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Abstract

Changing air temperature trends within urban regions deserve
careful monitoring as they may reflect modifications in the thermal
environment, including the development of an urban heat island.
Air temperature fields need to be dense in order the state of the
thermal environment to be adequately assessed; yet in most cases,
the networks of ground measuring stations are sparse. This paper
attempts to define the relationship between downscaled land
surface temperature (LST) at resolution 1 km as deduced from
MSG-SEVIRI satellite images, and air temperature (T_,) in the urban
agglomeration of Athens, for varying land cover types. Polynomial
regression and artificial neural networks are used to estimate T
from LST at a particular time, whereas the LST values for several
hours before are also used. In this way, the “memory” of the
surface materials is taken into consideration, practically reflecting
the thermal inertia associated with land cover. For urban stations,
an average R? of 0.85 and an RMSE of 1.0-1.2°C was achieved
for the majority of the examined time period, an indication of both
the capacity of the methodology to define T_, fields in the area
under consideration as well as of the fact that LST is the controlling
parameter for T_. The parametric relations as extracted from the
above methodology are in principle applicable for a specific station,
as they depend on the land cover and the associated land surface
characteristics. They may be also used for stations in areas with
similar land cover and in the same climatic zone.
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Introduction

The thermal environment is a significant part of the urban
environment; it is a reflection of the surface and atmosphere energy
balance as well as of the energy fluxes between the surface and the
atmosphere close to the surface [1]. Elevated temperatures in urban
areas enhance photochemical pollution and increase the energy needs
for cooling [2,3]. In addition, a well-documented phenomenon in
cities is the urban heat island (UHI), which refers to higher LST and air
temperatures (T ) in the city as compared to the rural surroundings
[1]. For Athens a mean intensity of 5.6°C has been reported for the
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surface urban heat island (SUHI) during summer months using
satellite remote sensing [4], while a summer daytime UHI amplitude
growing rate of 0.8°C per decade has also been found [5]. The much
higher sensible heat flux values compared to latent heat flux expected
in Athens have been validated in energy budget experiments [6].
LST has been found to be up to 5°C lower than T during summer
nights and up to 15°C higher during the rest of the day [7]. Weather
prediction models have recently also been used in order to simulate
the thermal environment of Athens [8,9]. Studies attempting to assess
the effect of local scale and mesoscale phenomena on the UHI of the
area have reported that both sea breeze and anticyclonic conditions
tend to reduce the UHI intensity [10].

The ambient temperature in urban areas presents a strong
spatial variability because of the variable thermal balance of the
various urban zones [11]. Several studies have shown that the
ambient temperature may fluctuate several degrees even in small
zones of several hundred meters [12]. Knowledge of the exact spatial
distribution of the ambient temperature is of crucial importance
for energy, comfort and environmental reasons. Higher urban
temperatures have a serious impact on the energy consumption of
buildings spent for cooling purposes and may increase up to 100%
the corresponding energy demand [13]. Proper design of the auxiliary
heating and cooling systems requires a full knowledge of the local
temperature conditions in order to avoid over or under sizing of the
auxiliary energy components. In parallel, design and implementation
of adequate mitigation systems in open spaces and buildings
requires a complete knowledge of the local thermal conditions in
order to counterbalance properly the impact of urban heat island
[14]. Furthermore, it is well known that higher local temperatures
affect strongly local comfort conditions while may cause increased
pollution levels and in particular higher ozone concentrations
[15,16]. Thus, knowledge of the local thermal conditions is essential
for the planning and implementation of the urban resilience plans.
Finally, the study of T in the urban environment is highly important
in view of the observed worldwide urbanization trends. Correlation
analysis between LST, albedo, emissivity and land cover indices has
been found to provide important insights regarding urban UHI [17],
while the use of gridded T values could be a further aid.

T, is provided by ground measuring stations; yet in many urban
areas the network of ground measuring stations is sparse, a fact which
limits a full depiction of the T field within the urban boundaries.
Satellite remote sensing on the other hand allows the estimation of
LST at spatial resolutions ranging from 60 m x 60 m to 1 km x 1
km, with the respective temporal resolutions ranging from 16 days
to few hours. To this end, it is important to examine the relationship
between LST and T, in an urban area, taken that a statistically
significant relationship may in practice allow the construction of T
fields at higher spatial resolution compared to the respective one of
the network of ground stations.

Drawbacks may well arise, mostly with respect to modifications in
land cover, a fact which may impose constraints to the applicability of
the defined relationship as the type of land cover influences latent and
sensible heat, the emission of thermal radiation from the ground and
finally the capacity of the ground surface to retain heat once acquired.
To this end, relationships of this kind need also to indirectly integrate
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the “memory” of the thermal state of the surface, i.e. the temperature
values of LST at times prior to the estimation time. Such integration
may reflect the type of land cover and the thermal capacity of the
ground.

In the last decades several studies have attempted to estimate
T, using satellite remote sensing data. Chen et al. [18] used simple
linear regression models between LST from GOESS satellites and air
temperature at 1.5 m height, over a four winter period (1978-1981)
in Florida, USA. They reported a mean correlation coefficient of 0.87
and an average sample standard deviation from regression of 1.57°C.
Green et al. [19] used the normalized difference vegetation index
(NDVI) together with LST. The data used were from the AVHRR
sensor of NOAA satellites, between 1988 and 1992, over Africa and
Europe and the root mean square error (RMSE) found ranged from
1.83°C to 3.18°C. Many other studies have also used vegetation data
and several of them have followed the Temperature Vegetation Index
(TVX) method [20,21], which assumes that NDVI presents a linear
correlation with LST. Moreover, remote sensing techniques have
been used in order to estimate air temperatures in a UHI. For example
Pichierri et al. [22] made use of MODIS brightness temperature,
in order to monitor canopy layer temperatures for the years 2007-
2010. The study domain was the city of Milan, Italy; an RMSE from
1.2°C to 1.8°C was estimated. Bechtel et al. [23] used multi temporal
MSG-SEVIRI LST data over Hamburg, Germany and reached an
RMSE of 1.5-1.8°C with explained variances of 97-98%. Good [24]
estimated daily air temperature minima and maxima over Europe for
2012-2013 with the use of such predictor variables as LST, fraction
of vegetation, latitude, elevation and urban fraction. The latter were
regressed against air temperature resulting in RMSE of about 2.5°C.
Sun et al. [25] used a different approach than most studies, as they
utilized thermodynamic parameters along with MODIS data for the
North China Plain. They succeeded an accuracy of better than 3°C for
80% of the derived air temperatures.

Area of Study and Data Sources

The study region of this paper is the urban agglomeration
of Athens, Greece (37°58'N, 23°43’E), an area of about 412 km?
with population of four million inhabitants. Athens is located in
the southeastern end of the Greek mainland, in the Attica basin
(Figure 1). The city is bounded by mountains to the north, northeast
and east directions and by the Saronic Gulf to the southwest. Athens
experiences a typical Mediterranean climate with mild, relatively
wet winters and hot, dry summers. The average temperature during
summer is about 28°C, while the daily maximum temperature in July
and August exceeds 33°C.

For the purposes of the study, satellite (in total 8092 LST images
for the summers of 2014 and 2015) and ground data were used for
a selected period. Satellite data originate from the geostationary
Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard
the Meteosat Second Generation (MSG) satellites. SEVIRI has twelve
spectral channels covering visible and infrared wavelengths with a
high temporal resolution of 15 minutes and a spatial resolution of 3-5
km. An operational LST product at an enhanced spatial resolution (1
km) was used, provided by the Institute for Astronomy, Astrophysics,
Space Applications and Remote Sensing (IAASARS) of the National
Observatory of Athens (NOA). The methodology of the NOA/IAASARS
system is described in Keramitsoglou et al. [26,27]. In brief:

(a) Real time acquisition and preprocessing of raw MSG-SEVIRI
data results in radiance images at a spatial resolution of 3-5 km
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depending on the distance from the sub-satellite nadir viewpoint.

(b) Cloud-free data are then used for estimating LST by employing
the Operational version of the Automatized Atmospheric Absorption
Atlas (4A/OP) line-by-line radiative transfer model and a support
vector regression (SVR) machine, and

(c) downscaling of the LST images is succeeded by employing
an algorithm that upscales ancillary static and dynamic datasets (e.g.
land cover, elevation, slope, vegetation indices, etc.) with fine spatial
resolution (1 km) to the MSG-SEVIRI geometry and then uses a
regression model to fine scale ancillary datasets.

The improvement of the initial coarse spatial resolution of MSG-
SEVIRI imagery is considered necessary due to the need for detailed
spatial information.

In terms of the ground data, air temperature observations
from 7 weather stations (Figure 2), part of NOA network stations,
were acquired. The selection of the stations was made taking into
account their location so as to include areas of varying land cover. In
particular, three stations are located in the most densely populated
region of the city, two stations in the suburban area and two stations
in peri-urban areas. Further details of the stations can be seen in
Table 1. The temperature sensors used, were part of the Davis Vantage
Pro2 weather stations installed at the selected case study locations.

Finally, the Urban Atlas land cover data from the European
Environment Agency were also used [28]. The initial 20 land cover
classes of the database were merged into the 3 classes of study interest
(urban, suburban, peri-urban) (Figure 3). Land cover data were
upscaled to 1 km and projected to the same coordinate system (UTM,
ED50) with MSG-SEVIRI images in order to be used in conjunction
with the latter.

Methodology and Results

The relationship between T, and LST is rather complex, determined
mostly by the surface energy budget. The vast number of parameters
involved (e.g. wind speed, surface roughness, atmospheric stability) as
well as the complicated urban geometry makes an analytical approach
to the problem very demanding. A simplification can be achieved

Figure 1: Study area.
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Figure 2: Locations of the 7 used weather stations.

Table 1: Characteristics of weather stations.

Location Latitude Longitude Elevation (m) Type
Ampelokipoi 37°59'06"N |23°45'14"E 136 urban
Athens 37°58'42"N |23°42'56"E 50 urban
Kantza 37°58'45"N |23°51'56"E 221 peri-urban
Markopoulo 37°52'37"N |23°56'13"E 104 peri-urban
Maroussi 38°03'06"N 23°48'47"E 235 suburban
Penteli 37°02'50"N 23" 51'53"E 495 suburban
Peristeri 37°00'06"N |23°42'14"E 55 urban

Land cover types
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Figure 3: Land cover types of Athens agglomeration used in this study.
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considering statistically based methods and artificial neural networks.
In this study, the estimation of Tair from LST on the basis of the
multitemporal approach of [23] was attempted with the use of:

Polynomial regression

In particular and taking advantage of the high temporal resolution
of MSG-SEVIRI data, a multi-temporal approach was followed
leading to sets of parametric relations. According to this method,
T, at a particular hour is calculated using the LST value of the same
hour, as well as the LSTs of previous hours (acting as predictors). The
physical basis of this approach lies to the fact that part of the heat
stored in urban structures will be released a few hours later, warming

the air above.

doi:http://dx.doi.org/10.4172/2327-4581.1000139

Artificial neural networks

A feed forward network was developed using as input and output
layer entries LST and T, respectively, with a hidden layer of 10
neurons. The network was trained by adjusting the weights in the
hidden layer so as the output values errors to be as small as possible.
The architecture of the two-layer neural network is described as
follows: The LST values were used as the vector input of the network,
where each neuron of the hidden neurons layer is connected with
the individual vector elements, as the latter are multiplied with the
adjustable neuron weights. The weighted values are then summed
with the neuron bias to form a net input. This value is then the
argument of the sigmoid transfer function selected for the hidden
layer. The output of this layer subsequently serves as the input of
the following layer where the previous procedure is repeated, this
time using a linear transfer function. The final output of the neural
network is programmed to be equal to the air temperature data of the
weather station selected in each particular case. The training of the
neural networks was accomplished using the Levenberg-Marquardt
algorithm as it can provide fast convergence. The multitemporal
approach described in the previous paragraph, was also employed.

At a first stage, the missing, due to cloud cover, LST images
were detected and the gaps were filled using blank values in order to
construct a continuous time series. Following and on the basis of the
geographical coordinates of the weather stations, the corresponding
pixels from the stack of images were extracted and the T time series
were resampled and synchronized with the created LST series. Finally,
the data were divided into a training dataset used for the derivation
of parametric relationships between LST and T, (01.06.2014 -
15.08.2014) and testing sets used for validation of these relations
(16.08.2014 - 31.08.2014, 01.07.2015 - 31.08.2015).

In order to assess the accuracy of the models output, a number
of different statistical measures were used such as the coefficient of
determination (R?), the Root mean square error (RMSE) and the
Mean absolute error (MAE). R? gives the fraction of the total air
temperature variance that can be explained by the predictors, RMSE
is defined as the square root of the mean of squared differences
between the air temperature values predicted from the model and
those measured at the weather stations and MAE is the mean of the
absolute differences between the two above mentioned temperatures.
Mean error (ME) was also used, defined as the mean of the differences
between the model and station temperatures. Finally and in order
to use an error metric which is not dependent on the values scale,
the normalized mean absolute error was calculated (NMAE). The
normalization was performed dividing MAE with the mean value of
the in situ air temperature observations. Following the same logic the
normalized mean error (NME) in % was also calculated.

Using the training dataset, an examination of the influence of the
order of regression to the quality of the fit between T and LST was
made, while using a monotemporal approach. It was estimated that
the use of 5% order compared to 1* order regression improved R? by
0.04-0.05 for the majority of the stations (Figure 4), while RMSE and
MAE errors were reduced by an average value of 0.2°C. In addition,
by dividing the results into daytime and nighttime hours, it was
deduced that the order of regression played an important role mostly
in the nighttime data.

The different partitioning of energy into sensible and latent heat
led to distinct relations depending on the station land cover type.
For instance, a linear relationship of the form Tair: 0.43-LST + 15.96
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was derived for an urban station (Ampelokipoi), while for suburban
(Penteli) and peri-urban (Kantza) stations the respective relations
were T =0.41-LST + 13.87 and T, =0.52-LST + 12.59.

It was also found that the transfer of parametric relationships
between stations with similar land cover (and subsequently land
surface characteristics) resulted in slight error increases (0.05-0.2°C
for urban stations).

Following, the multi-temporal approach was used, with the results
being significantly better, as R? improved by 0.15. The adjusted R* was
also calculated so as to ensure than the improvement was not artificial
due to the increasing number of degrees of freedom and found almost
equal to R% The error values when adding more independent variables
were constantly decreasing. Detailed results for 2™ order regression
can be seen in Table 2, where the following notation is followed: LST-
0 corresponds to the monotemporal model, while, for example, LST-4
stands for a predictor set of the LST value simultaneous to T _and for
1,2, 3 and 4 hours before.

It should be mentioned that the ME error s approximately zero, as
at this stage of the study the model uses the training dataset and thus
has almost no bias.

Errors for all cases were about 0.4°C lower at night in comparison
with day, due to the weak turbulent advection during those hours.
Moreover, the performance of the multitemporal models was
substantially better for the stations located in the most populated
region of the city, especially for the hours after sunset.

NMAE errors ranged from 4.5% for Athens to 6.1% for Penteli
for the monotemporal 2™ order model while for the LST-8 model the
respective errors were 3.4% and 4.7%.

Table 3 shows the derived parametric relations for multiple linear
regression using the LST-4 predictor set. The use of artificial neural
networks gave slightly better results compared to regression models
for all weather stations. The average results for all predictor sets for
both regression and neural networks models are shown in Figure 5.

For validation purposes, the performance of the derived
parametric relationships between LST and T, was assessed using
an independent data set of the same year (16.08.2014-31.08.2014).
Results of the validation for this case were highly satisfactory
reaching an MAE below 1°C for 6 of the 7 stations using the best
performing algorithm. Similar findings as in the training phase were
observed, ie. improved model output values for nighttime data
and for urban stations as well as smaller errors when using neural
networks. ME ranged from about -0.3°C (underestimation) to 0.2°C
(overestimation) depending on the model and the station.

Figure 6 shows that the modeled T, (neural networks, predictor
set: LST-8) for an urban weather station, follows very well the in situ
measured temperature with no particular systematic bias. Detailed
statistical metrics for the multitemporal LST-8, 2™ order regression
model are presented in Table 4. As seen from ME and NME, all
stations suffer a small overestimation in this predictor set, while
the use of NMAE reinforces the previous findings, namely that the
models have better accuracy for the urban stations compared to
suburban and peri-urban ones.

A slight increase in the error (about 0.1-0.2°C) was observed once
LST was estimated from the values of LST in the previous 4 hours
and thereafter used for the estimation of T . Transferring the derived
parametric relations from one station to another of similar land cover
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types resulted in a small increase in error, for instance an average
increase of 0.1°C was found between urban stations.

Validation results for July and August of 2015 were also
satisfactory as the estimated MAE using the best performing model
for these months was approximately 1.2°C for the urban stations
and up to 2°C for the suburban ones. As seen in the distribution of
residuals (predicted T, minus observed T ), a slight overestimation
was found (Figure 7). It should be mentioned however that larger
errors may arise in the event of limited available data (for instance
due to extended cloud cover) as well as of higher than average LSTs
during the study period. It is also important to note that in 2015, the
neural network models performed worse than the regression, a fact
which may be attributed to over-fitting problems. A heat wave event
which occurred during this study period (at 30* and 31* of July) was
selected for the development of 1 km spatial resolution LST and T
maps. The previously derived parametric relations (LST-3 regression
model) for the most representative station of each land type (urban:
Ampelokipoi, suburban: Maroussi, peri-urban: Kantza) were applied
in every image pixel. The selection of the suitable relation was made
detecting each pixel land cover type using the Urban Atlas data.
As seen in Figure 8, both surface and (simulated) air temperature
spatial patterns reveal that during daytime (12.00 UTC, 15.00 local
time) the highest temperatures are found outside the urban center.
In particular, two hot spots are located western of Athens (Megara,
Elefsina- Aspropyrgos) and one eastern of the city (Mesogeia). Megara
and Mesogeia are mostly agricultural lands composed of low vegetation
while Elefsinsina- Aspropyrgos is an industrial zone. These areas warm up
faster than the urban center where the high thermal capacity of building
materials results in a negative heat island (Cool Island) at 12.00 UTC.
The air temperature map provides more information regarding points
of high thermal stress, as the parametric relations between LST and T
have potentially incorporated additional heating effects often correlated
with land cover, for example anthropogenic heat sources due to road
traffic or cooling units. The lower temperatures at the coastline could

Table 2: Results of 2" order regression multitemporal models, (training set:
01.06.14-15.08.14).

Predictor sets

LST-0 LST-2 LST-4 LST-8
Stations
O ~ O ~ O ~ O ~
= 0 = 0 = 0 < 0
w | = w |~ w | w =
0w » | w » | w 0w
o = < N = < o = < o = <
¥ o = ¥r o = rx x| = x £ =
Ampelokipoi 0.77 |1.59 1.24 0.81 1.41/1.10 0.83 1.36 1.04 0.861.21 0.90
Athens 0.78 1.55/1.19 |0.81 1.44 1.08 0.821.401.05 0.85 1.27 0.93
Kantza 0.82/1.86/1.43 0.84 |1.78 1.35/0.85 1.74/1.33 0.87 1.62 1.23

Markopoulo [0.81/1.66/1.30 0.84 |1.51/1.16 0.85 1.44/1.10 0.88 1.310.98
Maroussi 0.77 11.69/1.31 0.83 |1.44 1.12/0.85 1.37/1.05 0.88 1.21 0.89
Penteli 0.72/1.88 1.49 0.76 1.74 1.36 0.78 1.67 1.29 0.81 1.51 1.14
Peristeri 0.76/1.59 1.23 0.79 1.49 1.13 0.80 1.46 1.10 0.82 1.37 1.03

Table 3: Multiple regression coefficients of the parametric relationship T, = a +
a,LST, + a,LST, +a,LST, + a,;LST, + a,LST,, LST subscript corresponds to
hours before T, measurement.

i Coefficients
Stations
a q, a, a, a, a,
Ampelokipoi (urban) 14.04 |0.34 0.05 0.00 -0.03 0.16
Penteli (suburban) 12.55 |0.33 0.06 0.00 -0.02 0.12
Kantza (peri-urban) 10.77 0.49 0.18 -0.15 -0.20 0.28
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Figure 4: Scatter plot, Athens station (01.06.14-15.08.14): a) Linear regression, b) 5" order regression.
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Figure 6: /n situ and modeled air temperature for Ampelokipoi station,
16.08.14-31.08.14 (neural networks, LST-8 predictor set).

be ascribed to sea breeze. At night (00.00 UTC, 03.00 local time)
the situation is reversed and the city center exhibits the highest
LST and (simulated) air temperatures (Figure 9). In particular,
the residential zones at the center and the south part of the city
are subjected to a very strong heat island effect which can be seen
more distinctly at the air temperature spatial map, as the heat
being absorbed and stored within the urban fabric during daytime
is released warming up the canopy layer air.

Conclusions

In this study, a methodology for estimating urban T, from
LST, the latter extracted from satellite measurements, is applied.
Polynomial regression and neural network models were developed
using downscaled 1 km LST SEVIRI data and in situ air temperature
measurements from ground-based stationsin the urban agglomeration
of Athens. Results highlighted that adopting a multi-temporal
approach, i.e. estimating T taking into account the same time LST as
well as the LSTs of previous hours, improved substantially the model
output. For urban stations an average R? of 0.85 and an RMSE of 1.0-
1.2°C was achieved for the majority of the examined time period,
using the best performing algorithms. The accuracy of the models
was found to be higher for stations at the most densely populated
area of the city, a fact which can be explained by the high thermal
capacity of urban surfaces and by the higher land cover homogeneity
within the corresponding pixels in comparison to pixels reflecting
peri-urban stations. Moreover, the study demonstrated that higher-
order regression and neural networks models resulted in consistent
improvement in terms of the error values as compared to linear
models which are typically used in literature. The use of the derived
parametric relationships to datasets of the following year was also
considered satisfactory. The general performance of the developed
models indicate that satellite data of high temporal resolution are
an invaluable tool for the estimation of real time, spatially dense T,
fields, with relatively small error.

Nevertheless, there are some methodology limitations that need
to be acknowledged. At first, the estimation of T _ using passive
remote sensing may be limited due to the presence of clouds. Even in
a region like the Athens agglomeration where excessive cloudiness is
rather rare especially during summer months, a considerable amount
of data was missing (approximately 20%). This results in gaps in the
constructed modeled air temperature series, which may set limits
to their exploitation. In addition, due to the large spatial variability
of the urban thermal environment, it is of great importance to
downscale satellite data of coarse resolution, a process that introduces
a further error in the calculations. Despite the above limitations,
results were satisfactory even for 1 km x 1 km spatial resolutions, at
the precondition that the land cover is to a good extent homogeneous,
which was the case for most of the examined stations. However
larger errors as found in a number of stations may be attributed to
inhomogeneous land cover with the pixel of 1 km x 1 km. One more
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Table 4: Results of 2" order, LST-8 regression model, (validation set: 16.08.14-31.08.14).
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R? 0.86 0.85 0.87 0.88 0.88 0.81 0.82
Adjusted R? 0.86 0.85 0.87 0.88 0.88 0.81 0.82
RMSE (°C) 117 1.1 1.44 1.31 1.22 1.96 1.14
MAE (°C) 0.91 0.84 1.14 1.03 0.97 1.62 0.87
ME (°C) 0.07 0.12 0.17 0.12 0.13 0.10 0.18
NMAE (%) 3.17 2.93 4.19 3.86 3.52 6.25 3.06
NME (%) 0.24 0.41 0.69 0.44 0.47 0.38 0.63
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Figure 7: Residuals histogram, Ampelokipoi station, 01.07.15 - 31.08.15 (2" order regression, LST-4 predictor set).
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Figure 9: Night-time temperature map of Athens agglomeration during heat wave (31.08.2015, 00.00 UTC): a) LST (°C), b) Simulated air temperature (°C).
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methodological limitation of the study is that the effect of synoptic
scale processes on T calculations is not considered. The derived
parametric relations describe an average coupling between LST and
T, but for instance in the case of a strong advection or a frontal
passage, a quite different correlation between LST and T should be
expected. Errors are expected to decrease, if weather conditions area
also considered.

The methodology reflects a valuable approach for the estimation
of T from LST whereas it facilitates a wide variety of applications
for the examined urban agglomerations, including the estimation
of thermal discomfort, the cooling/heating degree days, the spatial
variability of energy needs, etc. It should be mentioned, that the
parametric relations as extracted from the above methodology are
in principle applicable for a specific station, as they depend on the
land cover and the associated land surface characteristics. However
the performed analysis has shown that they may be also used for
stations in areas with similar land cover and in the same climatic
zone. Further research is needed to this direction, taking also into
consideration additional parameters (such as urban density, type of
surface materials) with the potential to influence the relationship
between LST and T .
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