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Abstract
The concept of object identification and modeling has fueled a 
lengthy scientific effort to convert remotely sensed images into 
geographic phenomena. The objective of this article was to develop 
a new concept for characterizing and identifying drought spatial 
objects from satellite images for improved drought prediction and 
mitigation using a back propagation artificial neural network (ANN). 
To characterize drought as a spatial object, 11 attributes from 
multi-sensors and resolutions (such as Standardized Deviation 
of Normalized Difference Vegetation Index [SDNDVI], Digital 
Elevation Model [DEM], Soil Water Holding Capacity, Ecological 
Regions, Land Cover, Standard Precipitation Index [SPI], and 
oceanic indices were used. After characterizing and identifying 
drought spatial objects, the experimental focus was on predicting 
drought in a one- to four-month time lag using a back propagation 
ANN. Using this approach, the drought was predicted for one to 
four months lead time with correlation coefficient (r) accuracies of 
0.70–0.95. The output of this new concept could help in integrating 
the available information from multi-sensors and resolutions for a 
drought mitigation application at different levels of decision making. 
Future research may focus on experimenting with the approach in 
wider coverage areas, such as at regional or continental levels, and 
quantifying the uncertainty level of the approach for its practical use 
in drought adaptation planning and mitigation applications.
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Introduction
The concept of object identification and modeling has fueled 

a lengthy scientific effort to convert remotely sensed images into 
geographic phenomena [1]. In this research, a drought spatial object is 
defined by the geographic phenomenon drought that is characterized 
by a group of pixels that can be segmented into separate regions with 
defined spatial locations (e.g., longitude and latitude) and attributes 
[2]. Object identification in remote sensing is usually done by 
converting raster pixel values to geographic objects. In this process, 
the remotely sensed image is first grouped to provide approximately 
homogeneous segments, and then classified into known classes 
[1]. According to Stein et al. [1], various procedures for image 
segmentation are well documented and include procedures based 

on mathematical morphology, edge detection, and identification of 
homogeneity in one band or in a set of bands. Classification routines 
include statistical routines such as k-nearest neighbor classifiers and 
increasingly fuzzy classification methods.

The main objective of several remote sensing studies is to identify 
objects that have an ontological representation on the earth’s surface. 
These objects can have different meanings, and they can be of various 
types and shapes. A segmentation procedure is commonly first 
applied to identify homogeneous sets of pixel values in one or more 
bands [1].

The concept of identifying and modeling drought as an object 
is new [3]. Rulinda et al. [3] indicated that “a next step in drought 
modeling is an approach focusing on spatial object and this kind of 
object can be built from different temporal and spatial resolution 
images.” In remote sensing, objects are identified and subsequently 
classified on the basis of pixel information, and the objects are then 
tracked over time, during which their behavior may be governed by 
external factors that also have to be identified and quantified [1].

In remotely sensed images, a pixel or group of pixels with similar 
spectral reflectance are used to characterize the objects of interest. 
Remote-sensing object-classification methods usually consider 
information regarding the texture of features on the earth. The pixels 
identified as having the same texture are grouped, and the groups 
are considered as objects [2]. These objects can represent physical 
features on earth, such as roads, parcels, or water bodies. When these 
physical features are classified based on texture, they are considered 
to be physical objects [2]. Expanding upon this basic concept, this 
research identifies virtual objects by using incidence of vegetation 
stress during drought to identify virtual drought spatial objects 
(using drought classes of extreme drought, severe drought, moderate 
drought, near-normal, and above optimum) on the real ground. To 
characterize the virtual drought object, 11 attributes from multi-
sensors and resolutions were used. The objective of this article was 
to develop a new concept for characterizing and identifying drought 
spatial objects from satellite images for improved drought prediction 
and mitigation using a back propagation artificial neural network 
(ANN). Materials and methods are presented in detail in section 2. 
Section 3 discusses the experimental analysis using artificial neural 
networks, and section 4 presents the conclusions and future research 
recommendations.

Materials and Methods
The identification of a drought object from a group of pixels 

involved a number of scientific investigations, including the 
identification of the key attributes characterizing drought, modeling 
drought using these key attributes, and evaluating the reliability of 
the models. Eleven attributes characterizing drought were iteratively 
selected for this research.

Attribute selection

In the attribute selection process, we used Akaike’s Information 
Criterion (AIC) [4-6], Variance Inflation Factor (VIF) [6-8], and 
Moran’s I index [6,9]. The AIC was used as a model performance by 
including a given potential attribute; the VIF was used as a parameter 
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for controlling the duplication of the information of the potential 
attribute with previously selected attributes; and Moran’s I index was 
used as a parameter for controlling absence of key attributes and for 
avoiding misspecification of the drought spatial object model. The 
three parameters used for selecting the relevant attributes in the whole 
experimental process are presented in Figure 1 for the subsequent 
modeling experiment. In this figure, floristic region (flor_Rgion) 
is not connected with the relevance metrics, since this attribute 
was not related to the dependent attribute. Using these criteria, 11 
attributes were identified for modeling drought spatial objects. The 
lists, acronyms, format, sources and references of these attributes are 
presented in Table 1 [10-22].

Data source

The data used for this study were obtained from biophysical 
and remote sensing imagery sources (Table 1) within the extent of 
Ethiopia (East Africa). Ethiopia occupies the interior of the Greater 
Horn of Africa, stretching between 3° and 14° N latitude and 33° and 
48° E longitude (Figure 2), with a total area of 1.13 million km2 [23]. 
Figure 2 presents the grid point extraction locations within the spatial 
extent of Ethiopia. For each grid point, all input data variables were 
extracted to be used in developing a prediction model.

ANN training and prediction experiment

In the ANN modeling, the network was used for predicting one- 
to four-month SDNDVI values (agricultural drought) using the 11 
key attributes of drought. As a typical neural network model [24], the 

network in the drought model had three types of processing units. 
The first units were the 11 input drought attributes. The second units 
were functions characterizing drought severity extent and the third 
units were the hidden units (the weights characterizing the drought 
attributes and the output drought severity extent).

The weights associated with these connections (w) constitute 
what a neural net knows and determine the output from an arbitrary 
input from the environment [24,25]. Using this principle, a back 
propagation network with an appropriate weight (w) was used to 
model the relationships between the key attributes and the target 
drought value. In this process, the network learning algorithm 
searched through the space of w for a set of weights offering the best 
fit with the training sample data.

From the available learning algorithms in ANN, a back 
propagation algorithm is an effective learning technique that is 
capable of exploiting regularities and exceptions in training sample 
data [25]. This algorithm was also used for drought forecasting [26] 
in the past, and interesting results were obtained. For these reasons, a 
back propagation algorithm was used in drought exploratory analysis 
and prediction experiments.

To get the appropriate ANN models, four steps were followed: 
assembling the data for the actual training, creating the network 
object, training the network, and simulating response to new inputs 
(model testing). For training and testing, 67,488 records from the 24 
years (1983-2006) of historical data were used. Of these, 80% were used 
for training and 20% for testing the models. The data split, 80-20% 
(80% for training and 20% for testing), was based on similar research, 
where improved results were found for a 80-20% split compared to 
other splits, such as 50-50%, 60-40%, and 70-30% [27]. The training 
and test datasets were randomly selected using the RANDBETWEEN 
function in Microsoft Excel. After generating the random number, 
sorting was done to split the training and test datasets. The Neural 
Network Toolbox on Matlab v7.9.0 [28] was used to build the ANN 
models.

A supervised training (training with the guidance of an expert) 
method was used in this study. The reason for using supervised 
training instead of unsupervised training was that during the 
experimental training, the expected outputs were already known 
(the drought object). In this kind of scenario (when expected outputs 
are known), both MathWorks [28] and Heaton [29] recommend 
supervised training as the appropriate training method. The workflow 
in the drought training experiment is presented in Figure 3. In this 

 

Figure 1: Diagrammatic illustration of the iterative process for selecting 
relevant attributes.

No. Attribute Acronym Format Source Reference (s)
1 Standardized Deviation of Normalized

Difference Vegetation Index
SDNDVI Raster NOAA AVHRR [10,11]

2 Digital Elevation Model DEM Raster USGS [12]
3 Soil Water Holding Capacity WHC Raster USGS [12]
4 Ecological Regions (Ecosystems of

Ethiopia represented by veg_Ethiopia)
veg_Ethiopia Vector Ecodiv.org [13]

5 Land Cover Landcover Raster ESA [14,15]
6 Three Month Standard Precipitation Index SPI_3month Raster IRI [16,17]
7 Pacific Decadal Oscillation PDO Point data NOAA [18]
8 Atlantic Multi-decadal Oscillation Index AMO Point data NOAA [18, 19]
9 North Atlantic Oscillation NAO Point data NOAA [18,20,21]
10 Pacific North American Index PNA Point data NOAA [18]
11 Multivariate ENSO Index MEI Point data NOAA [18,22]

Table 1: Attributes identified for drought spatial object modeling experiment.
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training process, the neural network adjusts the values in the weight 
matrix based on the differences between the anticipated output and 
the actual output. A sample of the learning curve, with a learning rate 
of 0.04, is presented in Figure 4.

In the training mode of ANN, the algorithm requires a certain 
number of hidden layers and neurons in the hidden layer. The number 
of layers was decided based on the recommendation of Heaton [29]. 
Heaton [29] recommended that two hidden layers be used when 
the objective of the analysis is to approximate smooth mapping to a 
reasonable accuracy level of the output. After reviewing other similar 
studies [30,31], we used two hidden layers in our analysis (Figure 
5). In this study, 20 neurons were used for each hidden layer, and 
the network was trained for 500 epochs (a completed iteration of 
the training procedure) using a back propagation algorithm with a 
learning rate of 0.04. Investigating the influence of a different number 
of neurons and epochs on drought prediction is beyond the scope of 
the current research.

Experimental Analysis and Discussions
Drought object model attributes selection

To select the key attributes, all attributes that were identified 
from past research were statistically explored for their relationships 
with the new drought object model developed in this study. Since 11 
explanatory attributes were identified, it was not possible to present 
all the statistical explanatory analysis in this subsection. For this 
reason, four key attributes were selected and the steps followed for all 
key attributes are presented using these sample attributes. These four 
attributes were also assumed to be the most significant and also the 
most repeatedly used by past research [32-34]. The selected attributes 
were DEM, WHC, 3-month SPI and SDNDVI. For the attribute 
DEM alone, the r-squared was 0.095, AIC was 8,012.92 and spatial 
autocorrelation (Global Moran’s I index) was 0.58 (p<0.01). The 
interpretation for this is that DEM alone can explain about 10% of 
the variability of drought. The spatial autocorrelation also showed that 
there is statistically significant clustering of the ordinary least squares 
(OLS) residuals in this prediction process. The null hypothesis is that 
there is clustering of the residuals, and this hypothesis cannot be 
rejected. This means that all the key attributes that explain SDNDVI 
are not included in the model. This is a logically meaningful statistical 
output in that only DEM is included from the other potential attributes 

 

Figure 2: Map showing the distributions of the 2812 grid points in Ethiopia.
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Figure 3: Workflow in supervised drought object training.
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Figure 4: ANN learning curve on training data.
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collected from previous research. Each of these attributes was tested 
using the same procedure as the DEM attribute.

In an iterative way, different combinations of the explanatory 
variables were tested. Some of the iterative combinations are 
presented in Table 2. In all of the combinations, the expected signs 
of the coefficients have been checked. All of the explanatory variables 
were found to have coefficient values as expected. For instance, as the 
3-month SPI values decrease, the SDNDVI values have to decrease; 
conversely, as the 3-month SPI values increase, the SDNDVI values 
have to increase. This is because both values are showing the drought 
and non-drought situation of a given location as confirmed by past 
research [32-34]. Therefore, these attributes can be reliably used for 
representing a drought object.

The r-squared values were used as a model fitness criterion (Table 2). 

From the various combinations, the r-squared ranged from 0.11 to 
0.85. This means that these models can explain from 11% to 85% of 
the drought object variability. It was also realized that as the number of 
attributes increases, the r-squared was found to increase. The highest 
R2 (i.e., 0.85) was found when the August SDNDVI was included 
in the various combinations. The August SDNDVI alone can also 
explain about 82% of the variability of the September SDNDVI. This 
is expected because the NDVI value of the previous month (August) 
is correlated with the following predicted month (September). The 
Akaike’s Information Criterion (AIC) ranges from 6,797 to 8,017. 
The AIC model selection criterion is based on the fact that no single 
model represents the whole truth or complete information about 
the phenomenon under investigation, and models only approximate 
reality [4]. Based on this principle, Akaike [5] developed a relative 
index for a model that would best approximate reality using some 
set of explanatory variables. Since it is a relative value (the smaller 
the value, the better the model) for comparing models [5,35], the 
AIC in this research was used to compare the models for relatively 
better representation of the drought object. Interestingly, the lowest 
AIC value was obtained when the four attributes were combined 
for modeling the drought object (Table 2). This indicates the strong 
relationships of the explanatory variables with the dependent variable. 
As the number of explanatory variables increases, drought variability 
is captured in the model.

The statistical analysis output of the model from the four 
explanatory attributes (DEM, WHC, August 3-month SPI, SDNDVI 
August) is presented in Table 3. As can be observed, all the coefficients 
are statistically significant. The Variance Inflation Factor (VIF) 
value, which is a measure of the severity of multicollinearity in 
regression analysis [7], was also found to be low in all the attributes. 
Multicollinearity here is the statistical phenomenon in which two 
or more predictor variables in the regression model are highly 
correlated [7,8]. Obrien [8] indicated that a VIF value greater than 10 
usually shows the existence of multicollinearity. As a guide, ESRI [6] 
recommended that the VIF value should be less than 7.5 for GIS data. 
The maximum VIF value recorded in the drought object model using 
the four attributes is 1.89, which is much less than the recommended 
value (Table 3). Therefore, using the four key attributes, drought in 

No. Independent attribute (s) Dependent attribute Adjusted r-squared AIC
1 DEM, WHC SDNDVI September 0.11 8006.2
2 DEM, SDNDVI August SDNDVI September 0.83 6869.7
3 DEM, August 3-month SPI SDNDVI September 0.19 7939.3
4 SDNDVI August, August 3-month SPI SDNDVI September 0.84 6811.6
5 SDNDVI August SDNDVI September 0.82 6886.7
6 WHC, August 3-month SPI SDNDVI September 0.09 8016.5
7 WHC, SDNDVI August SDNDVI September 0.82 6887.8
8 DEM, WHC, August 3-month SPI SDNDVI September 0.19 7938.7
9 N DEM, WHC, August 3-month SPI, SDNDVI August SDNDVI September 0.85 6797.2

Table 2: Experimental result of key attribute selection for modeling drought objects.

No. Key attribute Coefficient Standard Error t-statistic Probability VIF value
1 Intercept 10.62 2.62 4.05 0.00006 ---
2 DEM -0.0098 0.0024 4.09 0.00005 1.89
3 SDNDVI August 0.96 0.0173 55.29 0.0000 1.29
4 WHC 0.1179 0.035 3.36 0.0008 1.59
5 August 3-month SPI 0.122 0.015 8.08 0.0000 1.09

Table 3: Exploratory data analysis output of drought object model.

Figure 5: A screenshot from ANN back propagation training.
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September is:

DroughtObject = 10.62 – 0.0098DEM + 0.96 SDNDVI August + 
0.1179 WHC + 0.122 August 3-month SPI.

Cross-validation of drought ANN models

To cross-validate the drought object models, the data were 
randomly split into two sets: a training dataset (80%) and a test dataset 
(20%). Accordingly, 53,990 records were used for training and 13,498 
records for testing.

The learned parameters from the data in the training dataset 
were subjected to those parameters in the test dataset. The prediction 
qualities of the models were then evaluated by comparing the 
predictions with the target data (SDNDVI). Using the 24 years of data, 
the one- to four-month drought prediction models’ performance on 
test datasets for the growing months (June to October) are presented 

in Figure 6 (a–j) using regression scatter plots (i.e., observed versus 
predicted) and the best-fit line.

As can be observed from Figure 6, the best fit for the June 
prediction model was obtained for the one-month prediction 
(r-squared=0.72). Both July one-month and two-month predictions 
(for August and September) showed best fit (i.e., r-squared=0.84 and 
0.69, respectively) as expected. The August one-month prediction 
(for September) was also found to be the best fit (rsquared=0.90) 
as compared to the two-month prediction (r-squared=0.53). The 
September one month prediction model also has a low correlation 
value (r-squared = 0.59) as compared to the other growing months 
(i.e., June, July, and August) one-month prediction models. September 
one-month prediction (predicting October using September data) 
was low because September is in the growing period whereas October 
is dry and vegetation in the study area is partially or fully senesced. 
In all the predictions for October, the scatter plot has extreme 
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Figure 6: Scatter plots of observed and predicted drought object using ANN: The red lines are the best fits for the scatter plots.
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outlier values, and it needs further investigation. At each iteration, 
the correlation coefficient (r) (which is a measure of the accuracy 
levels of the models) was assessed. The summary of these accuracy 
levels for different time-lag predictions is presented in Table 4. The 
highest correlation coefficient was for Augusts’ one-month prediction 
(predicting September using August data). This is in agreement with 
our expectations. Both these months are vigorous plant-growing 
periods and can be captured by NDVI data, and the two datasets are 
the same. The lowest correlation was for June’s three-month prediction 
(using June data to predict September). This is also in line with our 
expectations: June is drier and it marks the start of the growing 
season, while September is within the vigorous plant growth period.

Conclusions
In this research, we developed a scientific approach for modeling 

and predicting drought as a spatial object. To characterize and identify 
drought spatial objects, relevant attributes were selected using AIC, 
VIF and Moran’s I index.

The AIC (a relative value to compare between models) was 
used as a model performance by including a given potential 
attribute and was found to have a value range of 6,797.2-8,016.5. 
The lowest AIC value was obtained when the four attributes were 
combined for modeling drought objects, which is in agreement 
with our expectations and established theoretical framework. 
The VIF as a parameter for controlling the duplication of the 
information of the potential attribute with previously selected 
attributes was found to have a maximum value of 1.89, which 
is much lower than the recommended 7.5. The Moran’s I index 
as a parameter for controlling absence of key attributes and for 
avoiding misspecification of the drought spatial object model was 
assessed by checking the clustering of the residuals, and in all of 
the assessed models there was no clustering of the residuals. This 
iterative way of attribute selection is helpful in developing reliable 
ANN models for predicting drought in one- to four-month time 
lags.

The output of this new concept could help in integrating the 
available information from multisensors and resolutions for drought-
mitigation applications at different levels of decision making. Future 
research may focus on experimenting with the approach in wider 
coverage areas, such as regional or continental levels, and quantifying 
the uncertainty level of the approach for its practical use in drought 
adaptation planning and mitigation applications. Future research 
may also focus on identifying optimum neuron numbers in ANN, 
specifically in optimizing too few and too many neurons in the hidden 
layers for improved drought object prediction.

No. Model Target month Model Correlation-
Coefficient (r)

1 June one-month prediction July 0.85
2 June two-month prediction August 0.77
3 June three-month prediction September 0.70
4 June four-month prediction October 0.73
5 July one-month prediction August 0.92
6 July two-month prediction September 0.83
7 July three-month prediction October 0.74
8 August one-month prediction September 0.95
9 August two-month prediction October 0.73
10 September one-month prediction October 0.77

Table 4: Prediction accuracy of the networks on the test dataset.
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