

Journal of Virology & Antiviral Research

A SCITECHNOL JOURNAL

Research Article

Genome sequencing, Analysis and Characterization of Baculovirus Infecting the Caterpillar, Spilosoma Obliqua Walker (Arctiidae) (Insecta: Lepidoptera) from India

Sayan Paul^{1,2}, Subburathinam Balakrishnan¹, Arun Arumugaperumal¹, Emmanuel Joshua Jebasingh Sathiya Balasingh Thangapandi¹, Huidrom Sarjubala Devi³, Thang Johnson³, Shyam Maisnam³, Sandhya Soman Syamala¹, Ramamoorthy Sivakumar⁴, Raman Karthikeyan⁴, Chandramohan Subburaman⁵, Sathyalakshmi Alaguponniah⁶, Velayudhan Krishna⁶, Krishnan Nallaperumal⁶, Deepa Salam Shantikumar Singh⁷, Muthukumaran Azhaguchamy⁵, Jeyaprakash Rajendhran⁴, Varatharajan Ramaiyer³, Sudhakar Sivasubramaniam^{1*}

Abstract

The Bihar hairy caterpillar, Spilosoma obliqua is an economically important polyphagous insect and to reduce its pest density, baculoviruses are considered as the ideal eco-friendly pathogens under the pest management program. A nucleopolyhedrovirus infecting Spilosoma obliqua (SpobNPV) has been found to be a promising pathogen in the present study. Our report describes the pathogenicity, structural details and genome sequence characterization of SpobNPV-Manipur isolate. The pathogenicity of the virus was studied in terms of median lethal concentration (LC_{50}) and survival time (ST_{50}) and the LC_{50} of SpobNPV on third instar larvae was 2.7 x 105 POBs/ml and the median survival time (ST₅₀) was 144 hours. The occlusion bodies (OBs) of the virus were purified and the viral genome was sequenced, annotated and compared with other baculoviruses. The sequenced genome of SpobNPV-Manipur isolate was 136,306 bp in length with GC content of 44.9% and it comprises a total of 144 ORFs. The gene content analysis suggested the presence of 13 SpobNPV genes associated with replication, 12 genes associated with transcription and 31 structure related genes. The pathogenicity, structural information and genome resources of SpobNPV-Manipur isolate virus can be utilized further to understand its molecular and genetic mechanisms and improve its efficacy in pest management through recombinant DNA technology.

Keywords

Pest-management; *Spilosoma obliqua*; Baculovirus; Pathogenicity; Genome sequence

*Corresponding author: Sivasubramaniam Sudhakar, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu- 627012, India, Tel: 9940998936; Fax: 04634-283270; E-mail: sudhakar@msuniv.ac.in

Received: July 19, 2021 Accepted: August 24, 2021 Published: August 31, 2021

All articles published in Journal of Virology & Antiviral Research are the property of SciTechnol, and is protected by copyright laws. Copyright © 2021, SciTechnol, All Rights Reserved.

Introduction

The Bihar Hairy Caterpillar (BHC), Spilosoma obliqua Walker (Lepidoptera: Arctiidae) is an important polyphagous pest infesting grams, oilseeds, Jute and pulse crops [1-3]. It has been estimated that S. obliqua could reduce the yield to 77% on soybeans [4]. It is a multivoltine species, emerges in large numbers during March after a long resting phase in winter and maintains appreciable density during June-August that coincides with the availability of their summer hosts [5]. In order to combat the pest problem in general, the application of viral pesticide has been found to be one of the effective and eco-friendly methods [3,6,7]. Under natural conditions, S. obliqua was found infected with nucleopolyhedrovirus (NPV) at the experimental site within the premises of Manipur University [1]. The NPV infecting S. obliqua was first reported from Kerala, in India [8,9]. The bioassay, EM studies of polyhedra and genome analysis of Spilosoma obliqua nucleopolyhedrovirus (SpobNPV) (isolates from Delhi, Kerala and Nagpur-IIPR) were attempted by several researchers [10-14]. Recently, the draft genome of the SpobNPV virus has been sequenced and deposited in NCBI (KY550224) by Akram et al., (Unpublished work), but the in-depth analysis viz., annotation and characterization of the genome of the Manipur isolate were not studied by them. The viral genome features of SpobNPV-Manipur isolate (Manipur University Campus 24.7475 °N-93.9370°E) has not been explored so far. Therefore, the present paper focuses on details pertaining to LC₅₀, ST₅₀, EM studies of polyhedral occlusion bodies (POBs), genome sequencing, annotation and characterization of SpobNPV-Manipur isolate. Further, details pertaining to the above new isolate would enable us to formulate suitable eco-friendly viral pesticides to combat S. obliqua which is a serious pest at the foothills of the Eastern Himalaya and adjoining terrains of north-eastern India, especially in certain parts of Indo-Myanmar hotspot region.

Materials and Methods

Insect rearing

The field-collected egg clusters of Bihar hairy caterpillar, *S. obliqua* were reared in the entomology laboratory at Manipur University by keeping the eggs in Petri-plates (8.5 cm diameter) over a moistened filter paper. Newly hatched larvae were transferred to fresh leaves inside the conventional insect cage ($15 \times 15 \times 15 \text{ cm}$) with the help of a moist camel hairbrush. The first three larval instars were reared in the above-said cage, while the later instars were reared in a big cage ($30 \times 30 \times 30 \text{ cm}$). The identity of the insect was established with the help of experts of the Indian Agricultural Research Institute (IARI), New Delhi. A continuous nucleus culture was maintained individually in the lab by rearing *S. obliqua* on castor foliage at $28 \pm 1.5^{\circ}$ c $65 \pm 5\%$ RH and 12: 12 L: D cycle.

Preparation and purification of the virus inoculums

The initial inoculum of SpobNPV was isolated from an infected 4th instar larva of *S. obliqua* collected from the fencing plant, *Ipomoea cornea* surrounding the vegetable garden within the University Campus, Manipur (24.7475 °N – 93.9370°E). The putrefied larva of

S. obliqua infected with NPV was homogenized and the occlusion bodies (OBs) were filtered through a double-layered muslin cloth. The filtrate was spun at 112 (x g) for 5 min to remove the pellet having larval cells, tissues and other debris. The supernatant was then centrifuged at 9503 (x g) for 20 min. The Polyhedral occlusion bodies (POBs) pellets were collected after discarding the supernatant and they were resuspended in an appropriate volume of distilled water and stored at 4°C [15,16]. The POBs were counted using Helber bacteria haemo-cytometer (0.02 mm depth). A stock solution of SpobNPV-Manipur isolate with the strength of 3 x 10¹⁰ was prepared for bioassay studies by scaling up first prior to the bioassay. The stock concentration of virus i.e. 3 x 10¹⁰ was diluted to 3 x 10⁹, 3 x 10⁸, 3 x 10⁷, 3 x 10⁶, 3 x 10⁵, 3 x 10⁴ and 3 x 10³ POBs/ml by serial dilution method.

Median Lethal Concentration

To assess the median lethal concentration - LC_{50} , uninfected normal healthy 3rd instar caterpillars of S. obliqua were taken from the lab-reared nucleus culture and were inoculated individually with different concentrations ranging from 10³ to 10⁹ POBs per ml of the polyhedral of SpobNPV by conventional leaf disc contamination method [17]. To inoculate the caterpillars, S. obliqua was reared on the castor leaf. There were seven concentrations (seven treatments); in addition to control and 30 individuals were tested in each treatment for each insect species. In this method, the field-collected fresh young leaf was cut into a circular fashion (4 cm diameter) and each leaf disc was applied with 100 µl of the virus inoculums with the help of a micropipette and spread on the abaxial and adaxial surface of the leaf with a small tuft of 5-6 hairs of the camelin brush (0-number) and on-air drying, the leaf disc was kept individually inside the petri plate. The pre-starved (for 5 hours) 3rd instar larvae collected from the stock culture was then released individually on the leaf disc. On feeding the virus applied leaf disc, the larvae were reared inside the insect cage for each treatment separately on castor foliage. Care was taken to remove the excreta periodically and fresh leaves were provided daily. The larval mortality rate was noted every day and it was subjected to Abbott's formula [18] to get corrected percent mortality.

Corrected Percentage Mortality = $\frac{\% \text{ mortality in treatment } - \% \text{ mortality in control}}{100 - \% \text{ mortality in control}} \times 100$

The mortality data thus obtained were subjected to probit analysis [19]. The LC_{50} and fiducial limits were calculated for each treatment and the regression lines were plotted and slopes of the regression were determined. To calculate the median survival time (ST50), the third instar larvae (n=30 for each species) were inoculated with LC_{50} dose of POBs obtained in the lethal concentration studies. After inoculation, the caterpillars were reared as stated above and the mortality rate was noted every day. The relation between time factor and larval mortality was processed for Kaplan-Meier Estimate [20] using the software SPSS version 25.

Purification of virus and extraction of viral genomic DNA

The polyhedral inclusion bodies (PIBs) were purified according to the protocol of [21]. The purified PIBs were lysed in 0.1 M Na2CO3 and incubated with proteinase K (microgram/ml) at 50°C for overnight [15,22]. The viral genomic DNA was isolated by using the DNeasy kit (Qiagen, Hilden, Germany) as per the manufacturer's protocol. The quantitative and qualitative analysis of the extracted DNA was performed by using the NanoDrop2000 (Thermo Scientific, Waltham, USA) and Agarose gel (1%) electrophoresis, respectively.

Genome sequencing, assembly and annotation of the genome contigs

Viral genome sequencing was performed using the Ion Torrent Personal Genome Machine (Life Technologies, Carlsbad, CA). The quality of the Ion Torrent generated raw reads was analysed by using the FastQC quality control tool version 0.11.8 (https:// www.bioinformatics.babraham.ac.uk/projects/fastqc/) and CLC genomics workbench version 12.0 [23,24]. The adapter sequences and low-quality reads were filtered by using the trim settings as trim using quality score limit: 0.05; trim ambiguous nucleotides: maximal 2 nucleotides allowed. The filtered reads of the virus were assembled by using the *de novo* assembly algorithm of CLC genomics workbench version 12.0 with parameters: word size: 20; bubble size: 50 and minimum contig length: 200. The genome coverage statistics for the SpobNPV virus was obtained by mapping the genomic reads to the assembled contigs using the parameters: mismatch cost: 2, insertion cost: 3, deletion cost: 3, length fraction: 0.5 and similarity fraction 0.8. Simultaneously we also opted for reference-based assembly of the SpobNPV (Spilosoma obliqua NPV) genome by using the previously reported Spilosoma obliqua nucleopolyhedrovirus (SpobNPV) isolate IIPR genome as a reference in the CLC genomics workbench. The mapped reads obtained from the reference-based assembly were used to detect all the SNPs, InDels and other structural variations between the two genomes by using the Basic Variant Detection tool and the InDels and Structural Variants tool of CLC genomics workbench. The ORFs were predicted by using the Glimmer (Gene Locator and Interpolated Markov ModelER) prokaryotic gene prediction software integrated within the OmicsBox version 1.1. The ATG initiated ORFs of 50 codons or larger with minimal degree of overlap (<25 codons or <75 nt) were taken into consideration [25]. The Glimmer predicted SpobNPV ORFs were identified from the BLAST search against the NCBI virus database using the BLASTx algorithm [26] with E-value threshold 1E-05. The graphical circular maps of the SpobNPV genome describing the sequence feature, GC contents and annotated gene details were created by using Glimmer predicted GFF (general feature format) annotation files in Geneious Prime sequence analysis software version 2019.1 [27]. The circular genome comparison between our Spilosoma obliqua NPV (SpobNPV) and the reported Spilosoma obliqua nucleopolyhedrovirus isolate IIPR genomes were performed by using the BLAST Ring Image Generator (BRIG) tool version 0.95 [28] with the parameters like alignment algorithm: BLASTn; upper identity threshold: 70%; lower identity threshold: 50% and ring size: 30. The early and late promoter motifs in the SpobNPV virus were detected as described previously [29] by using the neural network promoter prediction tool. The early promoter motifs were defined as TATA and CAGT sequences and the late promoter motif was considered as the TAAG sequence [30,31]. The gene parity plot was carried out by using SpobNPV-Manipur isolate ORFs number as the X-axis and other baculoviruses ORFs as the Y-axis [32]. The scatter plot was drawn by using the Graph Pad Prism software, version 8.2.1.

Phylogenetic analysis with other baculoviruses

The nucleotide sequences of 38 core genes from SpobNPV-Manipur isolate and other 79 baculoviruses were obtained for phylogenetic analysis [33]. The sequences were concatenated using the Geneious Prime sequence analysis software version 2019.1. The concatenated nucleotide sequences were aligned by using the ClustalW multiple sequence alignment tool with the parameters: gap opening penalty: 10; gap extension penalty: 0.2; protein weight matrix: BLOSUM and gap separation distance: 4 [34]. The phylogenetic tree was constructed through the maximum likelihood method with 100 bootstrap replicates and Kimura's two-parameter (K2P) nucleotide substitution model using the MEGA 7 software [35,36].

Multiple genome alignment and phylogenomic analysis of SPobNPV v genome

 $The assembled sub-genomic \, contigs \, of SpobNPV \, was \, concatenated$ using the Geneious Prime sequence analysis software version 2019.1. The concatenated genome sequence of SpobNPV virus was aligned to the genomic dataset of its neighboring alphabaculovirus species: Antheraea pernyi nucleopolyhedrovirus (NC_008035), Choristoneura nucleopolyhedrovirus multiple (NC_004778), fumiferana Choristoneura murinana nucleopolyhedrovirus (NC_023177), Choristoneura occidentalis nucleopolyhedrovirus (NC_021925), (NC_021924), Choristoneura rosaceana nucleopolyhedrovirus Hyphantria cunea nucleopolyhedrovirus (NC_007767), Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV), Philosamia cynthia ricini nucleopolyhedrovirus (JX404026) and Spilosoma obliqua nucleopolyhedrovirus isolate IIPR (SpobNPV IIPR) (KY550224) (Akram et al., 2018 (Unpublished work)) by using the Mauve multiple genome alignment tool (http://darlinglab. org/mauve.html) [37]. The Average Nucleotide Identity (ANI) score of the SpobNPV-Manipur isolates to its closely related baculovirus genomes were determined by using the Orthologous Average Nucleotide Identity Tool (OAT) (https://www.ezbiocloud. net/tools/orthoani) [38]. The phylogenomic analysis of the NPV virus genomes was carried out by using the REALPHY phylogeny builder server 1.2 [39] and the phylogenomic tree was reconstructed through MEGA 7 software.

Result and Discussion

Pathogenicity of the viral isolates and the structure of PIBs

The caterpillars of S. obliqua have five larval instars and the total larval duration ranged from 28 to 32 days when reared at different temperatures and host plants [1]. They exhibit voracious feeding habits especially during the 5th instar (Figure 1A). Therefore, considering their feeding propensity, the suppression of the caterpillar population becomes essential during their early stages. Keeping this view in mind, lab-bioassays of SpobNPV was carried out against 3rd instar larvae of S. obliqua intending to find out the median lethal concentration $({}_{_{\rm LC50}})$ of the pathogen concerned. The result of the experiment revealed that the LC_{50} of SpobNPV on 3rd instar larvae was 2.7 x 10⁵ POBs/ml (Table 1) and the median survival time (ST50) was 144 hours respectively (Table 2). Earlier studies pertaining to bioassay of SpobNPV revealed that the LC₅₀ value for the 4th instar larva was 5 x 10⁵ POBs/ml [13] and 4.37 x 10³ POBs/ml for the 3rd instar larva when inoculated with SpobNPV isolate from Kerala [14]. The Delhi isolate of SpobNPV showed the LC_{50} value of 4.9 x 10²; 2.5 x 10⁴ and 3.16 x 10⁵ POBs/ml respectively for the 2nd, 3rd and 4th instar larvae of S. obliqua [10]. While making a comparative analysis on the LC₅₀ value of three different isolates of SpobNPV from three different geographical zones such as Kerala (Southern India), Delhi (Northern India) and Manipur (North-Eastern India), the study reflected that the LC $_{\rm 50}$ was respectively 4.37 x 10³, 3.16 x 10⁵ and 2.7 x 10⁵ POBs/ ml [10,14]. The median survival time (ST50) was 181 and 167 h respectively, at a dose of 1 x 106 and 1x 108 POBs/ml of SpobNPV. Based on the LC_{50} , it is evident that the isolate from Kerala appeared to be more virulent than that of Manipur isolate of the present study. The infected larvae exhibited typical symptoms such as restless movement, shiny and lose cuticle, oozing out hemolymph from the oral end (Figure 1B). Their food intake reduced drastically from 96 h of p.i. However, a few larvae showed cannibalistic behaviour too. At the advanced stage of post-infection (p. i), they tend to move towards the apical portion of the twig invariably and hang upside down with their caudal legs (Figure 1B). Each larva can be said to be a bioreactor

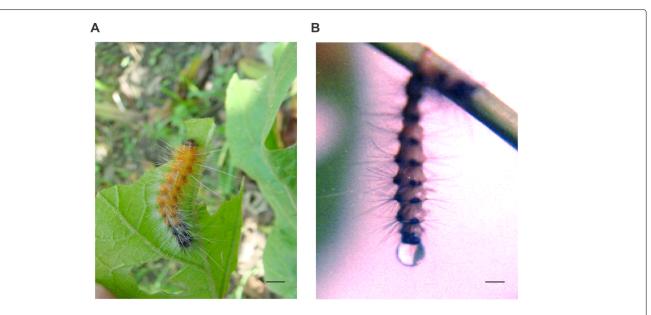
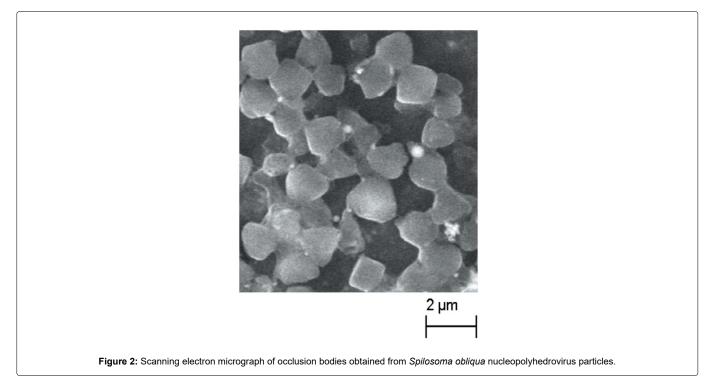


Figure 1: Snapshot of healthy and infected caterpillars. (A) The healthy larva of Bihar hairy caterpillar Spilosoma obliqua, (B) Spilosoma obliqua larva infected with nucleopolyhedrovirus (SpobNPV) hanging upside down & oozing hemolymph.


Table 1: Median Lethal Concentrations	(I C50	of Spilosoma obliqua insec	t virus against its lepidopteran host

Insect Virus (Pathogen)	Larval host (third instar)	Regression Equation	LC₅₀ (POBs/ml)	Fiducial limit [®] (upper & lower)		
SpobNPV	Spilosoma obliqua Walker (Arctiidae)	Y = 0.41x + 2.36	2.7 x 10⁵	1.4 x 10 ⁶		
	(n = 210)	x ² =14.95**		, ,		
N-represents number	it Analysis – Finney, 1971); [@] Fiducial limi of larvae tested against <i>Spilosoma obliqu</i> red at 28 ± 1.5°; 65± 5% RH & 12:12 L: D	t at 95% confidence level. a insect virus.	I			

Table 2: Median Survival Time (ST50) of Spilosoma obliqua insect virus against its lepidopteran host.

Insect Virus (Pathogen)	Larval host (third instar)	ST₅₀ (hours)	Standard Error	Fiducial limit [®] (upper & lower)						
SpobNPV	Spilosoma obliqua (Arctiidae)	144	18.7	180.7 – 107.3						
Overall comparisor	Overall comparison based on Kaplan-Meier Estimate: Log Rank (Mantel-Cox) X ² = 6.614. df = 1. P – value = 0.010. (Upper and lower limits @ 95% confidence									

Overall comparison based on Kaplan-Meier Estimate: Log Rank (Mantel-Cox) $X^2 = 6.614$, df = 1, P – value = 0.010. (Upper and lower limits @ 95% confidence level) ST_{50} value was arrived at by inoculating the caterpillar (n=50) with the LC₅₀ concentration of viral pathogen mentioned in Table-1 for the concerned host larvae.

by virtue of producing as much as 10^{12} POBs when inoculated with 10^4 POBs. The occlusion bodies of SpobNPV (Manipur isolate) were purified and the morphology was studied by scanning electron microscope (Figure 2). The average size of the occlusion bodies of SpobNPV was $2.351 \pm 0.857 \mu$ m. The occlusion bodies were found to be tetrahedral shape similar to the POBs of *Spilarctia obliqua* NPV reported in the Kumar et al., [14].

The striking feature of *S. obliqua* is that they occur in a cluster under the field condition at least up to 3rd instar stage and hence, they occur in a localized group during the early period of infestation. Therefore, giving a drenching spray of viral pesticide during the early stage of the caterpillar not only make them susceptible but prevents further dissemination of the caterpillars from infested plant to a healthy plant. Field evaluation studies have unambiguously revealed that spraying with 250 larval extracts of virus-infected larvae (≈ 5 x 10¹² POBs/ml) per h could reduce infestation by the *S. obliqua* substantially [40].

Genome sequencing, quality control and assembly

The whole-genome sequencing of the SpobNPV virus using Ion Torrent personal genome machine (Life Technologies, Carlsbad, CA) generated a total of 535,029 reads with an average length of 114.8 bp. The FastQC (version.0.11.5) quality assessment software (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) [23] and CLC genomics workbench version 12.0 [24] were used to analyze the read quality and trim the ambiguous, low quality reads from the genome dataset. A total of 148,616 reads were trimmed based on their quality and the average length of the final filtered reads was obtained as 112 bp (Figure S1A and Table 3). The Phred quality distribution of the cleaned reads suggested that 98.16% of SpobNPV reads had average quality PHRED-score of 20 and above (Figure S1B). The de novo assembly of the trimmed filtered reads using the CLC genomics workbench version 12.0 generated a total of 41 contings with an average length of 3,266 bp and total genome size of 136.3 kb. The summary statistics of the CLC assembly denoted that the N75 value,

Table 3: Summary statis	stics of SpobNPV genome assembly.
Summary	SpobNPV
No. of Raw Reads	535,029
Average length of Raw Reads (bp)	114.8
No. of Reads trimmed	148,616
Average length of Clean Reads (bp)	112
Total No. of Contigs	41
Max Contig length (bp)	16,279
Min Contig length (bp)	165
Mean Contig length (bp)	3,266
N75 length (bp)	4,684
N50 length (bp)	7,508
GC%	44.9
Size of genome (bp)	136,306

N50 value and GC% for the assembled genome were 4,684 bp, 7,508 bp and 44.9% respectively (Table 3). The genome sequence reads were deposited to the NCBI sequence read archive (SRA) with the Accession: SRX6949976 the BioProject ID- PRJNA560447. Among the 41 genomic contigs of SpobNPV, 22 contigs had sequence length larger than 1,000 bp and the largest contig length was 16,279 bp (Figure S1C).

The de novo assembled genome size and GC content of the SpobNPV-Manipur isolate was found to be reasonably higher compared to the reported group I alphabaculoviruses like Bombyx mandarina nucleopolyhedrovirus (BomaNPV) [41], Bombyx mori nucleopolyhedrovirus (BmNPV) [42] etc. The genome coverage summary statistics denoted that a total of 508,000 SpobNPV reads were mapped to their assembled genome with an average coverage of 424.65 (Table S1). Besides, the coverage level distribution represented that 99.7% of the SpobNPV genome had coverage between 1 and 1,104 (Figure S1D). In Parallel, the reference-based assembly using Spilosoma obliqua nucleopolyhedrovirus isolate IIPR genome (KY550224) as reference generated 136.1 kb genome for our reported SpobNPV virus with the GC content of 45.4% and average coverage of 219.25 (File S1). The mapped reads obtained from the referencebased assembly demonstrated a total of 465 variants between the genomes of our SpobNPV-Manipur isolate and reported Spilosoma obliqua nucleopolyhedrovirus (SpobNPV) isolate IIPR. Among these 465 variants, 261 were SNVs (single nucleotide variants), 14 were MNVs (multi nucleotide variants) and 190 were InDels and structural variants. Of the 190 InDels and structural variants, a total of 28 deletions, 114 insertions, 9 inversions, 20 replacements and 19 other structural variants were observed between the two genomes (Table S2). The list of all the SNVs and MNVs was documented in Table S3 [43].

Annotation and characterization of SpobNPV genome

The genomic contigs of the SpobNPV virus were annotated by using the Glimmer (Gene Locator and Interpolated Markov ModelER) prokaryotic gene finding tool within OmicsBox version 1.1 (https://www.biobam.com/omicsbox/). A total of 144 ORFs code for proteins >50 amino acids were predicted from Glimmer annotation. The polyhedrin gene with reverse orientations was considered as ORF 1 according to the convention [44]. The successive nucleotides were numbered according to the orientation of the polyhedrin gene. A total of 88 (61.1%) ORFs were present in the forward orientation and 56 (38.8%) SpobNPV ORFs were present in the reverse orientation in the genome map (Figure 3). The distribution of orientations for the SpobNPV ORFs was uneven like the reported gammabaculovirus Neodiprion sertifer nucleopolyhedrovirus (NeseNPV) [30]. The SpobNPV genome sequences were scanned for promoter motifs within 300 bp upstream of the start codon for each ORFs through neural network promoter prediction [45]. The genome-wide promoter scanning detected that 59 SpobNPV ORFs have baculovirus early promoter motifs (TATA box and CAGT motif sequence), 13 ORFs have late promoter motifs (TAAG), 39 ORFs contain both the motifs and 33 ORFs lack any consensus promoter sequences in their upstream region.

The Glimmer predicted ORFs were subjected to BLAST annotation against NCBI baculovirus database using the OmicsBox version 1.1 and classified according to their homologous sequences they aligned with the highest bit score. The detailed list of the functionally annotated genes for the SpobNPV genome dataset was documented in Table 4. Among the 144 SpobNPV ORFs predicted from Glimmer annotation, 140 ORFs were homologous to at least one other baculovirus. Besides, the Glimmer annotation predicted 38 baculovirus core genes and 21 lepidopteran baculovirus conserved genes in the SpobNPV genome (Table 5). Notably, the core gene p6.9 was absent in the genome of *Spilosoma obliqua* nucleopolyhedrovirus isolate IIPR (SpobNPV IIPR) (NCBI GenBank accession: KY550224). Our study provides the first report regarding the presence of this core gene in the genome dataset of the SpobNPV virus.

Gene content of SpobNPV-manipur isolate

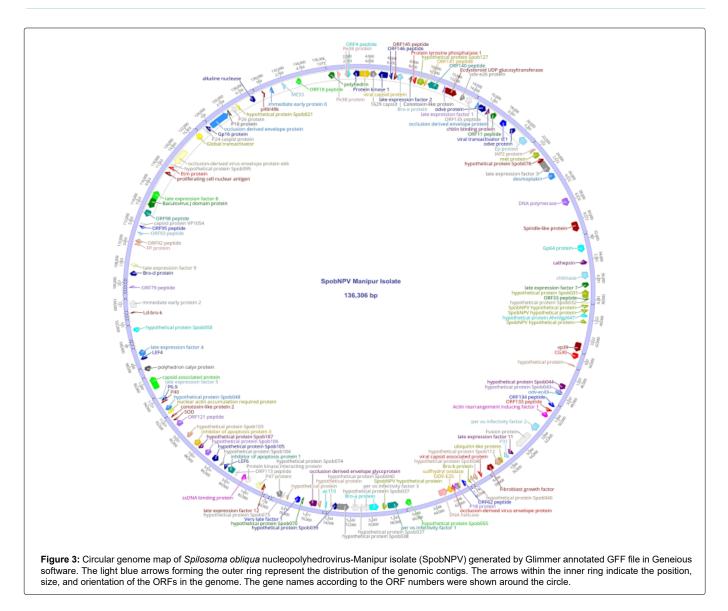
The genome annotation of the SpobNPV baculovirus demonstrated the presence of 13 replication related genes, 12 transcription-associated genes, 31 structure related genes, 11 genes essentially required for oral infection and 24 auxiliary genes (Table 5). The six genes reported to be essential for the baculovirus DNA replication namely: immediate early gene-1(ie-1), DNA polymerase (DNA-pol), helicase, late expression factor 1 (lef1), lef2 and lef3 [46,47] were present in the genome dataset of SpobNPV-Manipur isolate. Among the other replication-related genes we monitored the presence of lef-7 and pcna. The eukaryotic pcna gene plays a key role in DNA synthesis, repair and progression of cell cycle [48]. In baculovirus AcMNPV the overexpression of pcna stimulates the replication of the viral genome within the host cell. Besides, it also stimulates the transcription of the late genes and enhances the larval mortality rate [49,50]. The late expression gene lef-7 was reported to involve in the transient DNA replication and DNA damage response mechanisms of baculoviruses [51,52]. The presence of these genes indicates their role in regulating the DNA synthesis and cell cycle of the reported betabaculovirus SpobNPV-Manipur isolate. In contrast, the baculovirus lacks the replication-related genes helicase 2, p35, ie-2 and ribonucleotide reductase subunits (rr1 and rr2). The p35 and ie-2 genes were reported to stimulate the DNA replication [47] and subunits of ribonucleotide reductase enzymes catalyze the reduction of host rNTPs to dNTPs and assist in the viral replication [53].

Among the 31 SpobNPV structural genes, 18 genes belong to the baculovirus core genes, 4 genes belong to the lepidopteran conserved genes and 9 genes belong to other baculovirus genes. The polyhedrin/ granulin, polyhedron envelope/calyx, enhancin, p10 and alkaline protease were the key baculovirus genes reported to be associated with baculovirus occlusion bodies [48,54]. Among them, the polyhedrin, polyhedron envelope/calyx and p10 genes were identified in the genome dataset of SpobNPV-Manipur isolate. Certain baculoviruses possess two or three copies of the desmoplakin gene [55]. We have observed only one copy of desmoplakin in the annotated genome of the SpobNPV virus.

The auxiliary genes were not essential for the baculovirus replication and structure but provide a selective advantage for their survival in nature [56]. Among the thoroughly studied auxiliary genes, we identified the lepidopteran conserved genes egt, chitinase and cathepsin [57,58] in the genome dataset of the SpobNPV virus. The egt gene encodes an enzyme, which participates in conjugating the insect molting hormone, ecdysteroid with UDP-glucose [59]. The deletion of the egt gene in baculovirus confirmed that the egt expression is essential for the suppression of insect larval molting [60]. Besides, the cysteine protease genes chitinase and cathepsin facilitate the release of virus occlusion bodies from the insect by breaking down the chitin and the cuticular protein [57]. The deletion of either chitinase or cathepsin can prevent the liquification of the host insect and the host remains intact for several days post their death [61]. In addition, we identified 5 baculovirus repeated ORFs (bro genes) in the SpobNPV genome. The bro genes were found in most of the baculoviruses and possess the ability of DNA binding and nucleosome association to influence the host DNA replication and transcription [62].

Homologous repeat regions (hrs) and bro genes in Spob-NPV genome

Most of the baculovirus genomes contain homologous repeat regions (hrs), characterized by the presence of rich AT content, tandem repeat sequences and imperfect palindromes, interspersed throughout the genome [63,64]. The homologous repeat regions (hrs) are highly variable in nature and exhibit limited homology within different baculoviruses [65]. The tandem repeat finder identified a total of 5 hrs in SpobNPV-Manipur isolate genome dataset (File S2). This is the first report regarding the presence of hrs in the SpobNPV virus as the hrs repeat sequences were missing in the previously reported genome of SpobNPV IIPR (Akram et al., 2018 (Unpublished work)). The size of the SpobNPV hrs direct repeats varied from 35 bp to 99 bp. Besides, the AT content of SpobNPV-Manipur isolates ranged from 53% - 71%.


Simultaneously, we have also identified 5 copies of bro (Baculovirus Repeated Open Reading Frames) genes: bro-a, bro-b, bro-d, bro-e and bro-k in the genome of SpobNPV-Manipur isolate (Table 4). Whereas, the bro-c and bro-b-r genes reported previously in the genome of SpobNPV IIPR (Akram et al., 2018 (Unpublished work)) were missing in the SpobNPV-Manipur isolate.

A Phylogenetic tree was constructed based on 38 core genes obtained from a total of 80 baculoviruses (including SpobNPV-Manipur isolate). The baculovirus replication related genes polyhedrin and DNA polymerase have been used previously for phylogenetic analysis [66]. The per os infectivity factors and transcription specific genes lef8 and lef9 were considered as reliable baculovirus markers for phylogenetic analysis to identify the lepidopteran baculoviruses and monitoring their diversity [67,68]. Besides, the lef2 gene-based phylogeny in HearNPV was demonstrated as a useful parameter to interpret the ancestral relationship and evolutionary history of the baculovirus [69]. The phylogenetic tree represented in our study based on the core genes of the SpobNPV-Manipur isolate provided a clear evolutionary classification between the four genera of the baculovirus (Alphabaculovirus, Betabaculovirus, Gammabaculovirus and Deltabaculovirus) likewise the phylogeny of CapoNPV [65] and CnmeGV [70]. The species of the alphabaculovirus genera were further subdivided into two groups (group I and group II). The phylogenetic analysis placed the SpobNPV-Manipur isolate in clade "a" within the group I alphabaculoviruses (Figure 4). According to the phylogenetic tree, the selected core genes of SpobNPV-Manipur isolate showed close evolutionary relatedness to their orthologs in SpobNPV IIPR (Spilosoma obliqua nucleopolyhedrovirus isolate IIPR) (Akram et al., unpublished work) and HycuNPV (Hyphantria cunea nucleopolyhedrovirus) [71] as they were grouped together as a monophyletic clade and identified as the most recent common ancestors (Figure 4).

Comparison of SpobNPV ORFs with other baculoviruses

The SpobNPV-Manipur isolate ORFs were compared to their homologues in 4 nucleopolyhedroviruses (SpobNPV IIPR, HycuNPV, PhcyNPV and CfMNPV obtained from the clade "a" of the group I NPV phylogenetic tree). The ORF comparison study demonstrated that SpobNPV-Manipur isolate shared 131, 138, 122 and 127 homologous ORFs with SpobNPV IIPR, HycuNPV, PhcyNPV and CfMNPV respectively (Table 4). The ORFs sequence similarity analysis denoted that the SpobNPV-Manipur isolate ORFs exhibited an average amino acid (aa) identity of 98%, 97%, 80% and 84% with their homologous ORFs in the selected 4 group I NPVs. For the core genes, SpobNPV showed average aa identity of 98%, 98%, 86% and 89% with its baculoviruses homologues. Besides, the SpobNPV exhibited 98%, 97%, 81% and 84% average aa identity for the lepidopteran conserved genes and 99%, 97%, 77% and 81% identity for the other baculovirus genes with their homologous ORFs in the selected NPVs. A total of 20 SpobNPV-Manipur isolate ORFs were identified with sequence identity of 90% and above against their homologues in all the four selected baculoviruses.

The gene parity plot assists in comparing the position of the orthologous genes (gene orders) in different genomes and assessing the synteny conservation within the genomes [66]. The gene parity plot analysis of SpobNPV-Manipur isolate (Figure 5) with the selected baculoviruses obtained from the same clade demonstrated moderate co-linearity with inverted regions over the whole genome likewise the parity plot of BusuNPV [32] and contrary to the plots of HycuGV-CpGV and HycuGV-PlxyGV [72]. In contrast to the parity plot distribution of most of the baculoviruses [31,73,72] the gene parity plot of SpobNPV-Manipur isolate showed the presence of multiple collinearly conserved regions identified between SpobNPV28 and SpobNPV34, SpobNPV35 and SpobNPV41, SpobNPV30 and SpobNPV81, SpobNPV83 and SpobNPV89, SpobNPV90 and

SpobNPV104 and SpobNPV120 and SpobNPV133. In SpobNPV-Manipur isolate the collinearly conserved regions contain 12 core genes, 6 lepidopteran conserved genes and 31 other baculovirus genes.

Multi genome comparison and phylogenomic relationship with other baculoviruses

The CLC assembled 41 SpobNPV genomic contigs were concatenated using Geneious Prime sequence analysis software version 2019.1. The concatenated genome dataset of SpobNPV-Manipur isolate was aligned against Antheraea pernyi nucleopolyhedrovirus (AnpeNPV) (NC_008035) [43], Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV) (NC_004778) [73], Choristoneura murinana nucleopolyhedrovirus (ChmuNPV) (NC_023177) [74] and *Spilosoma obliqua* nucleopolyhedrovirus isolate IIPR (SpobNPV IIPR) (KY550224) (Akram et al., (Unpublished work)) group I alphabaculoviruses genomes reported in NCBI using the Mauve multiple genome alignment tool. The Mauve genome alignment generated 28, 28, 30, 29, 29, 35, 28, 28 and 38 Locally Collinear Blocks (LCBs) between the genomes of SpobNPV-Manipur and AnpeNPV,

SpobNPV-Manipur and CfMNPV, SpobNPV-Manipur and ChmuNPV, SpobNPV-Manipur and ChocNPV, SpobNPV-Manipur and ChroNPV, SpobNPV-Manipur and HycuNPV, SpobNPV-Manipur and OpMNPV, SpobNPV-Manipur and PhcyNPV and SpobNPV-Manipur and SpobNPV-IIPR with minimum LCB weight of 75, 146, 128, 125, 130, 146, 201, 80 and 198 respectively (Figure 6).

The concatenated genome dataset of SpobNPV-Manipur isolate exhibited Average Nucleotide Identity (ANI) score [75] of 74.67%, 77.41%, 77.68%, 77.57%, 77.56%, 97.43%, 77.67%, 74.20% and 99.56% with AnpeNPV, CfMNPV, ChmuNPV, ChocNPV, ChroNPV, HycuNPV, OpMNPV, PhcyNPV and SpobNPV IIPR genomes (Figure S3A). The high ANI scores between the SpobNPV-Manipur and SpobNPV-IIPR and SpobNPV-Manipur and HycuNPV were well supported by their phylogenetic relationships based on the core genes (Figure 4). The phylogenomic analysis based on the genome sequence comparison of SpobNPV-Manipur isolate virus species with their nearest baculoviruses was performed by using the REALPHY phylogeny builder web tool. The phylogenomic tree of the SpobNPV-Manipur isolate denoted close evolutionary relationship of the virus with SpobNPV IIPR and HycuNPV as they were grouped as

						v-mani _k	ORF posit	enome ann			Amino aci			
Name	ORF number	ORF starts	ORF ends	Strand	Promoter	Length (aa)	SpobNPV IIPR	HycuNPV	PhcyNPV	CfMNPV	SpobNPV IIPR	HycuNPV		CfMNPV
polyhedrin	1	66	638	-		190	1	1	1	1	100%	100%	98%	98.33%
Pe38 protein	2	953	1264	+	E,L	103	5	5	5	144	100%	100%	76%	68.42%
Pe38 protein	3	1623	1898	-	E	91	5	5	5	144	100%	100%	80%	68.42%
ORF4 peptide	4	1973	2218	+	L	81		4				100%		
Protein kinase 1	5	2450	3031	-	E	193	3	3	3	145	93%	93.78%	83%	87.56%
viral capsid protein	6	3033	4109	+	E	358	2	2	2	146	90%	88.68%	62%	72.32%
1629capsid	7	4135	4692	+		185	2	2	2	146	100%	100%	65%	75%
late expression factor 2	8	4869	5768	-	E	299	132	147	137	3	99%	99.35%	79%	81.82%
ORF146 peptide	9	5925	6191	-		88	131	146		4	100%	100%		72.22%
ORF145 peptide	10	6427	6696	+	E	89	130	145	136	5	100%	100%	85%	82.02%
Bro-e protein	11	6750	7259	+		169	129	144			98%	98.22%		
Conotoxin-like protein	12	7837	8100	-	L	53		143	133	131		100%	96%	88.68%
Protein tyrosine phosphatase 1	13	8188	8526	-		112	128	142	132	9	100%	100%	83%	86.92%
hypothetical protein Spob127	14	8709	9389	+	E	226	127	141	131	10	100%	100%	70%	72.43%
ORF141 peptide	15	9415	9612	+	E	65	127	141	131	10	92%	92.42%	63%	64.71%
ORF140 peptide	16	9713	10714	-	E	333	126	140	129	12	98%	99.7%	84%	84.19%
late expression factor 1	17	11348	11500	+		50	125	139	127	13	100%	100%	100%	86%
Ecdysteroid UDP glucosyltransferase	18	11488	12654	+		388	124	138	126	14	99%	99.71%	89%	81.02%
odv-e26 protein	19	13153	13548	+	E,L	131	123	137	125	15	96%	100%	63%	75.59%
ORF135 peptide	20	13711	14340	+	E,L	209	122	135	124	16	100%	100%	80%	83.65%
occlusion derived envelope protein	21	14854	15126	+	E,L	90	13	14	14	136	100%	100%	84%	86.67%
odve protein	22	15150	15911	+	E,L	253	12	13	13	137	100%	100%	92%	94.67%
chitin binding protein	23	16053	16340	+	E,L	95	11	12	12	138	100%	100%	88%	93.68%
ORF11 peptide	24	16490	16996	-	E	168	10	11	11	139	97%	97.37%	79%	86.18%
viral transactivator IE1	25	17763	18341	+	E,L	192	9	10	10	140	100%	100%	78%	93.29%
odve protein	26	18884	19369	-	E,L	161	8	9	9	141	99%	99.38%	87%	96.15%
Ep protein	27	20148	20915	-	E	255	6	8			100%	94.12%		
IAP2 protein	28	21741	22040	-	E	99	76	80	77	66	100%	100%	74%	91.01%
met protein	29	22178	22753	-		191	77	81	78	65	100%	98.43%	84%	86.39%
hypothetical protein Spob078	30	22947	23354	-	E	135	78	82	79	64	100%	97.67%	91%	92.31%
late expression factor 3	31	23356	24570	+	E,L	404	79	83	80	63	99%	99.19%	75%	86.83%
desmoplakin protein	32	24697	25338	-	E	213	80	84		62	100%	96.68%		64.71%
DNA polymerase	33	27608	28354	+		248	81	85	82	61	100%	100%	88%	90.61%
Spindle-like protein	34	30161	31120	+	E,L	319	82	86	83	60	99%	99.69%	79%	75.14%
Gp64 protein	35	32552	33268	+		238	27	28	30	119	100%	98.72%	94%	96.6%
cathepsin	36	34039	34476	-	E	145	28	29		118	98%	97.73%		88.89%

Table 4: SpobNPV-Manipur isolate genome annotation details

chitinase	37	35256	35948	+	E	230	29	30		117	93%	93.01%		91.98%
late expression	38	36311	36820	+	E,L	169	30	30	31		90%		51%	
factor 7 hypothetical protein		36311	36820	+		169	30	31	31	115	90%	90.85%	51%	72.11%
Spob031	39	37035	37829	-	E	264	31	32	33	113	99%	98.77%	77%	81.25%
ORF33 peptide	40	37912	38115	+	E	67		33	34	112		98.51%	60%	76%
hypothetical protein Spob032	41	38154	38399	-	E	81	32	34	35	111	100%	97.53%	79%	80.25%
SpobNPV hypothetical protein	42	38556	38867	+	E,L	103								
SpobNPV hypothetical protein	43	39013	39351	+	E	112								
hypothetical protein AhnVgp047	44	39369	39743	-	E	124			91				50%	
SpobNPV hypothetical protein	45	40038	40373	-	E	111								
vp39	46	42362	43284	+	E, L	205	61	65	65	81	99.66%	95.96%	76.41%	81.67%
CG30	47	43478	44038	+	E	186	62	66	66	80	100%	100%	69%	84.32%
hypothetical protein	48	44586	44747	-	E	53			67				87%	
hypothetical protein Spob044	49	46787	47359	+	L	190	44	48	46	98	100%	93.16%	75%	76.32%
hypothetical protein Spob043	50	47443	47664	-		73	43	47	45	99	98%	97.01%	90%	88.06%
odv-ec43	51	47764	47964	+	E	66	42	46	44	100	98.75%	98.75%	78.75%	82.50%
ORF134 peptide	52	48909	49256	-		115	121	134	123	17	100%	100%	75%	81.82%
ORF133 peptide	53	49611	49925	+	L	104	120	133	122	18	100%	100%	78%	84.62%
Actin rearrangement inducing factor 1	54	50042	50518	-	E	158	119	132		19	100%	100%		57.25%
per os infectivity factor 2	55	51491	52288	+	E	265	118	131	120	20	98%	98.44%	95%	95.18%
Fusion protein	56	52742	54457	+		571	117	130	119	21	100%	100%	70%	75.17%
late expression factor 11	57	55170	55511	+	E	113	115	128		23	100%	100%		87.5%
P31	58	55716	56057	+	E	113	114	127	117	24	100%	100%	82%	84%
ubiquitin-like protein	59	56309	56548	-	E	79	113	126	116	25	100%	100%	96%	96.1%
hypothetical protein Spob112	60	56565	57194	+	E	209	112	125	115	26	100%	99.52%	80%	85.65%
Fibroblast growth factor	61	57527	58114	+	E	195	111	124	114	27	100%	100%	73%	75.86%
viral capsid associated protein	62	58763	59029	-		88	45	49		97	100%	100%		63.44%
hypothetical protein Spob046	63	59378	59737	+	E	119	46	50	50	96	85%	84.13%	83%	81.51%
hypothetical protein Spob046	64	59800	60009	+	E	69	46	50	50	96	91%	91.53%	81%	81.36%
Bro-b protein	65	60111	60350	+		79	51	56			96%	95.08%		
ORF62 peptide	66	60518	60820	-	E	100	58	62	62	84	97%	97.89%	65%	71.58%
sulfhydryl oxidase	67	61109	61303	-	E,L	64	58	62	62	84	100%	100%	96%	98.28%
P18 protein	68	61302	61781	+	E,L	159	57	61	61	85	100%	100%	94%	94.97%
occlusion-derived virus envelope protein	69	61786	62049	+	E,L	87	56	60	60	86	98%	98.77%	91%	92.59%
ODV-E25	70	62034	62525	+	E	163	56	60	60	86	99%	100%	94%	91.3%
DNA helicase	71	62515	63375	-	L	286	54	59	59	87	100%	100%	95%	93.73%
hypothetical protein Spob055	72	66200	66709	+	E,L	169	55	58	58	88	100%	99.41%	94%	91.67%

	1		1	1		1	1				1			
per os infectivity factor 1	73	67436	68425	-	E,L	329	33	35	36	110	99%	95.64%	93%	94.38%
SpobNPV hypothetical protein	74	68536	68940	-		134								
Bro-a protein	75	69322	70170	-	E	282	35	38	38	108	100%	92.9%	82%	88.17%
per os infectivity factor 3	76	70195	70812	+	E	205	36	39	39	106	100%	94.15%	83%	84.24%
hypothetical protein Spob037	77	70889	71167	+	E,L	92	37	40	40	105	100%	95.4%	70%	76.74%
hypothetical protein Spob037	78	71287	71970	+	E	227	37	40	40	105	98%	96.89%	74%	81.5%
hypothetical protein Spob038	79	72177	73265	-	E	362	38	42	82	104	99%	97.95%	76%	86.03%
hypothetical protein Spob039	80	73341	73781	+	E	146	39	43	41	103	100%	97.26%	75%	68.52%
hypothetical protein Spob040	81	73821	74024	+	E	67	40	44		102	98%	94.03%		82.81%
ac110	82	74070	74236	+	E	55	41	45		101	71.43%	71.43%		69.64%
hypothetical protein	83	74914	75195	+		93	67	70	69	76	82%	82.22%	74%	92.54%
occlusion derived envelope glycoprotein	84	75314	76021	+	E,L	235	68	71	70	75	100%	100%	93%	97.81%
hypothetical protein Spob070	85	76626	76805	+	E,L	59	70	73	72	73	90%	90%	100%	94.44%
Very late factor 1	86	76950	77459	+	L	169	71	74	73	72	100%	100%	91%	96.3%
hypothetical protein	87	78104	78301	+	L	65	72	75	74	71	79%	79.69%	76%	76.56%
hypothetical protein Spob073	88	78517	78669	+	L	50	73	76	75	70	100%	100%	78%	86%
hypothetical protein Spob074	89	78767	79288	+	E,L	173	74	77	75	69	100%	98.84%	75%	79.77%
late expression factor 12	90	80488	80733	-		81	98	109	100	41	96%	96.97%	73%	72.37%
P47 protein	91	80788	81432	+		214	99	110	101	40	100%	99.52%	88%	86.67%
Protein kinase interacting protein	92	82021	82521	-	L	166	100	111	102	39	100%	100%	74%	84.34%
ssDNA binding protein	93	82536	82928	-	E	130	101	112	103	38	100%	100%	90%	83.85%
ORF113 peptide	94	83515	83766	+	E,L	83	102	113	104	37	95%	95.59%	80%	79.41%
inhibitor of apoptosis protein 1	95	83894	84571	+	L	225	103	114	105	36	100%	99.4%	84%	93.98%
LEF6	96	84721	85032	+		103		115	106	35		100%	80%	53.45%
hypothetical protein Spob104	97	85148	85354	-	L	68	104	116	107	34	100%	98.53%	82%	80.88%
hypothetical protein Spob105	98	85785	86354	-	E,L	189	105	117	108	33	99%	97.79%	78%	88.4%
hypothetical protein Spob106	99	86836	87342	+	E	168	106	118	109	32	100%	97.59%	70%	72.89%
hypothetical protein Spob107	100	87712	88077	-		121	107	119	111	31	99%	95.73%	66%	73.04%
inhibitor of apoptosis protein 3	101	88225	88770	+	E,L	181	108	120	105	30	100%	99.45%	48%	75.39%
hypothetical protein Spob109	102	89383	89814	+	E,L	143	109	121			100%	99.3%		
ORF121 peptide	103	90796	91338	+	E	180	109	121			100%	100%		
SOD	104	91463	91633	-	E,L	56	110	122	112	28	100%	100%	94%	98.15%
conotoxin-like protein 2	105	91958	92122	+	L	54		123	113			62%	88%	
nuclear actin accumulation required protein	106	92366	92719	+	E,L	117	47	51	51	95	100%	96.58%	89%	84.62%
hypothetical protein Spob048	107	92728	93174	+	E	148	48	52	52	94	98%	97.97%	81%	85.81%

	1				1	1	1	1	1	1	I	I	1	
P40	108	93617	93799	+	E	60	48	52	53	94	100%	100%	81%	94.64%
P6.9	109	93830	94006	+	E,L	58		53	54	93		100%	58.3%	77.6%
late expression factor 5	110	94003	94330	-	E,L	98	49	54	55	92	100%	100%	80%	93%
capsid associated protein	111	95122	96363	+		413	65	68	68	78	99%	99.76%	84%	87.32%
polyhedron calyx protein	112	97005	97496	-	E,L	163	24	25	27	124	100%	100%	92%	93.25%
LEF4	113	98298	98651	+	E,L	117	60	64	64	82	100%	100%	77%	86.92%
late expression factor 4	114	98731	99291	+	E	186	60	64	64	82	100%	98.92%	85%	88.17%
hypothetical protein Spob050	115	101060	101533	-	E	157	50	55	56	91	97%	97.99%	81%	89.86%
Ld-bro-k	116	103022	103189	+		55	53	57			94%	94.55%		
immediate early protein 2	117	103582	104268	+		228	7	6	8	142	99%	98.68%	70%	76.19%
ORF79 peptide	118	105555	105731	+		58		79		67		100%		82.76%
Bro-d protein	119	106766	107254	+		162	52	88	57		100%	100%	74%	
late expression factor 9	120	107581	107943	-	E,L	120	83	89	84	59	100%	100%	84%	96.67%
FP protein	121	109843	110127	+	E,L	94	85	91	86	57	100%	100%	91%	80.85%
ORF92 peptide	122	110124	110483	+	E,L	119	86	92	87	56	100%	100%	76%	61.8%
ORF93 peptide	123	110859	111113	-		84	87	93	88	55	98%	98.77%	78%	86.42%
ORF95 peptide	124	111554	111757	-	E	67	88	95	89	53	100%	100%	76%	86.89%
capsid protein VP1054	125	111819	112088	-		89	89	96	90	52	100%	100%	85%	88.76%
ORF98 peptide	126	112823	113476	-		217	90	98	91	50	98%	98.53%	84%	88.97%
Baculovirus J domain protein	127	113771	114712	-	E	313	91	101	93	49	99%	99.65%	58%	70.53%
late expression factor 8	128	114739	115575	+		278	92	102	94	48	100%	100%	89%	91.61%
proliferating cell nuclear antigen	129	117504	117836	+	E	110	93	103	131	47	98%	95.38%	57%	74.67%
Etm protein	130	118141	118416	+	E,L	91	94	104	96	46	98%	93.33%	57%	90%
hypothetical protein Spob095	131	118518	118763	+	E	81	95	105			100%	96.2%		
occlusion-derived virus envelope protein e66	132	118825	120381	-		518	96	106	97	45	99%	94.2%	88%	89.15%
Global transactivator	133	122022	122585	-	E	187	97	108	99	42	100%	100%	76%	85.37%
P24 caspid protein	134	123188	123379	+	E	63	26	27	29	122	100%	96.77%	75%	77.42%
Gp16 protein	135	123462	123776	+	E,L	104	25	26	28	123	94%	93.18%	81%	88.64%
occlusion derived envelope protein	136	123934	125868	+		644	18	19	20	130	100%	100%	92%	93.64%
P10 protein	137	125865	126131	-	E	88	19	20	21	129	100%	98.86%	95%	91.76%
P26 protein	138	126345	126884	-	E	179	20	21	22	128	99%	99.4%	85%	90.18%
hypothetical protein Spob021	139	127064	127273	+	E	69	21	22	24	127	87%	87.1%	83%	70.97%
alkaline nuclease	140	128428	128904	-	E	158	22	23	25	126	92%	92.68%	76%	76.83%
p49/49k	141	129822	130025	+	L	67	14	15	15	135	100%	100%	85.07%	88.06%
immediate early protein 0	142	130538	130822	-		94	15	16	16	134	100%	100%	83%	87.06%
ME53	143	131892	132182	+	E,L	96	16	17	17	132	97%	97.14%	77%	91.43%
ORF18 peptide	144	133207	133695	-	E,L	162	17	18	19		99%	99.38%	67%	
	· · ·				_,_									

Table 5: Gene Content of SpobNPV Manipur isolate

Gene type	Core genes	Conserved genes in Lepidoptera baculovirus	Other baculovirus genes
Gene type	SpobNPV	SpobNPV	SpobNPV
Replication	lef2 (SpobNPV8), lef1 (SpobNPV17), DNA-pol (SpobNPV33), nelicase (SpobNPV71), alk-exo (SpobNPV140)	ie-1 (SpobNPV25), lef3 (SpobNPV31), lef7 (SpobNPV38), lef11 (SpobNPV57), dbp (SpobNPV93), me53 (SpobNPV143)	ac79 (SpobNPV118), pcna (SpobNPV129)
Transcription	vlf-1 (SpobNPV86), p47 (SpobNPV91), lef5 (SpobNPV110), lef4 (SpobNPV113,114), lef9 (SpobNPV120), lef8 (SpobNPV128)	pk-1 (SpobNPV5), 39k (SpobNPV58), lef6 (SpobNPV96)	pe38 (SpobNPV2, 3), lef12 (SpobNPV 90), ie-0 (SpobNPV142)
Structure	odv-e18 (SpobNPV21), odv-ec27 (SpobNPV22), desmoplakin (SpobNPV32), ac53 (SpobNPV44,126), vp39 (SpobNPV46) odv-ec43 (SpobNPV51) p48/p45 (SpobNPV63,64), p33 (SpobNPV66, 67), p18 (SpobNPV68), odv-e25 (SpobNPV70), ac81 (SpobNPV83), gp41 (SpobNPV84), ac78 (SpobNPV85), p40 (SpobNPV108), P6.9 (SpobNPV109) 38k (SpobNPV115),vp1054 (SpobNPV125), 49k (SpobNPV141)	polyhedrin (SpobNPV1), F protein (SpobNPV56), p12 (SpobNPV106), calyx/pep (SpobNPV112)	viral capsid protein (SpobNPV6,7,62), odv-e26 (SpobNPV19), gp64 (SpobNPV35), cg30 (SpobNPV47), odv-e (SpobNPV 69), pkip (SpobNPV92), p24 (SpobNPV134), gp16 (SpobNPV135), p10 (SpobNPV137)
Oral infection	pif5 (SpobNPV26), pif6 (SpobNPV30), pif2 (SpobNPV55), pif4 (SpobNPV72), pif1 (SpobNPV73), pif3 (SpobNPV76), ac110 (SpobNPV82), vp91/p95 (SpobNPV111), p74 (SpobNPV136)	ac108 (SpobNPV50,77,78)	odv-e66 (SpobNPV132)
Auxiliary	-	38.7k (SpobNPV16), ubiquitin (SpobNPV59)	bro-e (SpobNPV11), ptp (SpobNPV13), egt (SpobNPV18), iap-2 (SpobNPV28, 117), MTase (SpobNPV29), gp37 (SpobNPV34), cathepsin (SpobNPV 36), chitinase (SpobNPV 37), arif- 1 (SpobNPV54), fgf (SpobNPV61), bro-b protein (SpobNPV65), bro-a (SpobNPV75), iap-1 (SpobNPV 95), ac30 (SpobNPV798), iap-3 (SpobNPV 101), sod (SpobNPV104), ctt (SpobNPV12, 105), bro-k (SpobNPV116), bro-d (SpobNPV119), bjdp (SpobNPV127), gta (SpobNPV133), p26 (SpobNPV138)
Unknown	-	ac145 (SpobNPV23), ac146 (SpobNPV24), ac106 (SpobNPV49), ac76 (SpobNPV87), ac75 (SpobNPV88)	ORF4 peptide (SpobNPV4), ORF146 peptide (SpobNPV9), ac4 (SpobNPV10), ac11 (SpobNPV14,15), ORF140 (SpobNPV16), ac17 (SpobNPV20), Ep Protein (SpobNPV27), ac124 (SpobNPV39), ORF33 peptide (SpobNPV40), ac120 (SpobNPV41), hypothetical protein (SpobNPV48,74), ac18 (SpobNPV52), ac19 (SpobNPV53), ac34 (SpobNPV60), Spob038(SpobNPV79), Spob039 (SpobNPV80), ac111 (SpobNPV81), ac74 (SpobNPV89), ORF113 peptide (SpobNPV94), ac29 (SpobNPV97), Spob106 (SpobNPV99), Spob107 (SpobNPV100), Spob109 (SpobNPV102), ORF121 peptide (SpobNPV103), Spob048 (SpobNPV107), ChaB-like (SpobNPV124), ac59 (SpobNPV122), ac57 (SpobNPV123), ac55 (SpobNPV124), Etm (SpobNPV130), Spob095 (SpobNPV131), Spob021 (SpobNPV139), ORF18 (SpobNPV144)

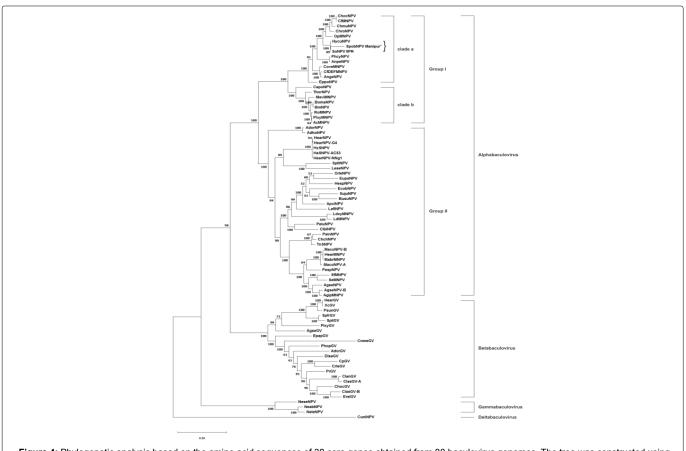


Figure 4: Phylogenetic analysis based on the amino acid sequences of 38 core genes obtained from 80 baculovirus genomes. The tree was constructed using the maximum likelihood method with Kimura's two-parameter (K2P) nucleotide substitution model and bootstrapping of 100 replicates. (The SpobNPV-Manipur isolate was represented with * symbol).

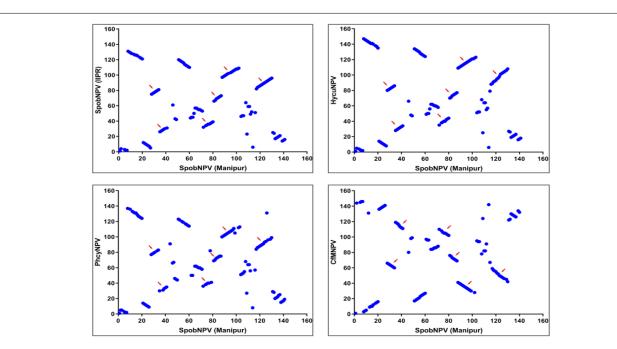
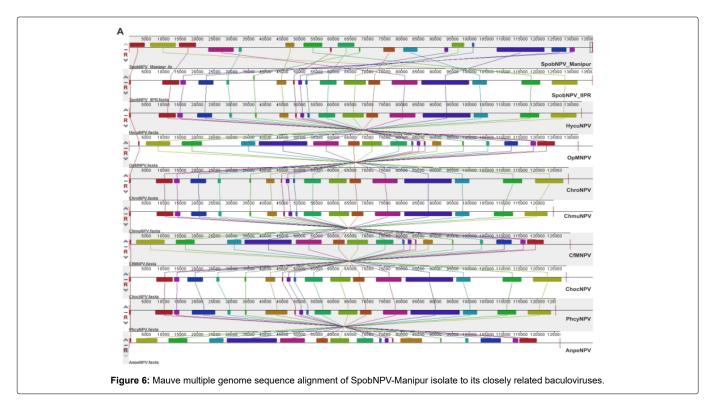



Figure 5: The gene parity plot analysis for SpobNPV-Manipur isolate. The parity plot was constructed by comparing the ORFs of SpobNPV against SpobNPV IIPR, HycuNPV, PhcyNPV and CfMNPV. The SpobNPV-Manipur isolate ORFs were demonstrated on the X-axis and other baculovirus ORFs on the Y-axis. The collinearly conserved regions of SpobNPV were denoted with a red arrow.

a monophyletic clade (Figure S3B). The pathogenicity and structural information of the SpobNPV-Manipur isolate virus can be utilized to improve its efficacy in pest management and the genome dataset can be used as a valuable resource to interpret its genetic and molecular mechanisms and promote the virus as an effective bioinsecticide.

Conflict of Interests

The authors declare no potential conflicts of interest.

Acknowledgements

AA thanks Department of Biotechnology, India for SRF (DBT/2015/ MSU/447) and all authors thank DBT Bioinformatics Infrastructure Facility (BT/ BI/04/055/2001) at Manonmaniam Sundaranar University for providing instrument facilities. Bioassay and augmentation of the virus were standardized during the project sponsored by the DBT for which RV would like to thank DBT, New Delhi.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

- 1. Singh YR. Biology and control of Bihar hairy caterpillar spilosoma obliqua walker artiidae lepidoptera.
- Singh YR (2005) Infestation level of Spilarctia obliqua (Arctiidae: Lepidoptera) on certain crops in Imphal valley of Manipur. Indian J Agri Sci 75(1): 61-62.
- Singh YR, Varatharajan R (2000) Certain aspects of NPV infecting the larvae of Spilosoma obliqua Walker (Arctiidae). Microbials in Insect Pest Management Oxford and IBH Publishing Co Pvt Ltd, New Delhi 133-140.
- Singh YR (1989) Efficacy of some insecticides against eggs and larvae of bihar hairy caterpillar, Spilosoma obliqua Walker infesting mustard crop Brassica campestris. Plant Protection Bulletin Faridabad 41 (1-2): 45-48.
- Singh YR, Varatharajan R (2005) Infestation level of Spilarctia obliqua (Arctiidae: Lepidoptera) on certain crops in Imphal valley of Manipur. Indian J Agri Sci 75 (1): 61-62.
- 6. Hunter-Fujita FR, Entwistle PF, Evans HF, Crook NE (1998) Insect viruses and pest management. John Wiley & Sons Ltd.

- 7. Smith KM (1976) Virus-insect relationships.
- Jacob A, Thomas M (1972) Nuclear-polyhedrosis virus of Diacrisia obliqua (Wlk)(Arctiidae, Lepidoptera). Agric Res J Kerala 10(2).
- 9. Jacob A, Thomas M (1975) Nature of inclusion bodies of a nuclear polyhedrosis virus of Diacrisia obliqua (Walker). Agri Res J Kerala 12 (1): 82-93.
- Chaudhari S (1997) Effect of age of Spilosoma obliqua larvae on their susceptibility to nuclear polyhedrosis virus. Indian J Entomol 59(1): 59-61.
- Battu G, Ramakrishnan N, Prakash N (1991) Size and Shape of Inclusion Bodies of Nuclear Polyhedrosis Virus of Spilosoma obliqua (Walker). J Biol Control 5(2): 88-92.
- Manickavasagam S, Ramakrishnan N, Anuradha S, Prasad Y (1992) Identification of three nuclear polyhedroviruses through restriction endonuclease analysis. J Biol Control 6(2): 101-103.
- Varatharajan R, Singh M, Tandon P, Ballal C, Jallali (2002) In vivo production of Spilarctia obliqua (Walker) NPV. In: S, Rabindra R (eds) Symposiumof Biological Control of Lepidopteran Pests, Bengaluru Society for Biocontrol Advancement Pp: 149-152.
- Kumar CS, Jacob T, Devasahayam S, D'Silva S, Jinsha J, Rajna S, et al. (2015) Occurrence and characterization of a tetrahedral nucleopolyhedrovirus from Spilarctia obliqua (Walker). J Invertebr Pathol 132: 135-141.
- Sudhakar S, Mathavan S (1999) Electron microscopical studies and restriction analysis ofHelicoverpa armigera nucleo polyhedrosis virus. J Biosci 24 (3): 361-370.
- Sudhakar S, Varatharajan R, Mathavan S (1997) Simple method to purify polyhedral inclusion bodies from Nosema (Microspora: Nosematidae) contamination. ENTOMON-TRIVANDRUM 22: 89-94.
- Rabindra R, Rajasekaran B, Jayaraj S (1997) Combined action of nuclear polyhedrosis virus and neem bitter against Spodoptera litura (Fabricius) larvae. J Biol Control 11: 5-9.
- Abbott W (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267.
- 19. Finney D (1977) Probit analysis. Cambridge University Press, London.
- Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282): 457-481.

- Sudhakar S, Varatharajan R, Mathavan S (1997) Simple method to purify polyhedral inclusion bodies from Nosema (Microspora: Nosematidae) contamination. Entomon 22: 89-94.
- O'Reilly DR, Miller LK, Luckow VA (1994) Baculovirus expression vectors: a laboratory manual. Oxford University Press on Demand.
- Andrews S (2016) FastQC: a quality control tool for high throughput sequence data 2010.
- Gallardo-Escárate C, Valenzuela-Muñoz V, Nuñez-Acuña G (2014) RNA-Seq analysis using de novo transcriptome assembly as a reference for the salmon louse Caligus rogercresseyi. PloS one 9(4): e92239.
- IJkel WF, Van Strien EA, Heldens JG, Broer R, Zuidema D, et al. (1999) Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Vir 80(12): 3289-3304.
- Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, et al. (2008) NCBI BLAST: a better web interface. Nucleic acids research 36(suppl_2): W5-W9.
- 27. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647-1649.
- 28. 28. Alikhan NF, Petty NK, Zakour NLB, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12(1): 402.
- Rohrmann G (2008) Baculovirus Molecular Biology. Bethesda (MD): National Library of Medicine (US). National Center for Biotechnology Information Pp: 1-154.
- Garcia-Maruniak A, Maruniak JE, Zanotto PM, Doumbouya AE, Liu J-C, et al. (2004) Sequence analysis of the genome of the Neodiprion sertifer nucleopolyhedrovirus. J Vir 78(13): 7036-7051.
- Zhu SY, Yi JP, Shen WD, Wang LQ, He HG, et al. (2009) Genomic sequence, organization and characteristics of a new nucleopolyhedrovirus isolated from Clanis bilineata larva. BMC Genomics 10 (1): 91.
- 32. Zhu Z, Yin F, Liu X, Hou D, Wang J, et al. (2014) Genome sequence and analysis of Buzura suppressaria nucleopolyhedrovirus: a group II Alphabaculovirus. PLoS One 9 (1): e86450.
- Jehle JA, Blissard G, Bonning B, Cory J, Herniou E, et al. (2006) On the classification and nomenclature of baculoviruses: a proposal for revision. Arch Virol 151(7): 1257-1266.
- Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13): 3497-3500.
- Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Bio Evol 33(7): 1870-1874.
- Wennmann JT, Keilwagen J, Jehle JA (2018) Baculovirus Kimura twoparameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. J Gen Vir 99 (9): 1307-1320.
- Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7): 1394-1403.
- Lee I, Kim YO, Park S-C, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2): 1100-1103.
- 39. khttps://doi.org/10.1093/molbev/msu088
- Devi WS, Varatharajan R Granulosis Virus of the cabbage pest, pieris brassicae–a potential biopesticide for the control of pieris spp.(pieridae: lepidoptera).
- 41. Xu YP, Ye ZP, Niu CY, Bao YY, Wang WB, et al. (2010) Comparative analysis of the genomes of Bombyx mandarina and Bombyx mori nucleopolyhedroviruses. J Microbiol 48(1): 102-110.
- Gomi S, Majima K, Maeda S (1999) Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Vir 80 (5): 1323-1337.
- Nie ZM, Zhang ZF, Wang D, He PA, Jiang CY, et al. (2007) Complete sequence and organization of Antheraea pernyi nucleopolyhedrovirus, a drrich baculovirus. BMC Genomics 8(1): 248.

- Vlak JM, Smith GE (1982) Orientation of the genome of Autographa californica nuclear polyhedrosis virus: a proposal. J Virology 41(3): 1118-1121.
- Xing K, Deng R, Wang J, Feng J, Huang M, et al. (2005) Analysis and prediction of baculovirus promoter sequences. Virus Res 113(1): 64-71.
- Vanarsdall AL, Mikhailov VS, Rohrmann GF (2007) Baculovirus DNA replication and processing. Curr Drug Targets 8(10): 1096-1102.
- 47. 47. Kool M, Ahrens CH, Goldbach RW, Rohrmann GF, Vlak JM (1994) Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proceedings of the National Academy of Sciences 91(23): 11212-11216.
- 48. Rohrmann GF (2008) Baculovirus molecular biology.
- 49. Fu Y, Wang R, Liang A (2018) Function analysis of Ac-PCNA and Sf-PCNA during the Autographa californica multiple nucleopolyhedrovirus infection process. Mol Cell Biochem 443(1-2): 57-68.
- Crawford AM, Miller LK (1988) Characterization of an early gene accelerating expression of late genes of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virology 62(8): 2773-2781.
- Lu A, Miller LK (1995) The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. J Virology 69(2): 975-982.
- Mitchell JK, Byers NM, Friesen PD (2013) Baculovirus F-box protein LEF-7 modifies the host DNA damage response to enhance virus multiplication. J Virology 87(23): 12592-12599.
- Lange M, Jehle JA (2003) The genome of the Cryptophlebia leucotreta granulovirus. Virology 317(2): 220-236.
- Blissard GW, Theilmann DA (2018) Baculovirus entry and egress from insect cells. Annual review of virology 5(1): 113-139.
- Wang J, Hou D, Wang Q, Kuang W, Zhang L, et al. (2018) Genome analysis of a novel Group I alphabaculovirus obtained from Oxyplax ochracea. PLoS One 13(2): e0192279.
- O'Reilly DR (1997) Auxiliary genes of baculoviruses. In: The baculoviruses. Springer, 267-300.
- 57. Cory JS, Myers JH (2003) The ecology and evolution of insect baculoviruses. Annual Review of Ecology, Evolution, and Systematics 34 (1): 239-272.
- 58. Cory J (2001) Host manipulation by insect pathogens: the effect of the baculovirus egt gene on the host-virus interaction. Endocrine interactions of insect parasites and pathogens.
- 59. Kelly TJ, Park E, Masler C, Burand JP (1995) Characterization of the glycosylated ecdysteroids in the hemolymph of baculovirus-infected gypsy moth larvae and cells in culture. Eur J Entomol 92: 51-51.
- O'Reilly DR, Miller LK (1989) A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. Science 245(4922): 1110-1112.
- Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, et al. (1997) Liquefaction ofAutographa californicaNucleopolyhedrovirus-Infected Insects Is Dependent on the Integrity of Virus-Encoded Chitinase and Cathepsin Genes. Virology 238(2): 243-253.
- Zemskov EA, Kang W, Maeda S (2000) Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J Virology 74(15): 6784-6789.
- Kool M, Voeten J, Goldbach R, Tramper J, Vlak J (1993) Identification of seven putative origins of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus DNA replication. J Gen Virol 74(12): 2661-2668.
- Hilton S, Winstanley D (2008) The origins of replication of granuloviruses. Arch Virol 153 (8): 1527-1535.
- Wang J, Zhu Z, Zhang L, Hou D, Wang M, et al. (2016) Genome sequencing and analysis of Catopsilia pomona nucleopolyhedrovirus: a distinct species in group I alphabaculovirus. PLoS One 11(5): e0155134.
- Herniou EA, Olszewski JA, Cory JS, O'Reilly DR (2003) The genome sequence and evolution of baculoviruses. Annu Rev Entomol 48(1):211-234.
- Herniou EA, Olszewski JA, O'reilly DR, Cory JS (2004) Ancient coevolution of baculoviruses and their insect hosts. J Virology 78(7): 3244-3251.
- Jehle JA, Lange M, Wang H, Hu Z, Wang Y, et al. (2006) Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346(1): 180-193.

- 69. Chen X, IJkel WF, Dominy C, de Andrade Zanotto PM, Hashimoto Y, et al. (1999) Identification, sequence analysis and phylogeny of the lef-2 gene of Helicoverpa armigera single-nucleocapsid baculovirus. Virus Res 65(1): 21-32.
- Han G, Xu J, Liu Q, Li C, Xu H, et al. (2016) Genome of Cnaphalocrocis medinalis Granulovirus, the First Crambidae-Infecting Betabaculovirus Isolated from Rice Leaffolder to Sequenced. PLoS One 11(2): e0147882.
- Ikeda M, Shikata M, Shirata N, Chaeychomsri S, Kobayashi M (2006) Gene organization and complete sequence of the Hyphantria cunea nucleopolyhedrovirus genome. J Gen Virol 87(9): 2549-2562.
- Gencer D, Bayramoglu Z, Nalcacioglu R, Demirbag Z, Demir I (2019) Genome sequence analysis and organization of the Hyphantria cunea granulovirus (HycuGV-Hc1) from Turkey. Genomics 112(1): 459-466.
- De Jong JG, Lauzon HA, Dominy C, Poloumienko A, Carstens EB, et al. (2005) Analysis of the Choristoneura fumiferana nucleopolyhedrovirus genome. J Gen Virol 86(4): 929-943.
- 74. Rohrmann GF, Erlandson MA, Theilmann DA (2014) Genome sequence of an alphabaculovirus isolated from Choristoneura murinana. Genome Announc 2(1): e01135-01113.
- 75. Arahal DR (2014) Whole-genome analyses: average nucleotide identity. In: Methods in microbiology. 41: 103-122.

Author Affiliations	Тор
¹ Department of Biotechnology, Manonmaniam Sundaranar Unive Tirunelveli, Tamilnadu- 627012, India	ersity,
² Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Sc. and Regenerative Medicine (inStem), Bangalore, India	ience
³ Division of Entomology, Centre of Advanced Study in Life Sciences, Ma University, Imphal-795003, India	nipur
⁴ Department of Genetics, School of Biological Sciences, Madurai Kau University, Madurai, Tamilnadu- 625021, India	maraj
⁵ Department of Biotechnology, Kalasalingam Academy of Research Education, Krishnankoil, Tamilnadu-626126, India	and
⁶ Centre for Information Technology & Engineering, Manonmaniam Sunda University, Tirunelveli, Tamilnadu- 627012, India	nanar
⁷ Department of Statistics, Manipur University, Imphal – 795 003, India	