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Abstract
The choice of an interpolation method to re-sample and solve the 
problem of scattered data is often difficult, as several methods 
show large differences in results. In this study, we re-sampled 
the sparsely porous data using three interpolation techniques: the 
inverse distance to a power, minimum curvature and kriging. The 
experimental variogram of field data was generated. The anisotropy 
of these data has been simulated by the Gaussian model and we 
have concluded that these data present a geometric anisotropy. 
The interpolated variograms from the three techniques were plotted 
and fitted by the least squares method. These variograms gave 
a better accuracy and consistency than the field data variogram. 
The accuracy and performance of the interpolation techniques 
were evaluated by calculating their Variance, their Skewness, 
their Kurtosis and their Root-mean-squared. Contour maps and 
Wireframes were also computed from interpolated grids to perform 
a visual analysis of the porosity spatial distribution. Porosity 
distribution of the studied field has a higher continuity in NE-SW 
direction.
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Introduction 
Geostatistics is a branch of statistics centered on spatial or 

spatiotemporal datasets. Originally developed to predict probability 
distributions of ores during mining operations [1-3], it is currently 
applied in various disciplines: petroleum geology, hydrogeology, 
hydrology, geochemistry, environmental control, landscape ecology 
[4-11]. The main originality of the geostatistical approach is that it 
uses spatialized data. These main aspects are [12-16]: considering 
the spatial structure of the data, the space of any dimension, the 
irregular and incomplete sampling of the fragmentary data and 
the considering of external information. Geostatistics is intimately 
related to interpolation methods, but extends far beyond simple 
interpolation problems. Geostatistical techniques are based on 
statistical models based on the theory of random variables. They help 
to know the uncertainty associated with spatial estimation [15,17]. A 

number of simpler interpolation methods/algorithms, such as inverse 
distance, minimum curvature, bilinear interpolation, and nearest-
neighbor interpolation, were already well known before geostatistics 
[1,2,4,8]. The choice of an interpolation method is difficult because 
some methods show large differences in results. The divergences 
between the results of the interpolation are mainly consequences of 
the following circumstances [12-16]: The available data sources are 
approximate for distribution, density and accuracy; The selected 
interpolation algorithm is not robust enough for the data used; The 
chosen interpolation algorithms or the data structure are not adapted 
to the field; The perception or interpretation of the operator; The 
properties of the sampling network and the spatial dependence of the 
variable of interest.

The aim of this study is to re-sample the scattered porosity data 
of a part of the Douala sedimentary basin by using three interpolation 
methods and investigate their patterns of spatial variability.  

We present in this study, the study area data collection in the 
Douala sedimentary basin, the different interpolations methods 
and their mathematical formulation in the univariate framework. 
A variographic analysis of the field data will be performed. The 
simulations will be made from the field data variogram; the field data 
anisotropy will be tested. This analysis will spatially characterize the 
distribution of porosity at the measurement site. The grids of the data 
resampled by the interpolation techniques will be created. Then the 
interpolated variograms will be analyzed and their modeling quality 
will be evaluated and compared. 

Location of the Study Area 
Several authors have studied the application of geostatistics to the 

study of porosity in geological formations [15,17-22]. The porosity 
data used for this study come from the Douala sedimentary basin 
(Figure 1) which is a producing basin in Cameroon. The Douala Basin 
covers a total area of about 19000 km2 of which 7000 are emerged. The 
basin extends under the waters of the Gulf of Guinea by a continental 
platform with a width of 25 km. It includes two sub-basins [23]: the 
Douala sub-basin bounded on the north by the Cameroon volcanic 
line and on the south by the Nyong river and the Kribi-Campo 
sub-basin located north of the Ntem river. The region is marked by 
a relatively flat relief of an altitude not exceeding 200 m. The study 
area is located between latitudes 03°42’57’’N and 03°47’17’’N and 
longitudes 09°46’52’’ E and 09°52’16’’E.

Data Source and Methods
Source of porosity data

Porosity data are often obtained by direct or indirect 
measurements. Laboratory measurements of porosity on cores are 
examples of direct methods. Porosity data from logs are considered 
indirect methods [17-20]. We use the porosity data collected from 
drilling logs (electrical, sonic, gamma radiation, porosity, density, 
photoelectric effect). They come from borehole wells whose depth 
varies between 355 m to 3024 m depth [24]. 

To re-sample the data, we used R and Surfer software’s [25]. 
Surfer is a 2D and 3D surface mapping program that transforms 



Citation: Nguimbous-Kouoh JJ, Manguelle-Dicoum E (2019) Evaluating Interpolation Methods by Geostatistical Modeling of the Douala Oil Field Porosity 
Data (Cameroon). Geoinfor Geostat: An Overview 7:1.

• Page 2 of 10 •Volume 7 • Issue 1 • 1000203

doi: 10.4172/2327-4581.1000203

The weighting corresponds to the inverse of the distance 1/di with 
i > 0. The weights Wi are inversely proportional to a power p > 0 so 
that the data close to the studied point intervene more in the average 
than the more distant data. The factors that affect this method are the 
value of the power parameter p; the size of the study area and the 
number of neighbors. These factors are relevant to the accuracy of 
the results. 

The minimum curvature method: The minimum curvature 
method has first been proposed by Briggs [32] for automatic 
contouring of geophysical data. It solves the problem to interpolate 
the data onto a regular grid in the sense that a grid point value tends 
to an observational value if the position of the observation tends to 
the grid point. For this a two-dimensional cubic spline is fit to the data 
by solving the corresponding difference equations, which have been 
set up under the conditions. The curvature is constructed directly in 
terms of the grid point values: 

F(xl,yk) ; l=1,……, L ; k=1,……., K

and depends on the grid spacing h. The discrete total squared 
curvature is 

2(  , )l k
l k

C c x y= ∑∑

where: ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
2

,  , , , 4 , 
, l k l k l k l k l k

l k

F x y F x y F x y F x y F x y
c x y

h
+ − + −+ + + −

=

To minimize c, the partial derivatives of c with respect to 
F(xl,yk) must be set to zero. The resulting equations determine a set of 
relations between neighboring grid point values, one for each point. 
If one of the samples does not coincide with a grid point, additional 
difference equations are used for the grid points at the vertices of the 
square containing the sample, and the sampling point becomes part 
of the grid. 

random data into contours of continuous curved faces. Surfer uses 
twelve different methods to interpolate data. However, in this case, 
only three methods were used.

The map (Figure 2) represents the classed post plot spatial porosity 
distribution above the study area. The porosity varies between 12% 
and 17%. 

Methods

 In linear geostatistics the choice of an interpolation method 
is very important to prove the spatial dependence of a variable of 
interest [1-4]. In this part, we present the interpolation methods from 
the uni-varied framework. 

The Inverse distance to a power method: It is a deterministic 
method that consists in measuring the distance between the sought 
point and the known points around [25-29]. The calculation of the 
desired point is done by averaging the values of the surrounding 
points. Thus, the closer the point to be interpolated to a point whose 
value is known, the closer the value of the point to be interpolated is 
to the known value. The distance h between the sought point and the 
known points around is defined in the following way [26,28,30,31]: 

( ) 2 2,  (   )   (   )i i id x y h x x y y= = − + −

And the result of the interpolation is:
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where Zi denotes the values taken by the point to be interpolated 

and Wi the associated weights:
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Figure 1: Location map of the Douala Basin and the study area.
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γ (h)=Chb 0<h<2

For b=1, the variogram is linear ; b=2. The variogram a is parabola

The formalism of variographic anisotropy: There are different 
types of anisotropies that can contaminate spatialized data [28]. 
Geometric anisotropy is the simplest case. A geometric anisotropy 
is reflected in the experimental variograms by a range which varies 
according to the direction. Geometric anisotropy is observed when 
the variogram respects the following mathematical formulation:

( ) ( )2 2

2 2

cos sin
1

g p

a a
a a

θ θθ θ
+ =

With ag the maximum range, ap the minimum range and aθ the 
range in the direction θ of the anisotropy. 

Anisotropy is called zonal when it cannot be solved by a simple 
geometric or linear transformation of coordinates. It causes for the 
variogram a bearing which varies according to the direction of the 
space. 

The kriging formalism

Kriging is an interpolation method that gives the best unbiased 
linear estimate of the point value of a regionalised variable [1-3]. 
The advantage of kriging is that it enables to calculate the estimation 
error, i.e. the variance of kriging [1-3]. It allows the considering of: 
the configuration of the data; the distance between data and targets; 
spatial correlations and external information. Kriging is an exact 
interpolator, it has a screen effect, and it is almost without conditional 
bias. It is transitive, generally performs a smoothing and considers the 
size of the field to be estimated and the position of the points between 
them [1-3]. 

The mathematical formulation of kriging imposes the 
minimization of the following variance [33,34,36]:

σe
2=Var[Zv - Zv

*]=Var[Zv] + Var[Zv
*] – 2Cov [Zv , Zv
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Where Zv represents the known values at certain points and:
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λi is the weight and Zi is the random variable corresponding to 

each point. Since kriging is an unbiased interpolator then:
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To minimize the variance of kriging we use the Lagrangian [35]:
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 With μ the Lagrange multiplier.
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The resulting system of equations is then solved iteratively. The 
method is fast but has the disadvantage of being interpolating rather 
than approximating. 

Kriging and variographic formalism: In a classical framework, 
kriging analysis generally involves two stages: the variogram 
estimation and the use of the coefficients of its model for kriging  
[33-37]. 

The formalism of variographic estimation: The variogram is a 
basic tool in kriging analysis and is required for geostatistical spatial 
prediction. The variogram is estimated by the experimental variogram 
γ*(h), which is calculated from the discrete data as follows [28]: 

( ) 2*

1
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where N is the number of pairs of points distant from h. 

Once the experimental variogram has been calculated, it is 
necessary to replace it with a theoretical variogram whose coefficients 
are estimated by a least squares procedure [31].

There are several types of theoretical variogram models used for 
kriging [30]: 

The spherical variogram is characterized by: 
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 With a the range, h the lag of interpolation, C the constant sill

The Gaussian variogram is characterized by :
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The exponential variogram is characterized by :

( ) 31 hh C exp
a

γ
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The variogram power is characterized by:

Figure 2: Classed post plot map of sample porosity data.
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Solving this system of equation amounts to solving the following 
matrix system: 
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The system enables to find all the weights λ0 that minimize the 
variance and make the estimator unbiased. The variance of kriging is 
then obtained by the following formula:
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The system of equations can also be expressed in terms of 
variogram under the assumption that the random process is 
stationary. 

Results and Interpretation
In this part, we presented the different interpolated data grids, the 

variographic analysis and the porosity maps and wireframes obtained 
by the different methods. 

Giddings interpretation

Figure 3(a-c) are the grids used to re-sample the data above the 
study area. The grids were made to have networks within which the 
interpolating routines can be applied. Gridding generally produces 
a regularly spaced array of Z values (porosity) from the irregularly 
spaced XYZ data. 

Figure 3a is the grid obtained by the inverse distance to a power 
method. This method is very sensitive to the number of used data 
and the value of the exponent, and a significant improvement in 
the accuracy of the estimate was obtained by selecting an optimal 
number of nearest neighbors and an optimal value of the exponent. 
This map was obtained by playing on the parameter p. This parameter 
determines how fast the weights fall with the distance from the grid 
node. The parameter p is a smoothing parameter. It allowed us to 
incorporate the uncertainty factor associated with our input data. The 
greater the smoothing parameter, the less the influence of a particular 
observation predominates in the prediction of a neighboring network 
node.

Figure 3b results from the grid made by the minimum curvature. 
The method is more precise when we specify the tensions and the 
number of iterations. Boundary and internal tensions were fitted to 
0 to solve the biharmonic differential equation and produce the grid. 
They have been reduced to reduce overrun problems in sparse and 
unconstrained areas. The control of the convergence criteria has been 
carried out. When generating the grid, the maximum iteration value 
was kept at 100000 and the max residual at 0.0051.

Figure 3c results from the grid obtained by kriging. Kriging 
uses the variogram and assigns more influence to the nearest points 
in the interpolation of values for unknown locations. Kriging is an 
interpolation technique in which the surrounding measured values 
are weighted to derive a predicted value for an unmeasured location. 
Weights are based on the distance between the measured points, the 
prediction locations, and the overall spatial arrangement among the 
measured points. Kriging is unique among the interpolation methods 
in that it provides an easy method for characterizing the variance, 
or the precision, of predictions. Kriging is based on regionalized 
variable theory, which assumes that the spatial variation in the data 
being modeled is homogeneous across the surface. That is, the same 
pattern of variation can be observed at all locations on the surface. 
The variogram which enable to obtain this figure is of linear type with 
anisotropy of 1. 

Figure 3a: A view of grid nodes for porosity data of the inverse distance 
to a power. 

Figure 3b: A view of grid nodes for porosity data of the minimum curvature.



Citation: Nguimbous-Kouoh JJ, Manguelle-Dicoum E (2019) Evaluating Interpolation Methods by Geostatistical Modeling of the Douala Oil Field Porosity 
Data (Cameroon). Geoinfor Geostat: An Overview 7:1.

• Page 5 of 10 •Volume 7 • Issue 1 • 1000203

doi: 10.4172/2327-4581.1000203

Figure 3c: A view of grid nodes for porosity data of the kriging.
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Figure 4: Variographic cloud fitted by theoretical variograms. 

Variographic data analysis

Variogram analysis consists of the experimental variogram 
calculated from the data and the variogram model fitted to the data. 
The experimental variogram is calculated by averaging one-half the 
difference squared of the z-values over all pairs of observations with 
the specified separation distance and direction. It is plotted as a two-
dimensional graph. Refer to formalism of variographic estimation 
for details about the mathematical formulas used to calculate the 
experimental variogram. The variogram model is chosen from a set 
of mathematical functions that describe spatial relationships. The 
appropriate model is chosen by matching the shape of the curve of the 
experimental variogram to the shape of the curve of the mathematical 
function [33-36].  

Variogram analysis of field data: Figure 4 shows the scatter 
plot of the experimental variogram and the four types of theoretical 
models selected for its adjustment. Overall, all models lift first and 
then stabilize over greater distances beyond a certain range. The 
experimental variogram is a graph that shows the contributions of 
each pair of points to the final variogram. The scatter plot gives a 
visual impression of the dispersion of values at different offsets. He 
has no precise direction. The colored variograms were tested to find 
the variogram able of fitting the variographic cloud. This simulation 
shows that the yellow Gaussian variogram is the one that can best fit the 
field data. The directions and tolerances (Table 1) indicate the size of the 
angular window each time. We chose these directions and tolerances to 
obtain omnidirectional variograms that neglect the lag h.

Table 1 shows the characteristics of the different theoretical 
variograms tested.

Field data anisotropy analysis : In the case of this simulation, the 
Gaussian model has been retained. Anisotropy is the parameter that 
allows us to better understand the correlation and spatial continuity 
of porosity values. Figure 5 shows the simulation of the theoretical 
variogram across the experimental variogram. This figure proves that 
field data has a geometric anisotropy. The three colored variograms 
have the same sill in all directions, identical nugget effect components, 
but different ranges from one direction to another. The maximum (ag) 
and minimum (ap) ranges are observed in two orthogonal directions. 

Spatial continuity is not necessarily the same in all directions. The 
three theoretical curves of this variogram form ellipsoids and fit the 
field data quite well because these data are only a sample of the actual 
porosity we wish to model. The interpolation will help us to perfectly 
model the porosity above the site.

Table 2 shows the characteristics of the different theoretical 
Gaussian models used to test geometric anisotropy of field data.

Variographic analysis of grid data: A variogram expresses the 
covariance of a property and its variation as a function of the lag 
distance h between two points. Beyond a certain limit called range, 
no spatial relation exists between the two points; the plateau of the 
variogram is reached. The plateau corresponds to the variance of the 
variable. A theoretical variogram model is first calculated to fit the 
experimental variogram obtained with the data, and is then used in 
kriging [33-37].

The variograms of the interpolated data are shown in Figures 6(a-
c). The different experimental variograms were fitted by the Gaussian 
theoretical variogram. Table 3 highlights the characteristics of 
different Gaussian models. The tolerances and the directions chosen 
are a compromise between the need to have a sufficient number of 
pairs of points for calculating the variogram and the risk of too much 
smoothing of the curve if this number is too high. Overall the three 
variograms are omnidirectional. Large directional tolerances 22°, 
25° and 47° have been set so that the direction of any particular lag 
distance h becomes unimportant.

Interpretation of contour maps and wireframes porosity 
distribution

Interpretation of the contour map and wireframe of the inverse 
of the distance: The contour map and the wireframe (Figures 7a and 
7b) show the characteristics of the models obtained after applying 
the inverse distance method. The problem with this method is that 
it creates maps with contours in “bull’s eyes”, that is, points with a 
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Model Color Sill  Range  Anisotropy 
ratio 

Anisotropy 
angle Slope Variance Tolerance Direction Power 

Spherical Blue 1.155 18 1 0 0.142 1.155 45 45 0
Gaussian Yellow 1.155 7 1.19exp-07 30 0.242 1.155 45 45 0
Exponential Red 1.155 8.888 1 0 0.45 1.155 45 45 0
Power Green  No 8 2 185 0.241 1.155 45 45 0.1

Table 1: Characteristics of the different variograms.
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Figure 5: Simulation of geometric anisotropy of field data.

Figure 6a: Fitted variogram from the grid of the inverse distance to a power 
method. Experimental (line with markers) and theoretical semivariogram 
(continuous line) models for porosity data set.

Figure 6b: Fitted variogram from the grid of the minimum curvature 
method. Experimental (line with markers) and theoretical semivariogram 
(continuous line) models for porosity data set.

Models Color Lag Weight Tolerance Direction Anisotropy ratio Anisotropy angle Sill Range 
Gaussien 1 blue 0.11 90 90 0.2 50 1.155 6
Gaussien 2 Red 0.11 90 90 1.7 30 1.155 7
Gaussien 3 Yellow 0.11 90 90 1.192e-07 30 1.155 8

Table 2: Characteristics of different models of anisotropy.
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Figure 6c: Fitted variogram from the grid of the kriging method. Experimental (line with markers) and theoretical semivariogram (continuous line) models 
for porosity data set.

Data of Gridding Methods Models Sill Range  Anisotropy ratio Anisotropy angle Variance Tolerance Direction 
Inverse distance to a power Yellow 0.34445 21 1.5 58.2 0.34445 22 -11
Minimum curvature Red 1.3 19.66 1.7 62.11 1.3 25 17
Kriging Green  0.698 24.6 2 56.98 0.698 47 -173

Table 3: Characteristics of the fitted variograms obtained from the data of gridding methods.

Figure 7a: The contour map generated by inverse distance method.

Figure 7b: The porosity wireframe generated by inverse distance method.

strong local influence. This problem can be solved by fitting the 
smoothing parameter [25,37]. 

Contour map and wireframe of porosity distribution (CM): 
Figures 8a, 8b shows the contour map and the porosity wireframe 
generated by the minimum curvature. Overall, the maps have a smooth 
appearance. The minimum curvature is an interpolation method 
that tries to fit a function to data. The minimum curvature generates 

smooth, beautiful and generally very reliable models. The method is fast 
but cannot give a measure of autocorrelation like kriging. Interpolated 
surfaces can sometimes be real, smooth and unrealistic surfaces. We took 
the zero tension to solve the biharmonic differential equation.

Contour map and wireframe for porosity distribution (OK): 
Figures 9a, 9b shows the map and the porosity wireframe generated 
by kriging. Overall, the map and the wireframe have a smooth 
appearance. The good spatial continuity of the data is in the NE-SW 
direction and corresponds to the main direction of the associated 
variogram. The kriging porosity map shown in Figure 9a is quite 
similar to the map generated by the minimum curvature. However, 
the appearance is much smoother. The maximum and minimum 
values are also quite close to those of the samples, which indicate a 
relatively fine estimate.
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Figure 8a: The contour map generated by minimum curvature method. Figure 9a: The contour map generated by kriging method.

Figure 8b: The porosity wireframe generated by minimum curvature method. Figure 9b: The porosity wireframe generated by kriging method.

Conclusion 
In this study, the porosity data from the Douala Basin were used 

to test and compare the results of three interpolation methods. A 
variographic analysis was conducted to see the difference between 

the interpolated data and the field data. This analysis enables to 
characterize the level of spatial correlation of the porosity data and to 
understand the behavior of the variograms. The geometric anisotropy 
of field data has been observed. The three interpolation methods 
proved their robustness by giving better statistical results for all the 

Gridding Methods Variance Skewness  Kurtosis Standard deviation Root mean square 
Inverse distance to a power 0.344066931153 -0.582020710795 4.51218592545 0.586572187504 14.7293852714
Minimum curvature 1.29989698496 0.485239298528 4.7288324057 1.14013024912 14.8235152751
Kriging 0.699775803577 -0.387452541244 3.28863158642 0.836526032815 14.7620141471

Table 4:  Gridding and variogram report for univariate statistics.

Gridding Methods Variance Skewness  Kurtosis Standard deviation Root mean square 
Inverse distance to a power 0.74496784134 0.140334227512 2.25701496992 0.863115195869 0.857965870441
Minimum curvature 0.246694544183 0.0121489328356 3.27114098627 0.496683545311 0.493946235602
Kriging 0.62893908605 -0.179443087001 2.82586160136 0.793056798754 0.788595835729

Table 5:  Cross validation report for univariate statistics (Cross validation provides root means squares error which measures the precision of  each model fit to 
experimental yield variogram).
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data. Each method showed its dependence on Variance, Skewness, 
Kurtosis, Standard deviation, and Root mean square.

We demonstrated that the interpolated data exhibited strong 
spatial correlations and were of better quality. These data allowed 
generating new interpolated variograms which had a better 
resolution, a better precision and a better coherence because the size 
of the angular window was reduced. The accuracy of these results has 
been evaluated. We found that the interpolation results are sensitive 
to the method.

The best mapping results of the porosity values were obtained 
with the kriging and the minimum curvature methods. On the other 
hand, in terms of statistical analysis, the three methods have had 
better precision results (Appendix).
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Appendix

The formulas of the statistical position and scattering parameters are 
presented in Tables 4 and 5.
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