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An Emerging Role of MrgC in 
Inhibiting Neuropathic Pain
Yun Guan1*

The treatment of nonmalignant neuropathic pain continues 
to challenge clinicians owing to the limited efficacy of available 
treatments, dose-limiting adverse effects of drugs that are available, 
and lack of pain-specific treatment targets. G protein-coupled 
receptors (GPCRs) have been used frequently as drug targets for 
a variety of pharmacotherapies, including those for pathological 
pain. One novel family of GPCRs, the so-called Mas-related G 
protein-coupled receptors (Mrgs) may play a role in the function of 
nociceptive neurons as well as in sensation and modulation of pain 
[1-3]. The Mrg family in mice can be grouped into several subfamilies 
(MrgA1–22, MrgB1–13, MrgC1–14, and MrgD–G). The rat genome 
possesses one representative each of MrgA, C, and D and 10 MrgB 
genes [4], and humans possess just four MrgX genes (1–4) [1,5]. Mrgs 
are exclusively expressed in small-diameter afferent sensory neurons 
(presumably nociceptive) that can be visualized by lectin IB4 labeling 
or by expression of the glial cell line-derived neurotrophic factor co-
receptor c-Ret [1,2]. Recent preclinical studies indicated that certain 
Mrgs, especially MrgC (mouse MrgC11 and the rat homolog rMrgC), 
may be involved in pain modulation and represent a compelling new 
target for pain-specific therapy.

MrgC can function as a receptor for peptides terminating in 
RF/Y-G or RF/Y-amide, such as the molluscan peptide FMRFamide, 
γ2-melanocyte-stimulating hormone (MSH), and bovine adrenal 
medulla peptide (BAM). Intriguingly, some MrgC ligands belong to 
the family of endogenous opioid peptides known to be involved in pain 
transmission, such as proenkephalin A gene products BAM 8-22 and 
BAM 22 [1-3]. However, the evidence that MrgC has a role in sensory 
processing of pain is mixed and controversial. For example, systemic 
and intrathecal injection of putative MrgC ligands, such as BAM 8-22 
and γ2-MSH, produced a pro-nociceptive effect in acute pain models 
[6]. In contrast, intrathecal injection of BAM 8-22 inhibited persistent 
inflammatory pain, chemical pain, and spinal c-fos expression in 
an opioid-independent manner [7-10]. Intrathecal BAM 8-22 also 
dose-dependently diminished NMDA-evoked pain behaviors in rats, 
suggesting that it may induce spinal analgesia partially by suppressing 
NMDA receptor-mediated neuronal excitation [11]. The reasons for 
these contradictory findings remain unclear and need to be clarified 
in future studies. One limitation in previous peptide injection 
experiments is that the selectivity and mechanism of drug action 
were not directly addressed. Thus, the peptides studied may activate 
receptors that are distinct from Mrgs, a potential explanation for the 
conflicting results [3,6-10]. Other reasons for the discrepancies may 
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relate to differences in animal conditions (physiological condition vs. 
tissue or nerve injury), etiologies (inflammatory vs. neuropathic pain) 
[12,13], behavioral measures (spontaneous vs. reflex), and drug dose. 

Examining the roles of MrgC in pain is challenging, as deletion 
of a single Mrg gene may not produce a detectable phenotype change 
owing to the potential for functional redundancy in the Mrg family. 
As yet, no one has identified an MrgC antagonist that can be used to 
directly examine the receptor mechanisms of BAM 8-22’s action in 
rodents, though 2,3-disubstituted azabicyclo-octane was suggested to 
be a selective antagonist for both MrgC11 and human MrgX1 [14]. 
Recently, a unique mouse line was generated in which all nociceptive 
neuron-expressing Mrgs are deleted (Mrg-cluster∆-/-) [15,16]. The 12 
intact Mrg coding sequences that were deleted, including MrgC11, 
represent ~50% of the potentially functional Mrg repertoire in mice. 
Importantly, the Mrg-cluster∆-/- mice are viable and fertile. Deleting 
Mrg clusters also did not affect dorsal root ganglion (DRG) neuronal 
survival, nor did it alter the fate determination or differentiation 
of small-diameter DRG neurons. However, Mrg-cluster∆-/- mice 
consistently display a higher level of spontaneous pain in the 
second phase of the formalin test and prolonged inflammatory 
pain, compared to wild-type littermates [16]. The increase in c-fos+ 
neurons is also more evident in Mrg-cluster∆-/- mice than in wild-
type mice after an intraplantar formalin injection. These findings 
suggest that activation of Mrgs by intense noxious input inhibits 
the exaggeration and prolongation of pain. Importantly, deletion of 
the Mrg gene cluster eliminates the analgesic effect of intrathecally 
applied BAM 8-22 on neuropathic mechanical allodynia [16]. 
Furthermore, BAM 8-22 attenuates windup of wide dynamic range 
neuronal response to repetitive noxious inputs in wild-type mice, 
an effect also eliminated in Mrg-cluster∆-/- mice. Because MrgC11 is 
the only Mrg activated by BAM 8-22 that is absent from the Mrg-
cluster∆-/- mouse, these findings suggest that the pain inhibitory effect 
of BAM 8-22 is mediated by Mrg signaling, most likely MrgC11, in 
mice. Although MrgC may be the major receptor for BAM 8-22 
[2,15,17], and BAM 8-22 at the spinal site might inhibit neuropathic 
pain, it is critical to determine the specificity of these compounds for 
MrgC in pain inhibition. So far, information regarding the roles of 
MrgC in persistent pathological pain states is sparse and conflicting, 
and the therapeutic utility of MrgC ligands in neuropathic pain 
remains to be established. Effects of MrgC activation on afferent 
sensory neuronal responsiveness and spinal pain transmission are 
also largely unknown, leaving open the question of the underlying 
cellular and neurobiological mechanisms. 

Altered Ca2+ activity in afferent sensory neurons is essential for 
peripheral neuronal sensitization [18,19]. High-voltage-activated 
(HVA) Ca2+ channels play an important role in the detection 
and transmission of nociceptive stimuli in DRG neurons and in 
neuropathic pain [19,20]. Opioids are known to inhibit HVA Ca2+ 
currents in DRG neurons; this inhibition leads to an attenuation 
of neuronal excitability and reduced excitatory neurotransmitter 
release. Intriguingly, BAM 8-22 inhibits HVA Ca2+ current in cells 
that express human MrgX1 [21]. Yet, whether BAM 8-22 inhibits 
HVA Ca2+ current specifically through activation of Mrgs has not 
been directly tested owing to the lack of Mrg-deficient neurons. 
Furthermore, whether BAM 8-22 can activate endogenously expressed 
MrgC on native rodent DRG neurons to inhibit HVA Ca2+ currents 
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has not been tested. Although recent studies demonstrated that MrgC 
ligands may function as anti-hyperalgesic agents at the spinal level, 
direct physiological proof of a role for MrgC in neuropathic pain is 
lacking. Functional and mechanistic studies are needed to elucidate 
details of an MrgC-mediated pain-inhibitory mechanism. Such 
studies could open doors that could lead to identification of a new 
pain-specific treatment target for neuropathic pain and development 
of mechanism-based pain treatment strategies. 
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