑛𝑀,𝑛𝑞+1 ⋯ 𝟘𝑛𝑀,𝑛𝑞+1 𝑃𝑀 ]
 
 
 
 

, 𝑉̃ =

[
 
 
 
 
𝑉̃1 𝟘2𝐺,2𝐺 ⋯ 𝟘2𝐺,2𝐺

𝟘2𝐺,2𝐺 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 𝟘2𝐺,2𝐺

𝟘2𝐺,2𝐺 ⋯ 𝟘2𝐺,2𝐺 𝑉̃𝑀 ]
 
 
 
 

,  

𝑞 = [

𝑞1
⋮
𝑞𝑀
], 𝑝 = [

𝑝1
⋮
𝑝𝑀
], and 𝑉 = 𝜂′𝑉̃𝜂. For convenience, ∀𝑖 ∈ {1,… ,𝑀} let 𝐾𝑖 = 𝐾𝑖,𝑖, 𝛬𝑖 = 𝛬𝑖,𝑖, 𝛤𝑖 = 𝛤𝑖,𝑖, 

𝛺𝑖 = 𝛺𝑖,𝑖, and 𝑆𝑖 = 𝑆𝑖,𝑖. 

 

As the bias uncertainties have a complicated covariance structure, do not have a multivariate normal 

distribution, and have significant temporal correlation, only measurement and sampling uncertainties 

are taken into account in 𝐸. Instead, bias uncertainties are taken into account later on in the estimation 

of total uncertainty. Since the measurement and sampling uncertainties of HadCRUT4 and HadSST4 

neglect temporal correlations between months, 𝛤 is a block diagonal matrix. 

 

 

Approximating the Log-Likelihood of the Temperature Anomaly Model 

The log-likelihood of the temperature anomaly model is 𝑙 = −
𝑁

2
ln(2𝜋) −

1

2
ln|𝛺| −

1

2
𝑈′𝛺−1𝑈. 𝛺 is a 

matrix with more than 10 trillion numbers and, as a result, would take up more than 80 TB of memory. 

Given current personal computer technology, it is not feasible to compute, store, or perform 

computations with such a large matrix, so 𝛺 needs to be approximated and broken down into smaller 

matrices. 

 

The second order Taylor approximation of |𝛺| around 𝜌 = 0 is |𝛺||
𝜌=0

+
𝜕|𝛺|

𝜕𝜌
|
𝜌=0

𝜌 +
𝜕2|𝛺|

𝜕𝜌2
|
𝜌=0

𝜌2

2
 

= |𝛺||
𝜌=0

+ |𝛺|𝑡𝑟 (𝛺−1
𝜕𝛺

𝜕𝜌
)|
𝜌=0

𝜌 + (|𝛺|𝑡𝑟2 (𝛺−1
𝜕𝛺

𝜕𝜌
) + |𝛺|𝑡𝑟 (𝛺−1

𝜕2𝛺

𝜕𝜌2
− 𝛺−1

𝜕𝛺

𝜕𝜌
𝛺−1

𝜕𝛺

𝜕𝜌
))|

𝜌=0

𝜌2

2
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= |𝛺||
𝜌=0

(1 −
𝜌2

2
𝑡𝑟 (𝛺−1

𝜕𝛺

𝜕𝜌
𝛺−1

𝜕𝛺

𝜕𝜌
))|

𝜌=0

= (∏ |𝑆𝑖|
𝑀
𝑖=1 ) (1 −

𝜌2

2
∑ ∑ 𝑡𝑟(𝑆𝑖

−1𝑆𝑖,𝑗𝑆𝑗
−1𝑆𝑗,𝑖)

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 )  

= (∏ |𝑆𝑖|
𝑀
𝑖=1 ) (1 −

𝜌2

2
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘ 𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 ), where 𝑆𝑖,𝑗

∗ = 𝑆𝑖
−1𝑆𝑖,𝑗𝑆𝑗

−1 ∀𝑖, 𝑗 ∈ {1,… ,𝑀}. 

 

In the special case where 𝜂𝑖 = 𝜂𝑖+1 ∀𝑖 ∈ {1,… ,𝑀 − 1} and 𝐸𝑖 = 𝟘𝑛𝑖,1 ∀𝑖 ∈ {1,… ,𝑀}, one can calculate 

|𝛺| exactly since, in this case, 𝛺 = [
𝑅1,1𝑉1

−1𝐾1,1𝑉1
−1 ⋯ 𝑅1,𝑀𝑉1

−1𝐾1,𝑀𝑉𝑀
−1

⋮ ⋱ ⋮
𝑅𝑀,1𝑉𝑀

−1𝐾𝑀,1𝑉1
−1 ⋯ 𝑅𝑀,𝑀𝑉𝑀

−1𝐾𝑀,𝑀𝑉𝑀
−1
] = 𝑉−1(𝑅⨂𝐾1)𝑉

−1. 

Thus |𝛺| = |𝑉−1(𝑅⨂𝐾1)𝑉
−1| = |𝑉−1||𝑅|𝑛1|𝐾1|

𝑀|𝑉−1|. 

But 𝑅 is the Kac-Murdock-Szegö matrix, which has determinant |𝑅| = (1 − 𝜌2)𝑀−1. 

⇒ |𝛺| = |𝑉−1|(1 − 𝜌2)𝑛1(𝑀−1)|𝐾1|
𝑀|𝑉−1| 

But 𝑛1(𝑀 − 1) =
1

2
∑ ∑ 𝑛𝑖

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 =

1

2
∑ ∑ 𝑡𝑟(𝐼𝑛𝑖)

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

=
1

2
∑ ∑ 𝑡𝑟(𝑆𝑖

−1𝑆𝑖,𝑗𝑆𝑗
−1𝑆𝑗,𝑖)

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 =

1

2
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘ 𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  and  

|𝑉−1||𝐾1|
𝑀|𝑉−1| = (∏ |𝑉𝑖

−1|𝑀
𝑖=1 )(∏ |𝐾𝑖|

𝑀
𝑖=1 )(∏ |𝑉𝑖

−1|𝑀
𝑖=1 ) = (∏ |𝑆𝑖|

𝑀
𝑖=1 ). 

Thus |𝛺| = (∏ |𝑆𝑖|
𝑀
𝑖=1 )(1 − 𝜌2)

1

2
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1

. 

 

But 
𝜕

𝜕𝜌
(1 − 𝜌2)𝑛1(𝑀−1)|

𝜌=0
= 𝑛1(𝑀 − 1)(1 − 𝜌2)𝑛1(𝑀−1)−1(−2𝜌)|

𝜌=0
= 0 and  

𝜕2

𝜕𝜌2
(1 − 𝜌2)𝑛1(𝑀−1)|

𝜌=0
=
4𝜌2𝑛1(𝑀 − 1)(𝑛1(𝑀 − 1) − 1)(1 − 𝜌2)𝑛1(𝑀−1)−2

− 2𝑛1(𝑀 − 1)(1 − 𝜌2)𝑛1(𝑀−1)−1|
|
𝜌=0

= − 2𝑛1(𝑀 − 1). 

Thus, the second order Taylor approximation of the above formula for |𝛺| around 𝜌 = 0 in the special 

case where 𝐸𝑖 = 𝟘𝑛𝑖,1 ∀𝑖 ∈ {1,… ,12} is |𝛺||
𝜌=0

+
𝜕|𝛺|

𝜕𝜌
|
𝜌=0

𝜌 +
𝜕2|𝛺|

𝜕𝜌2
|
𝜌=0

𝜌2

2
=  

∏ |𝑆𝑖|
12
𝑖=1 (1 − 𝜌2𝑛1(𝑀 − 1)) = ∏ |𝑆𝑖|

12
𝑖=1 (1 −

𝜌2

2
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘ 𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 ), which is the same as 

the second order Taylor approximation of |𝛺| around 𝜌 = 0 in the general case. 

 

Since the above formula for |𝛺| in the special case has the same second order Taylor approximation 

around 𝜌 = 0 as |𝛺| does in the general case, it is used as the approximation of |𝛺|. 

⇒ ln(|𝛺|) ≈ ∑ ln(|𝑆𝑖|)
𝑀
𝑖=1 +

1

2
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘ 𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 ln(1 − 𝜌2)  
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The first order Taylor approximation of 𝛺−1 around 𝜌 = 0 is  

𝛺−1|𝜌=0 +
𝜕𝛺−1

𝜕𝜌
|
𝜌=0

𝜌 = 𝛺−1|𝜌=0 − 𝛺
−1 𝜕𝛺

𝜕𝜌
𝛺−1|

𝜌=0
𝜌 =  

[
 
 
 
 
 

𝑆1,1
−1 −𝜌𝑆1,1

−1𝑆1,2𝑆2,2
−1 𝟘𝑛1,𝑛3 ⋯ 𝟘𝑛1,𝑛𝑀

−𝜌𝑆2,2
−1𝑆2,1𝑆1,1

−1 ⋱ ⋱ ⋱ ⋮

𝟘𝑛3,𝑛1 ⋱ ⋱ ⋱ 𝟘𝑛𝑀−2,𝑛𝑀
⋮ ⋱ ⋱ ⋱ −𝜌𝑆𝑀−1,𝑀−1

−1 𝑆𝑀−1,𝑀𝑆𝑀,𝑀
−1

𝟘𝑛𝑀,𝑛1 ⋯ 𝟘𝑛𝑀,𝑛𝑀−2 −𝜌𝑆𝑀,𝑀
−1 𝑆𝑀,𝑀−1𝑆𝑀−1,𝑀−1

−1 𝑆𝑀,𝑀
−1

]
 
 
 
 
 

. 

 

In the special case where 𝜂𝑖 = 𝜂𝑖+1 ∀𝑖 ∈ {1,… ,𝑀 − 1} and 𝐸𝑖 = 𝟘𝑛𝑖,1 ∀𝑖 ∈ {1,… ,𝑀}, one can calculate 

𝛺−1 exactly since, in this case, 𝛺−1 = (𝑉−1(𝑅⨂𝐾1)𝑉
−1)−1 = 𝑉(𝑅−1⨂𝐾1

−1)𝑉. But 𝑅 is the Kac-

Murdock-Szegö matrix, which has inverse 𝑅−1 =
1

1−𝜌2

[
 
 
 
 
1 −𝜌 0 ⋯ 0

−𝜌 1 + 𝜌2 ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 1 + 𝜌2 −𝜌
0 ⋯ 0 −𝜌 1 ]

 
 
 
 

. 

⇒ 𝛺−1 =
1

1−𝜌2

[
 
 
 
 
 
𝑉1𝐾1

−1𝑉1 −𝜌𝑉1𝐾1
−1𝑉2 𝟘𝑛1,𝑛1 ⋯ 𝟘𝑛1,𝑛1

−𝜌𝑉2𝐾1
−1𝑉1 (1 + 𝜌2)𝑉2𝐾1

−1𝑉2 ⋱ ⋱ ⋮
𝟘𝑛1,𝑛1 ⋱ ⋱ ⋱ 𝟘𝑛1,𝑛1
⋮ ⋱ ⋱ (1 + 𝜌2)𝑉𝑀−1𝐾1

−1𝑉𝑀−1 −𝜌𝑉𝑀−1𝐾1
−1𝑉𝑀

𝟘𝑛1,𝑛1 ⋯ 𝟘𝑛1,𝑛1 −𝜌𝑉𝑀𝐾1
−1𝑉𝑀−1 𝑉𝑀𝐾1

−1𝑉𝑀 ]
 
 
 
 
 

  

=
1

1−𝜌2

[
 
 
 
 
 
𝑆1,1
−1 −𝜌𝑆1,2

∗ 𝟘𝑛1,𝑛3 ⋯ 𝟘𝑛1,𝑛𝑀
−𝜌𝑆2,1

∗ (1 + 𝜌2)𝑆2,2
−1 ⋱ ⋱ ⋮

𝟘𝑛3,𝑛1 ⋱ ⋱ ⋱ 𝟘𝑛𝑀−2,𝑛𝑀
⋮ ⋱ ⋱ (1 + 𝜌2)𝑆𝑀−1.𝑀−1

−1 −𝜌𝑆𝑀−1,𝑀
∗

𝟘𝑛𝑀,𝑛1 ⋯ 𝟘𝑛𝑀,𝑛𝑀−2 −𝜌𝑆𝑀,𝑀−1
∗ 𝑆𝑀,𝑀

−1
]
 
 
 
 
 

. 

 

But 
𝜕

𝜕𝜌

1

1−𝜌2
|
𝜌=0

=
2𝜌

(1−𝜌2)2
|
𝜌=0

= 0, 
𝜕

𝜕𝜌

1+𝜌2

1−𝜌2
|
𝜌=0

=
4𝜌

(1−𝜌2)2
|
𝜌=0

= 0, and  

𝜕2

𝜕𝜌2
−𝜌

1−𝜌2
|
𝜌=0

= −
1+𝜌2

(1−𝜌2)2
|
𝜌=0

= −1. Thus, the first order Taylor approximation of the above formula for 

𝛺−1 around 𝜌 = 0 in the special case where 𝐸𝑖 = 𝟘𝑛,1 ∀𝑖 ∈ {1,… ,12} is 𝛺−1|𝜌=0 +
𝜕𝛺−1

𝜕𝜌
|
𝜌=0

𝜌  

=

[
 
 
 
 
 
𝑆1,1
−1 −𝜌𝑆1,2

∗ 𝟘𝑛1,𝑛3 ⋯ 𝟘𝑛1,𝑛𝑀
−𝜌𝑆2,1

∗ ⋱ ⋱ ⋱ ⋮

𝟘𝑛3,𝑛1 ⋱ ⋱ ⋱ 𝟘𝑛𝑀−2,𝑛𝑀
⋮ ⋱ ⋱ ⋱ −𝜌𝑆𝑀−1,𝑀

∗

𝟘𝑛𝑀,𝑛1 ⋯ 𝟘𝑛𝑀,𝑛𝑀−2 −𝜌𝑆𝑀,𝑀−1
∗ 𝑆𝑀,𝑀

−1
]
 
 
 
 
 

, which is the same as the first order Taylor 

approximation of 𝛺−1 around 𝜌 = 0 in the general case. 
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Since the above formula for 𝛺−1 in the special case has the same first order Taylor approximation 

around 𝜌 = 0 as 𝛺−1 does in the general case, it is used as the approximation of 𝛺−1. For convenience, 

let 𝛺∗ correspond to this approximation of 𝛺−1. 

⇒ 𝑈′𝛺−1𝑈 ≈ ∑ (𝑅−1)𝑖,𝑖𝑈𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 +∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 ,  

where (𝑅−1)𝑖,𝑗 =

{
 
 

 
 

1

1−𝜌2
𝑖𝑓 𝑖 = 𝑗 ∈ {1,𝑀}

1+𝜌2

1−𝜌2
𝑖 = 𝑗 ∈ {2,… ,𝑀 − 1}

−𝜌

1−𝜌2
|𝑖 − 𝑗| = 1

0 𝑒𝑙𝑠𝑒

. 

 

⇒ 𝑙 = −
𝑁

2
ln(2𝜋) −

1

2
ln|𝛺| −

1

2
𝑈′𝛺−1𝑈 ≈ −

𝑁

2
ln(2𝜋) −

1

2
∑ ln|𝑆𝑖|
𝑀
𝑖=1  

− 
ln(1−𝜌2)

4
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘ 𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 −

1

2
∑ (𝑅−1)𝑖,𝑖𝑈𝑖

′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 −

1

2
∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

 

 

Initial Guess of the Temperature Anomaly Model 

To create an initial guess of (𝑓, 𝑟, 𝑔, 𝑝), the following method is used: 

• 𝑓 is initially estimated as a zero vector. 

• 𝑝 is initially estimated using OLS regression: 𝑌𝑥,𝑠,𝑡 = 𝜃𝑡 +𝑄𝑥𝑞𝑡 + 𝑈𝑥,𝑠,𝑡. 

• The residuals 𝑈 of the OLS regression are obtained. 

• 𝑧2, … , 𝑧𝑛𝑧 are initially estimated as zero. 

• If 𝑧2, … , 𝑧𝑛𝑧 are zero, then the expected value of 𝑈𝑥,𝑠,𝑡
2 is 𝑒−𝑧1 + 𝜎𝐸𝑥,𝑠,𝑡

2  ∀(𝑥⃑, 𝑠, 𝑡) ∈ 𝛯, where 𝛯 is 

the set of all combinations of grid subcells and months that have observations and 𝜎𝐸𝑥⃑,𝑠,𝑡
2  is the 

variance of the measurement and sampling errors at (𝑥⃑, 𝑠) for month 𝑡. As a result, 𝑧1 is initially 

estimated as − ln ((∑ (𝑈𝑥,𝑠,𝑡
2 − 𝜎𝐸𝑥,𝑠,𝑡

2 )(𝑥,𝑠,𝑡)∈𝛯 ) ∑ 1(𝑥,𝑠,𝑡)∈𝛯⁄ ). 

• 𝑟 is initially estimated by comparing residuals 𝑈 within the same grid subcell and in different and 

consecutive months. 𝑟 is estimated as 

𝜆−1(∑ ∑
𝑈𝑥⃑⃑⃑,𝑠,𝑡𝑖

𝑈𝑥⃑⃑⃑,𝑠,𝑡𝑗

exp(−0.5(𝑣𝑥⃑⃑⃑,𝑠,𝑡𝑖
+𝑣𝑥⃑⃑⃑,𝑠,𝑡𝑗

)𝑧)
(𝑥,𝑠,𝑡𝑗)∈𝛯

|𝑡𝑖−𝑡𝑗|=1

(𝑥,𝑠,𝑡𝑖)∈𝛯
∑ ∑ 1(𝑥,𝑠,𝑡𝑗)∈𝛯

|𝑡𝑖−𝑡𝑗|=1

(𝑥⃑,𝑠,𝑡𝑖)∈𝛯⁄ ). 
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• 𝑘1 is initially estimated by comparing residuals 𝑈 within the same surface type, within the same 

month, within the same longitudinal band, and in different latitudinal bands. 𝑘1 is estimated as 

𝜆−1

(

 
 
 
 
 

(

 
 
 
 

∑ ∑
𝑈𝑥⃑⃑⃑𝑖,𝑠,𝑡

𝑈𝑥⃑⃑⃑𝑗,𝑠,𝑡

exp(−0.5(𝑣𝑥⃑⃑⃑𝑖,𝑠,𝑡
+𝑣𝑥⃑⃑⃑𝑗,𝑠,𝑡

)𝑧)
(𝑥𝑗,𝑠,𝑡)∈𝛯

𝜓𝑥⃑⃑⃑𝑖
=𝜓𝑥⃑⃑⃑𝑗

|𝜑𝑥⃑⃑⃑𝑖
−𝜑𝑥⃑⃑⃑𝑗

|=
5𝜋

180

(𝑥⃑𝑖,𝑠,𝑡)∈𝛯
∑ ∑ 1(𝑥𝑗,𝑠,𝑡)∈𝛯

𝜓𝑥⃑⃑⃑𝑖
=𝜓𝑥⃑⃑⃑𝑗

|𝜑𝑥⃑⃑⃑𝑖
−𝜑𝑥⃑⃑⃑𝑗

|=
5𝜋

180

(𝑥⃑𝑖,𝑠,𝑡)∈𝛯
⁄

)

 
 
 
 

180

5𝜋

)

 
 
 
 
 

. 

• 𝑘2 is initially estimated by comparing residuals 𝑈 within the same grid cell, within the same 

month, and in different grid subcells. 𝑘2 is estimated as 

𝜆−1(∑ ∑
𝑈𝑥⃑⃑⃑,𝑠𝑖,𝑡

𝑈𝑥⃑⃑⃑,𝑠𝑗,𝑡

exp(−0.5(𝑣𝑥⃑⃑⃑,𝑠𝑖,𝑡
+𝑣𝑥⃑⃑⃑,𝑠𝑗,𝑡

)𝑧)
(𝑥,𝑠𝑗,𝑡)∈𝛯

𝑠𝑖≠𝑠𝑗

(𝑥,𝑠𝑖,𝑡)∈𝛯
∑ ∑ 1(𝑥,𝑠𝑗,𝑡)∈𝛯

𝑠𝑖≠𝑠𝑗

(𝑥,𝑠𝑖,𝑡)∈𝛯
⁄ ). 

• 𝑝 is re-estimated using GLS regression: 𝑌𝑥,𝑠,𝑡 = (1 + 𝐹𝑥,𝑠,𝑚𝑡
𝑓)𝜃𝑡 + 𝑄𝑥𝑞𝑡 +𝑊𝑥,𝑠,𝑡 + 𝐸𝑥,𝑠,𝑡. This 

is done by taking the estimate of 𝑓 as given. In particular, the GLS estimate is 

(𝑃′𝛺−1𝑃)−1𝑃′𝛺−1𝑌 ≈ (𝑃′𝛺∗𝑃)−1𝑃′𝛺∗𝑌 =  

[
 
 
 
 
 
𝑃1
′𝑆1,1
−1𝑃1 −𝜌𝑃1

′𝑆1,2
∗ 𝑃2 𝟘𝑛𝑞+1,𝑛𝑞+1 ⋯ 𝟘𝑛𝑞+1,𝑛𝑞+1

−𝜌𝑃2
′𝑆2,1
∗ 𝑃1 (1 + 𝜌2)𝑃2

′𝑆2,2
∗ 𝑃2 ⋱ ⋱ ⋮

𝟘𝑛𝑞+1,𝑛𝑞+1 ⋱ ⋱ ⋱ 𝟘𝑛𝑞+1,𝑛𝑞+1

⋮ ⋱ ⋱ (1 + 𝜌2)𝑃𝑀−1
′ 𝑆𝑀−1,𝑀−1

∗ 𝑃𝑀−1 −𝜌𝑃𝑀−1
′ 𝑆𝑀−1,𝑀

∗ 𝑃𝑀
𝟘𝑛𝑞+1,𝑛𝑞+1 ⋯ 𝟘𝑛𝑞+1,𝑛𝑞+1 −𝜌𝑃𝑀

′ 𝑆𝑀,𝑀−1
∗ 𝑃𝑀−1 𝑃𝑀

′ 𝑆𝑀,𝑀
−1 𝑃𝑀 ]

 
 
 
 
 
−1

 

(1 − 𝜌2)

[
 
 
 
 

(𝑅−1)1,1𝑃1
′𝑆1,1
−1𝑌1 + ∑ (𝑅−1)1,𝑗𝑃1

′𝑆1,𝑗
∗ 𝑌𝑗

𝑀
𝑗=1

|1−𝑗|=1

⋮
(𝑅−1)𝑀,𝑀𝑃𝑀

′ 𝑆𝑀,𝑀
−1 𝑌𝑀 + ∑ (𝑅−1)𝑀,𝑗𝑃𝑀

′ 𝑆𝑀,𝑗
∗ 𝑌𝑗

𝑀
𝑗=1

|𝑀−𝑗|=1 ]
 
 
 
 

. 

 

 

Estimating the Temperature Anomaly Model 

The first and second derivatives of the approximation to the log-likelihood function are 

• 
𝜕𝑙

𝜕𝑓𝑎
= 𝑈′𝛺−1

𝜕𝑃

𝜕𝑓𝑎
𝑝  

≈ ∑ (𝑅−1)𝑖,𝑖𝑈𝑖
′𝑆𝑖
−1𝐹𝑖,𝑎𝜃𝑖

𝑀
𝑖=1 +∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ 𝐹𝑗,𝑎𝜃𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑓} 
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• 
𝜕𝑙

𝜕𝑟
= −

1

2
𝑡𝑟 (𝛺−1

𝜕𝛺

𝜕𝑟
) −

1

2
𝑈′

𝜕𝛺−1

𝜕𝑟
𝑈 ≈

𝜌2

2(1+𝜌)
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘ 𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  

− 
1

2
∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑖
𝑈𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 −

1

2
∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
𝑈𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 ,  

where (
𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
= (

𝜕𝑅−1

𝜕𝜌
𝜌(1 − 𝜌))

𝑖,𝑗

=

{
  
 

  
 

2𝜌2

(1+𝜌)(1−𝜌2)
𝑖𝑓 𝑖 = 𝑗 ∈ {1,𝑀}

4𝜌2

(1+𝜌)(1−𝜌2)
𝑖 = 𝑗 ∈ {2,… ,𝑀 − 1}

−𝜌(1+𝜌2)

(1+𝜌)(1−𝜌2)
|𝑖 − 𝑗| = 1

0 𝑒𝑙𝑠𝑒

. 

• 
𝜕𝑙

𝜕𝑔𝑎
= −

1

2
ln |𝛺−1

𝜕𝛺

𝜕𝑔𝑎
| −

1

2
𝑈′

𝜕𝛺−1

𝜕𝑔𝑎
𝑈  

≈ −
1

2
∑ 𝑡𝑟 (𝑆𝑖

−1 𝜕𝑆𝑖

𝜕𝑔𝑎
)𝑀

𝑖=1 −
ln(1−𝜌2)

4
∑ ∑ 𝑠𝑢𝑚 (

𝜕𝑆𝑖,𝑗
∗

𝜕𝑔𝑎
∘ 𝑆𝑖,𝑗 + 𝑆𝑖,𝑗

∗ ∘
𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
)𝑀

𝑗=1
|𝑖−𝑗|=1

𝑀
𝑖=1   

− 
1

2
∑ (𝑅−1)𝑖,𝑖𝑈𝑖

′ 𝜕𝑆𝑖
−1

𝜕𝑔𝑎
𝑈𝑖

𝑀
𝑖=1 −

1

2
∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′ 𝜕𝑆𝑖,𝑗
∗

𝜕𝑔𝑎
𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧 + 2}, where 

𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
= 𝑉𝑖

−1 𝜕𝐾𝑖,𝑗

𝜕𝜅𝑎
𝑉𝑗
−1𝜅𝑎(1 − 𝜅𝑎) ∀𝑎 ∈ {1,2}, 

𝜕𝑆𝑖

𝜕𝑔𝑎
= −𝑣𝑖,𝑎−2𝑍𝑖 − 𝑍𝑖𝑣𝑖,𝑎−2 ∀𝑎 ∈ {3,… , 𝑛𝑧 + 2},  

𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
= −𝑣𝑖,𝑎−2𝑆𝑖,𝑗 − 𝑆𝑖,𝑗𝑣𝑗,𝑎−2 ∀𝑎 ∈ {3,… , 𝑛𝑧 + 2} if 𝑖 ≠ 𝑗, 

𝜕𝑆𝑖
−1

𝜕𝑔𝑎
= −𝑆𝑖

−1 𝜕𝑆𝑖

𝜕𝑔𝑎
𝑆𝑖
−1, and 

𝜕𝑆𝑖,𝑗
∗

𝜕𝑔𝑎
= 𝑆𝑖

−1 𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
𝑆𝑗
−1 − 𝑆𝑖

−1 𝜕𝑆𝑖

𝜕𝑔𝑎
𝑆𝑖,𝑗
∗ − 𝑆𝑖,𝑗

∗ 𝜕𝑆𝑗

𝜕𝑔𝑎
𝑆𝑗
−1 if 𝑖 ≠ 𝑗. 

• 
𝜕𝑙

𝜕𝑝𝑖
= 𝑈′𝛺−1𝑃 ≈ (𝑅−1)𝑖,𝑖𝑈𝑖

′𝑆𝑖
−1𝑃𝑖 + ∑ (𝑅−1)𝑖,𝑗𝑈𝑗

′𝑆𝑗,𝑖
∗ 𝑃𝑖

𝑀
𝑗=1

|𝑖−𝑗|=1

 ∀𝑖 ∈ {1,… ,𝑀} 

• 
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑓𝑏
= −𝑝′

𝜕𝑃′

𝜕𝑓𝑎
𝛺−1

𝜕𝑃

𝜕𝑓𝑏
𝑝  

≈ −∑ (𝑅−1)𝑖,𝑖𝜃𝑖𝐹𝑖,𝑎
′ 𝑆𝑖

−1𝐹𝑖,𝑏𝜃𝑖
𝑀
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗𝜃𝑖𝐹𝑖,𝑎

′ 𝑆𝑖,𝑗
∗ 𝐹𝑗,𝑏𝜃𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝑓} 

• 
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑟
= 𝑝′

𝜕𝑃′

𝜕𝑓𝑎

𝜕𝛺−1

𝜕𝑟
𝑈  

≈ ∑ (
𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑖
𝜃𝑖𝐹𝑖

′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
𝜃𝑖𝐹𝑖

′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑓} 

• 
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑔𝑏
= 𝑝′

𝜕𝑃′

𝜕𝑓𝑎

𝜕𝛺−1

𝜕𝑔𝑏
𝑈 ≈ ∑ (𝑅−1)𝑖,𝑖𝜃𝑖𝐹𝑖,𝑎

′ 𝜕𝑆𝑖
−1

𝜕𝑔𝑏
𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗𝜃𝑖𝐹𝑖,𝑎

′ 𝜕𝑆𝑖,𝑗
∗

𝜕𝑔𝑏
𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

∀𝑎 ∈ {1,… , 𝑛𝑓} ∀𝑏 ∈ {1,… , 𝑛𝑧 + 2} 

• 
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑝𝑖
= 𝑈′𝛺−1

𝜕𝑃

𝜕𝑓𝑎
− 𝑝′

𝜕𝑃′

𝜕𝑓𝑎
𝛺−1𝑃  

≈ (𝑅−1)𝑖,𝑖𝑈𝑖
′𝑆𝑖
−1[𝐹𝑖,𝑎 𝟘𝑛𝑖,𝑛𝑞] + ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ [𝐹𝑗,𝑎 𝟘𝑛𝑗,𝑛𝑞]

𝑀
𝑗=1

|𝑖−𝑗|=1

  

− (𝑅−1)𝑖,𝑖𝜃𝑖𝐹𝑖,𝑎
′ 𝑆𝑖

−1𝑃𝑖 − ∑ (𝑅−1)𝑖,𝑗𝜃𝑗𝐹𝑗,𝑎
′ 𝑆𝑗,𝑖

∗ 𝑃𝑖
𝑀
𝑗=1

|𝑖−𝑗|=1

 ∀𝑎 ∈ {1,… , 𝑛𝑓} ∀𝑖 ∈ {1,… ,𝑀} 
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• 
𝜕2𝑙

𝜕𝑟2
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑟2
−
𝜕𝛺

𝜕𝑟
𝛺−1

𝜕𝛺

𝜕𝑟
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑟2
𝑈  

≈
𝜌2(2+𝜌)(1−𝜌)

2(1+𝜌)2
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘ 𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 −

1

2
∑ (

𝜕2𝑅−1

𝜕𝑟2
)
𝑖,𝑖
𝑈𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1   

− 
1

2
∑ ∑ (

𝜕2𝑅−1

𝜕𝑟2
)
𝑖,𝑗
𝑈𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 ,  

where (
𝜕2𝑅−1

𝜕𝑟2
)
𝑖,𝑗
= (

𝜕2𝑅−1

𝜕𝜌𝜕𝑟
𝜌(1 − 𝜌))

𝑖,𝑗

=

{
  
 

  
 

2𝜌2(2−𝜌+𝜌2)

(1+𝜌)2(1−𝜌2)
𝑖𝑓 𝑖 = 𝑗 ∈ {1,𝑀}

4𝜌2(2−𝜌+𝜌2)

(1+𝜌)2(1−𝜌2)
𝑖 = 𝑗 ∈ {2,… ,𝑀 − 1}

−𝜌(1+𝜌2)(1−𝜌+5𝜌2−𝜌3)

(1+𝜌)2(1−𝜌2)
|𝑖 − 𝑗| = 1

0 𝑒𝑙𝑠𝑒

. 

• 
𝜕2𝑙

𝜕𝑟𝜕𝑔𝑎
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑟𝜕𝑔𝑎
−
𝜕𝛺

𝜕𝑟
𝛺−1

𝜕𝛺

𝜕𝑔𝑎
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑟𝜕𝑔𝑎
𝑈  

≈
𝜌2

2(1+𝜌)
∑ ∑ 𝑠𝑢𝑚 (

𝜕𝑆𝑖,𝑗
∗

𝜕𝑔𝑎
∘ 𝑆𝑖,𝑗 + 𝑆𝑖,𝑗

∗ ∘
𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
)𝑀

𝑗=1
|𝑖−𝑗|=1

𝑀
𝑖=1 −

1

2
∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑖
𝑈𝑖
′ 𝜕𝑆𝑖

−1

𝜕𝑔𝑎
𝑈𝑖

𝑀
𝑖=1   

− 
1

2
∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
𝑈𝑖
′ 𝜕𝑆𝑖,𝑗

∗

𝜕𝑔𝑎
𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧 + 2} 

• 
𝜕2𝑙

𝜕𝑟𝜕𝑝𝑖
= 𝑈′

𝜕𝛺−1

𝜕𝑟
𝑃 ≈ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑖
𝑈𝑖
′𝑆𝑖
−1𝑃𝑖 + ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗
𝑈𝑗
′𝑆𝑗,𝑖
∗ 𝑃𝑖

𝑀
𝑗=1

|𝑖−𝑗|=1

 ∀𝑖 ∈ {1,… ,𝑀} 

• 
𝜕2𝑙

𝜕𝑔𝑎𝜕𝑔𝑏
= −

1

2
𝑡𝑟 (𝛺−1 (

𝜕2𝛺

𝜕𝑔𝑎𝜕𝑔𝑏
−

𝜕𝛺

𝜕𝑔𝑎
𝛺−1

𝜕𝛺

𝜕𝑔𝑏
)) −

1

2
𝑈′

𝜕2𝛺−1

𝜕𝑔𝑎𝜕𝑔𝑏
𝑈  

≈ −
1

2
∑ 𝑠𝑢𝑚(𝑆𝑖

−1 ∘
𝜕2𝑆𝑖

 𝜕𝑔𝑎𝜕𝑔𝑏
− (𝑆𝑖

−1 𝜕𝑆𝑖

𝜕𝑔𝑏
) ∘ (

𝜕𝑆𝑖

𝜕𝑔𝑎
𝑆𝑖
−1))𝑀

𝑖=1    

− 
ln(1−𝜌2)

4
∑ ∑ 𝑠𝑢𝑚 (

𝜕2𝑆𝑖,𝑗
∗

𝜕𝑔𝑎𝜕𝑔𝑏
∘ 𝑆𝑖,𝑗 +

𝜕𝑆𝑖,𝑗
∗

𝜕𝑔𝑎
∘
𝜕𝑆𝑖,𝑗

𝜕𝑔𝑏
+
𝜕𝑆𝑖,𝑗

∗

𝜕𝑔𝑏
∘
𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
+ 𝑆𝑖,𝑗

∗ ∘
𝜕2𝑆𝑖,𝑗

𝜕𝑔𝑎𝜕𝑔𝑏
)𝑀

𝑗=1
|𝑖−𝑗|=1

𝑀
𝑖=1   

− 
1

2
∑ (𝑅−1)𝑖,𝑖𝑈𝑖

′ 𝜕2𝑆𝑖
−1

 𝜕𝑔𝑎𝜕𝑔𝑏
𝑈𝑖

𝑀
𝑖=1 −

1

2
∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′ 𝜕2𝑆𝑖,𝑗
∗

𝜕𝑔𝑎𝜕𝑔𝑏
𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝑧 + 2}, 

where 
𝜕2𝑆𝑖,𝑗

𝜕𝑔𝑎
2 = 𝑉𝑖

−1 𝜕
2𝐾𝑖,𝑗

  𝜕𝜅𝑎
2 𝑉𝑗

−1𝜅𝑎
2(1 − 𝜅𝑎)

2 +
𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
(1 − 2𝜅𝑎) ∀𝑎 ∈ {1,2},  

𝜕2𝑆𝑖,𝑗

𝜕𝑔𝑎𝜕𝑔𝑏
= 𝑉𝑖

−1 𝜕2𝐾𝑖,𝑗

  𝜕𝜅𝑎𝜕𝜅𝑏
𝑉𝑗
−1𝜅𝑎(1 − 𝜅𝑎)𝜅𝑏(1 − 𝜅𝑏) ∀𝑎, 𝑏 ∈ {1,2} if 𝑎 ≠ 𝑏,  

𝜕2𝑆𝑖,𝑗

𝜕𝑔𝑎𝜕𝑔𝑏
= −𝑣𝑖,𝑏−2

𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
−
𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
𝑣𝑗,𝑏−2 ∀𝑎 ∈ {1,… , 𝑛𝑧 + 2} ∀𝑏 ∈ {3,… , 𝑛𝑧 + 2},  

𝜕2𝑆𝑖
−1

 𝜕𝑔𝑎𝜕𝑔𝑏
= 𝑆𝑖

−1 𝜕𝑆𝑖

 𝜕𝑔𝑎
𝑆𝑖
−1 𝜕𝑆𝑖

𝜕𝑔𝑏
𝑆𝑖
−1 + 𝑆𝑖

−1 𝜕𝑆𝑖

 𝜕𝑔𝑏
𝑆𝑖
−1 𝜕𝑆𝑖

𝜕𝑔𝑎
𝑆𝑖
−1 − 𝑆𝑖

−1 𝜕2𝑆𝑖

 𝜕𝑔𝑎𝜕𝑔𝑏
𝑆𝑖
−1, and  

𝜕2𝑆𝑖,𝑗
∗

𝜕𝑔𝑎𝜕𝑔𝑏
=

𝜕𝑆𝑖
−1

𝜕𝑔𝑏

𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
𝑆𝑗
−1 + 𝑆𝑖

−1 𝜕2𝑆𝑖,𝑗

𝜕𝑔𝑎𝜕𝑔𝑏
𝑆𝑗
−1 + 𝑆𝑖

−1 𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎

𝜕𝑆𝑗
−1

𝜕𝑔𝑏
−
𝜕𝑆𝑖

−1

𝜕𝑔𝑏

𝜕𝑆𝑖

𝜕𝑔𝑎
𝑆𝑖,𝑗
∗ − 𝑆𝑖

−1 𝜕2𝑆𝑖

𝜕𝑔𝑎𝜕𝑔𝑏
𝑆𝑖,𝑗
∗   

 − 𝑆𝑖
−1 𝜕𝑆𝑖

𝜕𝑔𝑎

𝜕𝑆𝑖,𝑗
∗

𝜕𝑔𝑏
−
𝜕𝑆𝑖,𝑗

∗

𝜕𝑔𝑏

𝜕𝑆𝑗

𝜕𝑔𝑎
𝑆𝑗
−1 − 𝑆𝑖,𝑗

∗ 𝜕2𝑆𝑗

𝜕𝑔𝑎𝜕𝑔𝑏
𝑆𝑗
−1 − 𝑆𝑖,𝑗

∗ 𝜕𝑆𝑗

𝜕𝑔𝑎

𝜕𝑆𝑗
−1

𝜕𝑔𝑏
. To reduce the computational 
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burden of calculating this second derivative, the approximation 0 =
𝜕2

 𝜕𝑔𝑎𝜕𝑔𝑏
𝑡𝑟(𝐼𝑛𝑖) ≈  

𝜕2

 𝜕𝑔𝑎𝜕𝑔𝑏
𝑡𝑟(𝑆𝑖

−1𝑆𝑖,𝑗𝑆𝑗
−1𝑆𝑗,𝑖) = 𝑠𝑢𝑚(

𝜕2𝑆𝑖,𝑗
∗

𝜕𝑔𝑎𝜕𝑔𝑏
∘ 𝑆𝑖,𝑗 +

𝜕𝑆𝑖,𝑗
∗

𝜕𝑔𝑎
∘
𝜕𝑆𝑖,𝑗

𝜕𝑔𝑏
+
𝜕𝑆𝑖,𝑗

∗

𝜕𝑔𝑏
∘
𝜕𝑆𝑖,𝑗

𝜕𝑔𝑎
+ 𝑆𝑖,𝑗

∗ ∘
𝜕2𝑆𝑖,𝑗

𝜕𝑔𝑎𝜕𝑔𝑏
) is used. 

• 
𝜕2𝑙

𝜕𝑔𝑎𝜕𝑝𝑖
= 𝑈′

𝜕𝛺−1

𝜕𝑔𝑎
𝑃  

≈ (𝑅−1)𝑖,𝑖𝑈𝑖
′ 𝜕𝑆𝑖

−1

𝜕𝑔𝑎
𝑃𝑖 + ∑ (𝑅−1)𝑖,𝑗𝑈𝑗

′ 𝜕𝑆𝑗,𝑖
∗

𝜕𝑔𝑎
𝑃𝑖

𝑀
𝑗=1

|𝑖−𝑗|=1

 ∀𝑎 ∈ {1,… , 𝑛𝑧 + 2} ∀𝑖 ∈ {1,… ,𝑀} 

• 
𝜕2𝑙

𝜕𝑝𝑖𝜕𝑝𝑗
= −𝑃′𝛺−1𝑃 ≈ −𝛿𝑖,𝑗(𝑅

−1)𝑖,𝑖𝑃𝑖
′𝑆𝑖
−1𝑃𝑖 − 𝛿|𝑖−𝑗|,1(𝑅

−1)𝑖,𝑗𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑃𝑗 ∀𝑖, 𝑗 ∈ {1,… ,𝑀} 

 

The derivatives of the log-likelihood function could, in principle, be used to obtain the maximum 

likelihood estimates. However, it can be easier to obtain maximum likelihood estimates by instead using 

the derivatives of a concentrated log-likelihood function. One of the conditions of the maximum 

likelihood estimates is 
𝜕𝑙

𝜕𝑝
= 0, which implies that 𝑝 is its GLS estimate (𝑃′𝛺−1𝑃)−1𝑃′𝛺−1𝑌 ≈

(𝑃′𝛺∗𝑃)−1𝑃′𝛺∗𝑌. Substituting this GLS estimate of 𝑝 into the log-likelihood function yields a 

concentrated log-likelihood function 𝑙. 

 

The first and second derivatives of the approximation to the concentrated log-likelihood function are 

• 
𝜕𝑙

𝜕𝑓𝑎
=

𝜕𝑙

𝜕𝑓𝑎
+ 𝑈′𝛺−1𝑃

𝜕𝑝

𝜕𝑓𝑎
≈

𝜕𝑙

𝜕𝑓𝑎
+ ∑ (𝑅−1)𝑖,𝑖𝑈𝑖

′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑓𝑎

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑓𝑎

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  

∀𝑎 ∈ {1,… , 𝑛𝑓}, where 
𝜕𝑝

𝜕𝑓𝑎
≈ (𝑃′𝛺∗𝑃)−1 (

𝜕𝑃′

𝜕𝑓𝑎
𝛺∗𝑈 − 𝑃′𝛺∗

𝜕𝑃

𝜕𝑓𝑎
𝑝) ∀𝑎 ∈ {1,… , 𝑛𝑓}. 

• 
𝜕𝑙

𝜕𝑟
=

𝜕𝑙

𝜕𝑟
+𝑈′𝛺−1𝑃

𝜕𝑝

𝜕𝑟
≈

𝜕𝑙

𝜕𝑟
+ ∑ (𝑅−1)𝑖,𝑖𝑈𝑖

′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑟
𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑟

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 ,  

where 
𝜕𝑝

𝜕𝑟
≈ (𝑃′𝛺∗𝑃)−1𝑃′

𝜕𝛺∗

𝜕𝑟
𝑈. 

• 
𝜕𝑙

𝜕𝑔𝑎
=

𝜕𝑙

𝜕𝑔𝑎
+𝑈′𝛺−1𝑃

𝜕𝑝

𝜕𝑔𝑎
≈

𝜕𝑙

𝜕𝑔𝑎
+ ∑ (𝑅−1)𝑖,𝑖𝑈𝑖

′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑔𝑎

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑔𝑎

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  

∀𝑎 ∈ {1,… , 𝑛𝑧 + 2}, where 
𝜕𝑝

𝜕𝑔𝑎
≈ (𝑃′𝛺∗𝑃)−1𝑃′

𝜕𝛺∗

𝜕𝑔𝑎
𝑈 ∀𝑎 ∈ {1,… , 𝑛𝑧 + 2}. 

• 
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑓𝑏
=

𝜕2𝑙

𝜕𝑓𝑎𝜕𝑓𝑏
−
𝜕𝑝′

𝜕𝑓𝑎
𝑃′𝛺−1𝑃

𝜕𝑝

𝜕𝑓𝑏
− 𝑝′

𝜕𝑃′

𝜕𝑓𝑎
𝛺−1𝑃

𝜕𝑝

𝜕𝑓𝑏
+ 𝑈′𝛺−1

𝜕𝑃

𝜕𝑓𝑎

𝜕𝑝

𝜕𝑓𝑏
+

𝜕2𝑝′

𝜕𝑓𝑎𝜕𝑓𝑏
𝑃′𝛺−1𝑈 

≈
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑓𝑏
−∑ (𝑅−1)𝑖,𝑖

𝜕𝑝𝑖
′

𝜕𝑓𝑎
𝑃𝑖
′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑓𝑏

𝑀
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑓𝑎
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑓𝑏

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

− ∑ (𝑅−1)𝑖,𝑖𝑝𝑖
′ 𝜕𝑃𝑖

′

𝜕𝑓𝑎
𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑓𝑏

𝑀
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗𝑝𝑖

′ 𝜕𝑃𝑖
′

𝜕𝑓𝑎
𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑓𝑏

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

+ ∑ (𝑅−1)𝑖,𝑖𝑈𝑖
′𝑆𝑖
−1 𝜕𝑃𝑖

𝜕𝑓𝑎

𝜕𝑝𝑖

𝜕𝑓𝑏

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ 𝜕𝑃𝑗

𝜕𝑓𝑎

𝜕𝑝𝑗

𝜕𝑓𝑏

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   
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+ ∑ (𝑅−1)𝑖,𝑖
𝜕2𝑝𝑖

′

𝜕𝑓𝑎𝜕𝑓𝑏
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕2𝑝𝑖
′

𝜕𝑓𝑎𝜕𝑓𝑏
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝑓},  

where 
𝜕2𝑝

𝜕𝑓𝑎𝜕𝑓𝑏
≈ −(𝑃′𝛺∗𝑃)−1(

𝜕𝑃′

𝜕𝑓𝑎
𝛺∗

𝜕𝑃

𝜕𝑓𝑏
𝑝 +

𝜕𝑃′

𝜕𝑓𝑎
𝛺∗𝑃

𝜕𝑝

𝜕𝑓𝑏
+ 𝑃′𝛺∗

𝜕𝑃

𝜕𝑓𝑎

𝜕𝑝

𝜕𝑓𝑏

+ 
𝜕𝑃′

𝜕𝑓𝑏
𝛺∗

𝜕𝑃

𝜕𝑓𝑎
𝑝 +

𝜕𝑃′

𝜕𝑓𝑏
𝛺∗𝑃

𝜕𝑝

𝜕𝑓𝑎
+ 𝑃′𝛺∗

𝜕𝑃

𝜕𝑓𝑏

𝜕𝑝

𝜕𝑓𝑎

) ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝑓}. 

• 
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑟
=

𝜕2𝑙

𝜕𝑓𝑎𝜕𝑟
+
𝜕𝑝′

𝜕𝑓𝑎
𝑃′

𝜕𝛺−1

𝜕𝑟
𝑈 −

𝜕𝑝′

𝜕𝑓𝑎
𝑃′𝛺−1𝑃

𝜕𝑝

𝜕𝑟
+

𝜕2𝑝′

𝜕𝑓𝑎𝜕𝑟
𝑃′𝛺−1𝑈  

≈
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑟
+ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑖

𝜕𝑝𝑖
′

𝜕𝑓𝑎
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 +∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑓𝑎
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

− ∑ (𝑅−1)𝑖,𝑖
𝜕𝑝𝑖

′

𝜕𝑓𝑎
𝑃𝑖
′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑟
𝑀
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑓𝑎
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑟

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

+ ∑ (𝑅−1)𝑖,𝑖
𝜕2𝑝𝑖

′

𝜕𝑓𝑎𝜕𝑟
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 +∑ ∑ (𝑅−1)𝑖,𝑗

𝜕2𝑝𝑖
′

𝜕𝑓𝑎𝜕𝑟
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑓},  

where 
𝜕2𝑝

𝜕𝑓𝑎𝜕𝑟
≈ (𝑃′𝛺∗𝑃)−1(

𝜕𝑃′

𝜕𝑓𝑎

𝜕𝛺∗

𝜕𝑟
𝑈 −

𝜕𝑃′

𝜕𝑓𝑎
𝛺∗𝑃

𝜕𝑝

𝜕𝑟
− 𝑃′

𝜕𝛺∗

𝜕𝑟

𝜕𝑃

𝜕𝑓𝑎
𝑝

− 𝑃′𝛺∗
𝜕𝑃

𝜕𝑓𝑎

𝜕𝑝

𝜕𝑟
− 𝑃′

𝜕𝛺∗

𝜕𝑟
𝑃
𝜕𝑝

𝜕𝑓𝑎

) ∀𝑎 ∈ {1,… , 𝑛𝑓}. 

• 
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑔𝑏
=

𝜕2𝑙

𝜕𝑓𝑎𝜕𝑔𝑏
+
𝜕𝑝′

𝜕𝑓𝑎
𝑃′

𝜕𝛺−1

𝜕𝑔𝑏
𝑈 −

𝜕𝑝′

𝜕𝑓𝑎
𝑃′𝛺−1𝑃

𝜕𝑝

𝜕𝑔𝑏
+

𝜕2𝑝′

𝜕𝑓𝑎𝜕𝑔𝑏
𝑃′𝛺−1𝑈  

≈
𝜕2𝑙

𝜕𝑓𝑎𝜕𝑔𝑏
+∑ (𝑅−1)𝑖,𝑖

𝜕𝑝𝑖
′

𝜕𝑓𝑎
𝑃𝑖
′ 𝜕𝑆𝑖

−1

𝜕𝑔𝑏
𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑓𝑎
𝑃𝑖
′ 𝜕𝑆𝑖,𝑗

∗

𝜕𝑔𝑏
𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

− ∑ (𝑅−1)𝑖,𝑖
𝜕𝑝𝑖

′

𝜕𝑓𝑎
𝑃𝑖
′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑔𝑏

𝑀
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑓𝑎
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑔𝑏

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

+ ∑ (𝑅−1)𝑖,𝑖
𝜕2𝑝𝑖

′

𝜕𝑓𝑎𝜕𝑔𝑏
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕2𝑝𝑖
′

𝜕𝑓𝑎𝜕𝑔𝑏
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑓}  

∀𝑏 ∈ {1,… , 𝑛𝑧 + 2}, where 
𝜕2𝑝

𝜕𝑓𝑎𝜕𝑔𝑏
≈ (𝑃′𝛺∗𝑃)−1(

𝜕𝑃′

𝜕𝑓𝑎

𝜕𝛺∗

𝜕𝑔𝑏
𝑈 −

𝜕𝑃′

𝜕𝑓𝑎
𝛺∗𝑃

𝜕𝑝

𝜕𝑔𝑏
− 𝑃′

𝜕𝛺∗

𝑔𝑏

𝜕𝑃

𝜕𝑓𝑎
𝑝

− 𝑃′𝛺∗
𝜕𝑃

𝜕𝑓𝑎

𝜕𝑝

𝜕𝑔𝑏
− 𝑃′

𝜕𝛺∗

𝑔𝑏
𝑃
𝜕𝑝

𝜕𝑓𝑎

)  

∀𝑎 ∈ {1,… , 𝑛𝑓} ∀𝑏 ∈ {1,… , 𝑛𝑧 + 2}. 

• 
𝜕2𝑙

𝜕𝑟2
=

𝜕2𝑙

𝜕𝑟2
+
𝜕𝑝′

𝜕𝑟
𝑃′

𝜕𝛺−1

𝜕𝑟
𝑈 −

𝜕𝑝′

𝜕𝑟
𝑃′𝛺−1𝑃

𝜕𝑝

𝜕𝑟
+
𝜕2𝑝′

𝜕𝑟2
𝑃′𝛺−1𝑈  

≈
𝜕2𝑙

𝜕𝑟2
+ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑖

𝜕𝑝𝑖
′

𝜕𝑟
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑟
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

− ∑ (𝑅−1)𝑖,𝑖
𝜕𝑝𝑖

′

𝜕𝑟
𝑃𝑖
′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑟
𝑀
𝑖=1 − ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑟
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑟

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

+ ∑ (𝑅−1)𝑖,𝑖
𝜕2𝑝𝑖

′

𝜕𝑟2
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕2𝑝𝑖
′

𝜕𝑟2
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 ,  

where 
𝜕2𝑝

𝜕𝑟2
≈ (𝑃′𝛺∗𝑃)−1𝑃′ (

𝜕2𝛺∗

𝜕𝑟2
𝑈 − 2

𝜕𝛺∗

𝜕𝑟
𝑃
𝜕𝑝

𝜕𝑟
). 

• 
𝜕2𝑙

𝜕𝑟𝜕𝑔𝑎
=

𝜕2𝑙

𝜕𝑟𝜕𝑔𝑎
+

𝜕𝑝′

𝜕𝑔𝑎
𝑃′

𝜕𝛺−1

𝜕𝑟
𝑈 −

𝜕𝑝′

𝜕𝑟
𝑃′𝛺−1𝑃

𝜕𝑝

𝜕𝑔𝑎
+

𝜕2𝑝′

𝜕𝑟𝜕𝑔𝑎
𝑃′𝛺−1𝑈  

≈
𝜕2𝑙

𝜕𝑟𝜕𝑔𝑎
+ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑖

𝜕𝑝𝑖
′

𝜕𝑔𝑎
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (

𝜕𝑅−1

𝜕𝑟
)
𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑔𝑎
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   
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− ∑ (𝑅−1)𝑖,𝑖
𝜕𝑝𝑖

′

𝜕𝑟
𝑃𝑖
′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑔𝑎

𝑀
𝑖=1 −∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑟
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑔𝑎

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

+ ∑ (𝑅−1)𝑖,𝑖
𝜕2𝑝𝑖

′

𝜕𝑟𝜕𝑔𝑎
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕2𝑝𝑖
′

𝜕𝑟𝜕𝑔𝑎
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎 ∈ {1,… , 𝑛𝑧 + 2},  

where 
𝜕2𝑝

𝜕𝑟𝜕𝑔𝑎
≈ (𝑃′𝛺∗𝑃)−1𝑃′ (

𝜕2𝛺∗

𝜕𝑟𝜕𝑔𝑎
𝑈 −

𝜕𝛺∗

𝜕𝑟
𝑃

𝜕𝑝

𝜕𝑔𝑎
−
𝜕𝛺∗

𝜕𝑔𝑎
𝑃
𝜕𝑝

𝜕𝑟
) ∀𝑎 ∈ {1,… , 𝑛𝑧 + 2}. 

• 
𝜕2𝑙

𝜕𝑔𝑎𝜕𝑔𝑏
=

𝜕2𝑙

𝜕𝑔𝑎𝜕𝑔𝑏
+

𝜕𝑝′

𝜕𝑔𝑎
𝑃′

𝜕𝛺−1

𝜕𝑔𝑏
𝑈 −

𝜕𝑝′

𝜕𝑔𝑎
𝑃′𝛺−1𝑃

𝜕𝑝

𝜕𝑔𝑏
+

𝜕2𝑝′

𝜕𝑔𝑎𝜕𝑔𝑏
𝑃′𝛺−1𝑈  

≈
𝜕2𝑙

𝜕𝑔𝑎𝜕𝑔𝑏
+ ∑ (𝑅−1)𝑖,𝑖

𝜕𝑝𝑖
′

𝜕𝑔𝑎
𝑃𝑖
′ 𝜕𝑆𝑖

−1

𝜕𝑔𝑏
𝑈𝑖

𝑀
𝑖=1 +∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑔𝑎
𝑃𝑖
′ 𝜕𝑆𝑖,𝑗

∗

𝜕𝑔𝑏
𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

− ∑ (𝑅−1)𝑖,𝑖
𝜕𝑝𝑖

′

𝜕𝑔𝑎
𝑃𝑖
′𝑆𝑖
−1𝑃𝑖

𝜕𝑝𝑖

𝜕𝑔𝑏

𝑀
𝑖=1 −∑ ∑ (𝑅−1)𝑖,𝑗

𝜕𝑝𝑖
′

𝜕𝑔𝑎
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑃𝑗

𝜕𝑝𝑗

𝜕𝑔𝑏

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   

+ ∑ (𝑅−1)𝑖,𝑖
𝜕2𝑝𝑖

′

𝜕𝑔𝑎𝜕𝑔𝑏
𝑃𝑖
′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗

𝜕2𝑝𝑖
′

𝜕𝑔𝑎𝜕𝑔𝑏
𝑃𝑖
′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1  ∀𝑎, 𝑏 ∈ {1,… , 𝑛𝑧 + 2}, 

where 
𝜕2𝑝

𝜕𝑔𝑎𝜕𝑔𝑏
≈ (𝑃′𝛺∗𝑃)−1𝑃′ (

𝜕2𝛺∗

𝜕𝑔𝑎𝜕𝑔𝑏
𝑈 −

𝜕𝛺∗

𝜕𝑔𝑎
𝑃

𝜕𝑝

𝜕𝑔𝑏
−
𝜕𝛺∗

𝜕𝑔𝑏
𝑃

𝜕𝑝

𝜕𝑔𝑎
) ∀𝑎, 𝑏 ∈ {1, … , 𝑛𝑧 + 2}. 

 

These derivatives, combined with the initial guess of (𝑓, 𝑟, 𝑔), are used to iteratively converge to the 

maximum likelihood estimates using the saddle-free Newton’s method. The new value of (𝑓, 𝑟, 𝑔) is 

(𝑓, 𝑟, 𝑔) + min(1,
−𝑙

𝐽⟦𝐻̃⟧−1𝐽′
) ⟦𝐻̃⟧

−1
𝐽′, where 𝐻̃ = 𝐷̃′𝐽 is the Hessian of the concentrated log-likelihood 

function, 𝐽 = 𝐷̃𝑙 is the Jacobian of the concentrated log-likelihood function, and 𝐷̃ = [
𝜕

𝜕𝑓

𝜕

𝜕𝑟

𝜕

𝜕𝑔
]. The 

new value of 𝑝 is then calculated using GLS: 𝑝 = (𝑃′𝛺−1𝑃)−1𝑃′𝛺−1𝑌 ≈ (𝑃′𝛺∗𝑃)−1𝑃′𝛺∗𝑌. Only 10 

iterations are performed for each model due to the high computational cost of each iteration. Fewer 

iterations are needed compared to the temperature climatology model due to the use of more data to 

estimate the temperature anomaly model. In all cases, after 10 iterations the hessian is negative definite, 

suggesting that 10 iterations provide satisfactory convergence to the maximum likelihood estimates. 

 

 

Selecting the Temperature Anomaly Model 

After the estimation of each model is performed, the model with the lowest AIC is selected. The BIC is 

also calculated for comparison. 

𝐴𝐼𝐶 = 2𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 − 2𝑙 ≈ 2(𝑛𝑓 +𝑀 ∙ (𝑛𝑞 + 1) + 𝑛𝑧 + 3) + 𝑁 ln(2𝜋) + ∑ ln(|𝑆𝑖|)
𝑀
𝑖=1  

+ 
ln(1−𝜌2)

2
∑ ∑ 𝑠𝑢𝑚(𝑆𝑖,𝑗

∗ ∘ 𝑆𝑖,𝑗)
𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1 + ∑ (𝑅−1)𝑖,𝑖𝑈𝑖

′𝑆𝑖
−1𝑈𝑖

𝑀
𝑖=1 + ∑ ∑ (𝑅−1)𝑖,𝑗𝑈𝑖

′𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

𝑀
𝑖=1   
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Parameter Uncertainty of the Temperature Anomaly Model 

The maximum likelihood estimate of (𝑓, 𝑟, 𝑔, 𝑝) is asymptotically multivariate normal with covariance 

matrix (−𝐻)−1, where 𝐻 = 𝐷′𝐽 is the Hessian of the log-likelihood function, 𝐽 = 𝐷𝑙 is the Jacobian of 

the log-likelihood function, and 𝐷 = [
𝜕

𝜕𝑓

𝜕

𝜕𝑟

𝜕

𝜕𝑔

𝜕

𝜕𝑝
]. This multivariate normal approximation is used 

to quantify the uncertainty of the maximum likelihood estimates. From the covariance matrix (−𝐻)−1, 

the sub-covariance matrices cov ([
𝑟
𝑔] , [

𝑟
𝑔]), cov ([

𝑓
𝑝
] , [
𝑓
𝑝
]), and cov ([

𝑟
𝑔] , [

𝑓
𝑝
]) can be obtained. 

 

To greatly reduce the computational time of estimating infilling uncertainty while still accounting for the 

uncertainty of the covariance function, only five ensemble members of the covariance function 

parameters (𝑟, 𝑔) are generated. Since cov ([
𝑟
𝑔] , [

𝑟
𝑔]) is symmetric, it has eigen-decomposition 𝛷𝛥𝛷′, 

where 𝛷 is a matrix of eigenvectors and 𝛥 is a diagonal matrix of eigenvalues. For the selected 

temperature model, five vectors of random numbers of length (𝑛𝑧 + 3) are generated from 

independent standard normal probability distributions. For each of these five vectors, 𝛷𝛥0.5 is 

multiplied by the random vector to obtain an ensemble member of the parameters (𝑟, 𝑔) of the 

temperature anomaly model. The five ensemble members of (𝑟, 𝑔) are then normalized such that their 

sample means are equal to the means of the maximum likelihood estimates of (𝑟, 𝑔), and their 

uncorrected sample variances are equal to the variances of the maximum likelihood estimates of (𝑟, 𝑔); 

this ensures that the small sample size does not significantly skew the results. 

 

Given an ensemble member (𝑟, 𝑔) and maximum likelihood estimates (𝑓, 𝑟̂, 𝑔, 𝑝̂), the expected value of 

(𝑓, 𝑝) under the conditional probability distribution is [
𝑓
𝑝̂
] + cov([

𝑓
𝑝
] , [
𝑟
𝑔]) (cov ([

𝑟
𝑔] , [

𝑟
𝑔]))

−1

[
𝑟 − 𝑟̂
𝑔 − 𝑔

]. 

In addition, under this conditional probability distribution, the covariance matrix of (𝑟, 𝑔) is 

cov ([
𝑓
𝑝
] , [
𝑓
𝑝
]) − cov([

𝑓
𝑝
] , [
𝑟
𝑔]) (cov ([

𝑟
𝑔] , [

𝑟
𝑔]))

−1

cov ([
𝑟
𝑔] , [

𝑓
𝑝
]). Since the covariance matrix of (𝑟, 𝑔) 

under the conditional probability distribution is symmetric, it has eigen-decomposition 𝛷̃𝛥̃𝛷̃′, where 𝛷̃ 

is a matrix of eigenvectors and 𝛥̃ is a diagonal matrix of eigenvalues. For each of the ensemble members 

of (𝑟, 𝑔), 40 vectors of length (𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 − 𝑛𝑧 − 3) are generated from independent standard normal 

probability distributions. For each of these 40 vectors, cov ([
𝑓
𝑝
] , [
𝑟
𝑔]) (cov ([

𝑟
𝑔] , [

𝑟
𝑔]))

−1

[
𝑟
𝑔] is added to 

the product of 𝛷̃𝛥̃0.5 with the random vector to obtain an ensemble member of the parameters (𝑓, 𝑝) 

of the temperature anomaly model. Overall, this produces 200 ensemble members of the parameters 

(𝑓, 𝑟, 𝑔, 𝑝) of the temperature anomaly model. 
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Estimating Residuals of the Temperature Anomaly Model 

The simple kriging estimate of the weather residuals 𝑊 is 𝛬𝜂𝛺−1𝑈. Conditional on the estimate of the 

model parameters, the kriging estimate is the most-efficient linear unbiased estimate as well as the 

maximum likelihood estimate of the weather residuals. To calculate an approximation to the simple 

kriging estimate, first an approximation to 𝜂𝛺−1𝑈, 𝛽 = [
𝛽1
⋮
𝛽𝑀

], is calculated, where 𝛽𝑖 ∈ ℝ
𝑛𝑖  

∀𝑖 ∈ {1,… ,𝑀} and 𝛽 = 𝜂
1

1−𝜌2

[
 
 
 
 
 
𝑆1,1
−1 −𝜌𝑆1,2

∗ 𝟘𝑛1,𝑛3 ⋯ 𝟘𝑛1,𝑛𝑀
−𝜌𝑆2,1

∗ (1 + 𝜌2)𝑆2,2
−1 ⋱ ⋱ ⋮

𝟘𝑛3,𝑛1 ⋱ ⋱ ⋱ 𝟘𝑛𝑀−2,𝑛𝑀
⋮ ⋱ ⋱ (1 + 𝜌2)𝑆𝑀−1.𝑀−1

−1 −𝜌𝑆𝑀−1,𝑀
∗

𝟘𝑛𝑀,𝑛1 ⋯ 𝟘𝑛𝑀,𝑛𝑀−2 −𝜌𝑆𝑀,𝑀−1
∗ 𝑆𝑀,𝑀

−1
]
 
 
 
 
 

𝑈. 

⇒ 𝛽𝑖 = 𝜂𝑖 ((𝑅
−1)𝑖,𝑖𝑆𝑖

−1𝑈𝑖 + ∑ (𝑅−1)𝑖,𝑗𝑆𝑖,𝑗
∗ 𝑈𝑗

𝑀
𝑗=1

|𝑖−𝑗|=1

) ∀𝑖 ∈ {1,… ,𝑀} 

 

Note that 𝛬𝜂𝛺−1𝑈 ≈ 𝛬𝛽 = 𝑉̃−1(𝑐(𝑅)⨂𝐼2𝐺)(𝑐
′(𝑅)⨂𝐼2𝐺)(𝐼𝑀⨂𝐾̃)𝑉̃

−1𝛽. Next, 𝜔 = [

𝜔1
⋮
𝜔𝑀

] =

(𝑐′(𝑅)⨂𝐼2𝐺)(𝐼𝑀⨂𝐾̃)𝑉̃
−1𝛽 is calculated, where 𝜔𝑖 ∈ ℝ

2𝐺  ∀𝑖 ∈ {1,… ,𝑀}. The lower triangular Cholesky 

matrix of the Kac-Murdock-Szegö matrix 𝑅 is 𝑐(𝑅) =

[
 
 
 
 
𝜌1−1 0 ⋯ 0

𝜌2−1 𝜌2−2√1− 𝜌2 ⋱ ⋮

⋮ ⋮ ⋱ 0

𝜌𝑀−1 𝜌𝑀−2√1 − 𝜌2 ⋯ 𝜌𝑀−𝑀√1− 𝜌2]
 
 
 
 

. 

⇒ 𝜔 =

[
 
 
 
 
𝜌1−1𝐼2𝐺 𝜌2−1𝐼2𝐺 ⋯ 𝜌𝑀−1𝐼2𝐺

0 𝜌2−2√1 − 𝜌2𝐼2𝐺 ⋱ ⋮

⋮ ⋮ ⋱ 𝜌𝑀−2√1− 𝜌2𝐼2𝐺

0 0 ⋯ 𝜌𝑀−𝑀√1 − 𝜌2𝐼2𝐺]
 
 
 
 

(𝐼𝑀⨂𝐾̃)𝑉̃
−1𝛽  

⇒ 𝜔1 = ∑ 𝜌𝑀−1𝐾̃𝑉̃𝑗
−1𝛽𝑗

𝑀
𝑗=1 , 𝜔𝑖 = √1 − 𝜌

2∑ 𝜌𝑀−𝑖𝐾̃𝑉̃𝑗
−1𝛽𝑗

𝑀
𝑗=𝑖  ∀𝑖 ∈ {2,… ,𝑀} 

⇒ 𝜔 can be calculated iteratively using 𝜔𝑀 = √1 − 𝜌
2𝐾̃𝑉̃𝑀

−1𝛽𝑀, 𝜔𝑖 = √1 − 𝜌
2𝐾̃𝑉̃𝑖

−1𝛽𝑖 + 𝜌𝜔𝑖+1  

∀𝑖 ∈ {2,… ,𝑀 − 1}, and 𝜔1 = 𝐾̃𝑉̃1
−1𝛽1 +

𝜌

√1−𝜌2
𝜔2. 
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Next, 𝜉 = [
𝜉1
⋮
𝜉𝑀

] = (𝑐(𝑅)⨂𝐼2𝐺)𝜔 is calculated, where 𝜉𝑖 ∈ ℝ
2𝐺  ∀𝑖 ∈ {1,… ,𝑀}.  

𝜉 =

[
 
 
 
 
𝜌1−1𝐼2𝐺 0 ⋯ 0

𝜌2−1𝐼2𝐺 𝜌2−2√1− 𝜌2𝐼2𝐺 ⋱ ⋮

⋮ ⋮ ⋱ 0

𝜌𝑀−1𝐼2𝐺 𝜌𝑀−2√1− 𝜌2𝐼2𝐺 ⋯ 𝜌𝑀−𝑀√1− 𝜌2𝐼2𝐺]
 
 
 
 

𝜔  

⇒ 𝜉𝑖 = 𝜌
𝑖−1𝜔1 +√1 − 𝜌

2∑ 𝜌𝑖−𝑗𝜔𝑗
𝑖
𝑗=2  ∀𝑖 ∈ {1,… ,𝑀} 

⇒ 𝜉 can be calculated iteratively using 𝜉1 = 𝜔1 and 𝜉𝑖 = √1 − 𝜌
2𝜔𝑖 + 𝜌𝜉𝑖−1 ∀𝑖 ∈ {2,… ,𝑀}. 

Finally, the approximation to the simple kriging estimate is calculated as 𝑉̃−1𝜉 = [
𝑉̃1
−1𝜉1
⋮

𝑉̃𝑀
−1𝜉𝑀

]. 

 

For Table 5 of the paper, the maximum likelihood estimates of model parameters and the kriging 

estimates of the unobserved weather residuals conditional on the maximum likelihood estimates of 

model parameters were combined to approximate the maximum likelihood estimates of temperature 

changes. The true maximum likelihood estimates of temperature changes may differ slightly due to a 

combination of uncertainties in the estimates of model parameters and non-linearities in how the 

estimates of model parameters interact with the estimates of the weather residuals. The generation of 

ensemble members discussed in the next section does not depend on this approximation. 

 

 

Infilling Uncertainty of the Temperature Anomaly Model 

The covariance matrix of 𝛬𝜂𝛺−1𝑈 is 𝛬 − 𝛬𝜂𝛺−1𝜂′𝛬. To account for uncertainties in the simple kriging 

estimate of 𝑊, the 200 ensemble members of parameters are combined with the 200 ensemble 

members of temperature anomaly data to obtain 200 ensemble members of 𝑊. For each ensemble 

member of 𝑈, a vector 𝜀 = [

𝜀1
⋮
𝜀𝑀
], is generated from an independent standard normal probability 

distribution, where 𝜀𝑖 ∈ ℝ
2𝐺  ∀𝑖 ∈ {1,… ,𝑀}. 

 

𝛬 − 𝛬𝜂𝛺−1𝜂′𝛬 = 𝛬𝑐(𝛬−1 − 𝜂𝛺−1𝜂′)𝑐′(𝛬−1 − 𝜂𝛺−1𝜂′)′𝛬. Thus, for each ensemble member of 𝑈, an 

ensemble member of 𝑊 can be generated as 𝛬𝜂𝛺−1𝑈 + 𝛬𝑐(𝛬−1 − 𝜂𝛺−1𝜂′)𝜀. To calculate an 

approximation to 𝑐(𝛬−1 − 𝜂𝛺−1𝜂′), note that 𝛬−1 = (𝑉̃−1(𝑅⨂𝐾̃)𝑉̃−1)
−1
= 𝑉̃(𝑅−1⨂𝐾̃−1)𝑉̃ and 
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𝛺−1 ≈
1

1−𝜌2

[
 
 
 
 
 
𝑆1,1
−1 −𝜌𝑆1,2

∗ 𝟘𝑛1,𝑛3 ⋯ 𝟘𝑛1,𝑛𝑀
−𝜌𝑆2,1

∗ (1 + 𝜌2)𝑆2,2
−1 ⋱ ⋱ ⋮

𝟘𝑛3,𝑛1 ⋱ ⋱ ⋱ 𝟘𝑛𝑀−2,𝑛𝑀
⋮ ⋱ ⋱ (1 + 𝜌2)𝑆𝑀−1.𝑀−1

−1 −𝜌𝑆𝑀−1,𝑀
∗

𝟘𝑛𝑀,𝑛1 ⋯ 𝟘𝑛𝑀,𝑛𝑀−2 −𝜌𝑆𝑀,𝑀−1
∗ 𝑆𝑀,𝑀

−1
]
 
 
 
 
 

. 

⇒ 𝛬−1 − 𝜂𝛺−1𝜂′ ≈ 𝜏 =

[
 
 
 
 
 
𝜏1,1 𝜏1,2 𝟘𝑛1,𝑛3 ⋯ 𝟘𝑛1,𝑛𝑀
𝜏2,1 ⋱ ⋱ ⋱ ⋮

𝟘𝑛3,𝑛1 ⋱ ⋱ ⋱ 𝟘𝑛𝑀−2,𝑛𝑀
⋮ ⋱ ⋱ ⋱ 𝜏𝑀−1,𝑀

𝟘𝑛𝑀,𝑛1 ⋯ 𝟘𝑛𝑀,𝑛𝑀−2 𝜏𝑀,𝑀−1 𝜏𝑀,𝑀 ]
 
 
 
 
 

, where ∀𝑖, 𝑗 ∈ {1,… ,𝑀}  

𝜏𝑖,𝑖 = (𝑅
−1)𝑖,𝑖(𝑉̃𝑖𝐾̃

−1𝑉̃𝑖 − 𝜂𝑖𝑆𝑖,𝑖
−1𝜂𝑖

′) and 𝜏𝑖,𝑗 = (𝑅
−1)𝑖,𝑗(𝑉̃𝑖𝐾̃

−1𝑉̃𝑗 − 𝜂𝑖𝑆𝑖,𝑗
∗ 𝜂𝑗

′) if |𝑖 − 𝑗| = 1. 

 

To reduce computational rounding error, 𝑐(𝜏) is calculated as  

[
 
 
 
 
𝑐(𝜏1,1) 𝟘𝑛1,𝑛2 ⋯ 𝟘𝑛1,𝑛𝑀
𝟘𝑛2,𝑛1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ 𝟘𝑛𝑀−1,𝑛𝑀
𝟘𝑛𝑀,𝑛1 ⋯ 𝟘𝑛𝑀,𝑛𝑀−1 𝑐(𝜏𝑀,𝑀) ]

 
 
 
 

[
 
 
 
 
 
𝛹1,1 𝟘𝑛1,𝑛2 𝟘𝑛1,𝑛3 ⋯ 𝟘𝑛1,𝑛𝑀
𝛹2,1 ⋱ ⋱ ⋱ ⋮

𝟘𝑛3,𝑛1 ⋱ ⋱ ⋱ 𝟘𝑛𝑀−2,𝑛𝑀
⋮ ⋱ ⋱ ⋱ 𝟘𝑛𝑀−1,𝑛𝑀

𝟘𝑛𝑀,𝑛1 ⋯ 𝟘𝑛𝑀,𝑛𝑀−2 𝛹𝑀,𝑀−1 𝛹𝑀,𝑀 ]
 
 
 
 
 

. 

⇒ 𝛹 can be calculated iteratively using 𝛹1,1 = 𝐼𝑛1, 𝛹𝑖,𝑖 = 𝑐(𝐼𝑛𝑖 −𝛹𝑖,𝑖−1𝛹𝑖,𝑖−1
′ ) ∀𝑖 ∈ {2,… ,𝑀}, and 

𝛹𝑖,𝑖−1 = (𝑐(𝜏𝑖,𝑖))
−1
𝜏𝑖,𝑖−1 (𝑐

′(𝜏𝑖−1,𝑖−1))
−1
(𝛹𝑖−1,𝑖−1

′ )
−1
 ∀𝑖 ∈ {2,… ,𝑀}. 

 

After 𝑐(𝜏) is calculated, 𝛾 = [

𝛾1
⋮
𝛾𝑀
] = 𝑐(𝜏)𝜀 is calculated using 𝛾1 = 𝑐(𝜏1,1)𝛹1,1𝜀1 and  

𝛾𝑖 = 𝑐(𝜏𝑖,𝑖)(𝛹𝑖,𝑖−1𝜀𝑖−1 +𝛹𝑖,𝑖𝜀𝑖) ∀𝑖 ∈ {2,… ,𝑀}. Using the approximation 𝛽 ≈ 𝜂𝛺−1𝑈 from the previous 

section, one obtains 𝛬𝜂𝛺−1𝑈 + 𝛬𝑐(𝛬−1 − 𝜂𝛺−1𝜂′)𝜀 ≈ 𝛬(𝛽 + 𝛾). 𝛬(𝛽 + 𝛾) is calculated similarly to the 

previous section. First 𝜔 is calculated iteratively using 𝜔𝑀 = √1 − 𝜌
2𝐾̃𝑉̃𝑀

−1(𝛽𝑀 + 𝛾𝑀),  

𝜔𝑖 = √1 − 𝜌
2𝐾̃𝑉̃𝑖

−1(𝛽𝑖 + 𝛾𝑖) + 𝜌𝜔𝑖+1 ∀𝑖 ∈ {2,… ,𝑀 − 1}, and 𝜔1 = 𝐾̃𝑉̃1
−1𝛽1 +

𝜌

√1−𝜌2
𝜔2. 

Next, 𝜉 is calculated iteratively using 𝜉1 = 𝜔1 and 𝜉𝑖 = √1 − 𝜌
2𝜔𝑖 + 𝜌𝜉𝑖−1 ∀𝑖 ∈ {2,… ,𝑀}. 

Finally, 𝛬(𝛽 + 𝛾) is calculated as 𝑉̃−1𝜉 = [
𝑉̃1
−1𝜉1
⋮

𝑉̃𝑀
−1𝜉𝑀

]. 

 

These 200 ensemble members of weather residuals are combined with the 200 ensemble members of 

the temperature anomaly model parameters to produce 200 ensemble members of temperature 

anomalies. The 200 ensemble members of temperature anomalies are then rebaselined to the 1961-

1990 reference period. Land-ice and sea temperature anomalies are then blended by using the average 
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sea ice concentrations of 1961-1990 by calendar month. These 200 ensemble members are combined 

with the 200 ensemble members of temperature climatologies to produce 200 ensemble members of 

bias-corrected temperature anomalies. 

After running the code, three minor issues were found related to the generation of ensemble 

members of temperature anomalies. A future version of HadCRU_MLE is planned to correct for these 

issues as well as update the dataset to use newer source data. 

• In the estimation of the temperature anomaly model and in the generation of infilling

uncertainty, the homogenization and climatological uncertainties of LSAT anomalies of

HadCRUT4 were unintentionally included in the error covariance matrix 𝛤 for the measurement

and sampling uncertainties. However, the ensemble members of LSAT anomalies of HadCRUT4

also include these homogenization and climatological uncertainties. As a result, the

uncertainties of LSAT anomalies in HadCRU_MLE may be slightly overestimated. As the

homogenization and climatological uncertainties are small relative to the measurement and

sampling uncertainties, this issue negligibly affects temperature estimates and does not affect

the conclusions of the study.

• An error in the code caused the equation 𝛹𝑖,𝑖 = 𝑐(𝐼𝑛𝑖 − 𝛹𝑖,𝑖−1𝛹𝑖′,𝑖−1 ) on the previous page to be 

calculated as 𝛹𝑖,𝑖 = 𝑐(𝐼𝑛𝑖 − 𝛹𝑖,𝑖−2𝛹𝑖′,𝑖−2 ) in most cases. As a result, the estimated infilling 

uncertainty may not appropriately reflect the temporal correlation of weather residuals. The 

maximum likelihood estimates of HadCRU_MLE still appropriately account for the temporal 

correlation of weather residuals. As the estimated correlation of weather residuals between 

consecutive months is very small (0.07), this issue negligibly affects temperature estimates 

and does not affect the conclusions of the study. 

• For one in every 300 months, an error in the code caused (𝑅−1)𝑖,𝑖+1𝑆𝑖
∗
,𝑖+1𝑈𝑖+1 to be incorrectly 

added to the wrong ensemble members in the calculation of 𝛽𝑖 on page 26. The maximum

likelihood estimates of HadCRU_MLE are not affected by this error. As the estimated correlation

of weather residuals between consecutive months is very small (0.07), this issue negligibly

affects temperature estimates and does not affect the conclusions of the study.
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