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Abstract
Thirty-six gravity Bouguer data were collected in the Mamfe 
sedimentary basin. Third-order polynomial filtering was applied 
to the data. Third-order regional and residual gravity data were 
plotted as boxplots to compare distributions of different gravity 
fields. Boxplots enable to observe outliers in the data. These values 
allowed for a more detailed study of the observed regional and 
residual anomaly values as they could have a significant impact 
on the results. Boxplots also found that the gravity data showed 
asymmetry. The kriging analysis procedure was initiated to describe 
the spatial variability of the different gravity data. The Gaussian 
theoretical model was used to test anisotropy. The anisotropy test 
has shown that regional and residual gravity data exhibit geometric 
anisotropy and that spatial continuity is not necessarily the same in 
all directions. The unidirectional interpolated variograms were fitted 
with a tolerance of between 4° and 71° and a direction between -52° 
and 159°. 3D wireframe maps were created to map gravity fields in 
three-dimensional form and evaluate interpolated surfaces.
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Introduction
Geostatistics includes a number of methods and techniques for 

analyzing the spatial variability of spatially distributed or spatially 
structured variables [1]. The techniques developed by Krigeet al. 
[2] and Matheronet al. [3] to evaluate mineralized bodies have 
been disseminated in many fields using spatial data. These various 
disciplines include petroleum geology [4], hydrogeology Hatvan 
et al. [5], hydrology Kovács et al. [6], meteorology Kohán et al. [7], 
oceanography Monestiez et al. [8], geochemistry Kern et al. [9], 
metallurgy Deutsch et al. [10], geography Herzfeldet al. [11], Hatvani 
et al. [12], environmental control Kint et al. [13], landscapeecology 
Webster et al. [14], soil science, and agriculture Fortin et al. [15] and 
Zhao et al. [16]. In the petroleum industries, geostatistics is successfully 
applied to characterize oil reservoirs on the basis of interpretations 
from sparsely localized data such as reservoir thickness, porosity, 
permeability, seismic data, gravity field or magnetic field data [17-20].
One of the most used geostatistical techniques for interpolation of 
spatial data is the kriging technique. Kriging is a complex interpolation 

method and is considered as a method of estimating a regionalised 
variable at selected grid points. It can predict unbiased interpolation 
values with minimal variance [20,21].

In any kriging analysis, there are several main steps. These 
steps consist of creating an experimental semi-variogram, linking a 
theoretical model to the experimental semi-variogram and using the 
latter’s information to perform kriging. More generally, this may be 
Determine appropriate theoretical models of semi-variogram; check 
the possibility of anisotropy of the experimental semi-variogram; 
generate kriging estimates and estimation errors, i.e., Kriging errors, 
for a point, area or volume; mapping the spatial distributions of 
kriging estimates and kriging errors. In a kriging analysis, all these 
components must be systematically taken into account [22-27] . What 
we can notice is that the analysis of spatial continuity or roughness of 
geospatial data in different directions and tolerances takes time [28-
31].

The aims of this study are: to carry out the polynomial filtering 
of the Bouguer data of the mamfe basin, to plot the boxplots to 
understand the influence of the outliers in the data and to compare 
the distributions of the Bouguer gravity fields, regional and residual 
then to realize a kriging analysis of gravity data of the basin and their 
cartographies.

Location of the Study Area
The Mamfe sedimentary basin (Figure 1) is an intracratonique 

rift basin formed in response to the dislocation of the Gondwana 
supercontinent and following the separation of South American and 
African plates. The basin is a small extension of the Benue sedimentary 
basin. The basin is favorable to the exploration and exploitation of salt 
springs, minerals, precious stones and hydrocarbons. It has an area of   
approximately 2400 km2 and is located between latitudes 5°30’N and 
6°00’N and longitudes 8°40’ E and 9°50’E (Figure 1). It has the form of a 
plain with an average altitude that varies between 90 and 300 m above 
the sea level. 

Figure 1 shows the available geological map of the basin. Some 
geological details were extrapolated or removed. The geological 
map is preliminary and has jointly been updated following several 
studies [32-41]. The geomorphology of the area is characterized by 
a succession of horst and grabens. Overall, the Mamfe sedimentary 
basin has a NW-SE structural trend with a length of 130 Km and a 
width of approximately 60 km. It is bordered by faults, lineaments 
and rivers such as Manyu, Munaya and extends from Cameroon to 
Nigeria [32-41].

Data Acquisition and Processing 
Figure 2 shows the distribution of gravity data collected through 

the Mamfe Basin. It is deduced from the Cameroon gravity database 
that manages the RID (Research Institute for Development). 
The Lacoste-Romberg gravimeter (1975-1976) was used for data 
recording. The determination of the altitudes was made by barometric 
leveling with a Wallace-Tiernan altimeter. The RID gravity network 
established in Douala served as a reference base for measurements. 
The spatial reference coordinate system used is WGS84 and the data 
projection system is UTM.
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The error on the latitude of a station is considered between 0.2 
mgal and 0.5 mgal with ϕ=3°.

•	 Cz: is the Bouguer correction  

•	 It represents the sum of the correction of the free air 
C1(mgal)=0.3086 Z and the plateau correction C2(mgal)=-
0.0419dZ Where d is the density of the crust and Z the 
altitude of the station expressed in meters. For the reasons 
of homogeneity we adopted d = 2.67 for all the stations from 
where Cz(mgal)=0.1967Z. The imprecision of the barometric 
leveling has led to an error on Cz generally less than 1 mgal 

The Bouguer anomaly was calculated at each station using 
the expression by Poudjom et al. [42]: B=G-(Go-Cz-T) Where G is 
the observed value of the gravitational field and its expression is: 
G=Gr+∆G with Gr the value of the gravity field in a adopted station as 
reference and ∆G measuring the gravity field difference between the 
reference station and a given station. Go is the theoretical value of the 
gravitational field at the point of the reference ellipsoid corresponding 
to the station. Go has been defined in the IGSN71 reference system 
whose formula is:

Go=978031.8 (1+0.053024sin ϕ2)-0.0000022sin2ϕ2

Figure 1: Geological map of the Mamfe sedimentary basin [40].

Figure 2: Map of collecting data of the Mamfe sedimentary basin. 
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The third order polynomial is: 
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We denote byεi= B(xi, yi)- F(xi, yi) the difference between the 
homologous points of the experimental and analytical surfaces 
respectively and by N0 the number of stations Pi in which the Bouguer 
anomaly is known. The adjustment of the surfaces which consists in 
making the quadratic deviation minimal is expressed by:
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We then obtain a system of (M) equations with (M) unknowns. 
The unknowns are the coefficients Ck of the polynomial F(xi, yi) 
of order N. Once the coefficients are determined we determine the 
analytic regional anomaly R(xi, yi) =F(xi, yi) and the residual by:

A(xi, yi)= B(xi, yi)- F(xi, yi)               (7)

The polynomial method is particularly used when the amplitude 
of the residual anomalies is negligible compared to the regional one. 
Apart from the polynomial method there are other methods such as 
the upward continuation method.

Variographic formalism and kriging

In a classical framework, kriging analysis generally involves two 
stages: the variogram estimation and the use of the model coefficients 
for Kriging [17-20].

The formalism of variographic estimation: The variogram is the 
basic tool in kriging analysis and is required for geostatistical spatial 
prediction. The variogram is estimated by the experimental variogram 
γ*(h), which is calculated from the discrete data as follows [17-20]:
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where N is the number of pairs of points distant from h.

Once the experimental variogram has been calculated, it is 
necessary to replace it with a theoretical variogram whose coefficients 
are estimated by a least squares procedure [20].

There are several types of theoretical variogram models used for 
kriging [17-20]:

The spherical variogram is characterized by : 
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With a the range, h the interpolation step and C the constant sill

The Gaussian variogram is characterized by:
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The exponential variogram is characterized by:

but which has reached 2 or 3 mgal in unfavorable cases.

•	 T: relief correction. It takes into account the relief around the 
station. The anomaly value at each point was tainted with a 
maximum error of 5 mgal in the worst conditions, in most 
cases the error remained below 3 mgal.

Materials and Methods
In linear geostatistics the choice of software and an interpolation 

method are very important for spatially analyzing a variable of interest 
[1-4]. We used R software Ihaka et al. [43] and Surfer Golden Software 
[44]. Surfer is a 2D and 3D surface mapping program that transforms 
random data into contours of continuous curved faces. Surfer uses 
twelve different methods to interpolate data; R is statistical software 
created by Ihaka et al. [43]. It is both a computer language and a work 
environment: the commands are executed by means of instructions 
coded in a relatively simple language, the results are displayed in text 
form and the graphics are displayed directly in a window of their own. 
This software is used for manipulating data, graphing and statistical 
analysis of this data.

In this part, we expose the polynomial fitting method and the 
different steps of the kriging method in the univaried framework.

The polynomial separation method

The polynomial separation method was used to produce the 
third degree regional and residual maps. The algorithm by Gupta and 
Murthy et al. [45,46] was used to adjust the polynomial surfaces to the 
Bouguer anomaly map. This method is based on the analytical least 
square method and the polynomial decomposition series. 

The least-square method is used to compute the mathematical 
surface which gave the best fits to the gravity field within specific limits 
[45-47]. This surface is considered to be the regional gravity anomaly. 
The residual is obtained by subtracting the regional field from the 
observed gravity field. In practice, the regional surface is considered as 
a two-dimensional polynomial. The order of this polynomial depends 
on the complexity of the geology in the study area. The third-order 
polynomial surfaces of the regional anomaly obtained in this work is 
presented and the corresponding residual anomaly.

Mathematic formulation of the method

The Bouguer anomaly B(x, y) in the given point M(x, y) of the 
earth in Cartesian coordinates is governed by the relation: 

B(xi, yi)= A(xi, yi)+ R(xi, yi)               (1)

B(xi, yi) is the sum of the residual anomaly A(xi, yi) and the regional 
anomaly R(xi, yi).

 The surface F(xi,yi) which is adapted to the gravity 
field data g(x,y) is given by the following relation [45-49]:  
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number of terms of the polynomial, and CM the coefficients to be 
determined:

The first order Polynomial is: 

F(xi,yi)=C1+C2Xi+C3Yi                (3)

The second order polynomial is: 
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The variance of kriging is given by:

( ) ( )2 , , K i i V V VZ Z Z Zσ λ γ γ µ= − +∑
In order to solve the system numerically, it is convenient to write 

it in matrix form AX=B We obtain:
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The system allows finding the set of weights λi and the Lagrange 
multiplier μ that minimize the variance and make the estimator 
unbiased. The variance of kriging is then obtained by the following 
formula:
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With the XT  transpose of  X=A-1B

The system of equations can also be expressed in terms of covariance 
under the assumption that the random process is stationary.

Results
In this part, we present the results of polynomial separation by 

boxplots, variographic analysis and data mapping. 

Polynomial separation boxplots analysis 

It is interesting to use box-plots when you want to visualize 
concepts such as the symmetry, the dispersion or the centrality of 
the values distribution associated with a variable. They are also very 
interesting for comparing variables based on similar scales. The 
graphs (Figure 3) represent Bouguer’s gravity fields and interpolated 
regional and residual data. They show different shapes and positions 
of box-plots. These graphs enable to summarize the gravity data 
in a simple and visual way, to identify the extreme values and to 
understand the different anomaly values distribution.  

It can be noted that overall 50% of gravity anomaly values are 
inside each box. The values outside the box plots are represented 
by dots. It cannot be considered that if an observed value is outside 
the box-plots then it is an outlier. However, this indicates that this 
observed value needs to be studied in more detail. Outliers are data 
values that are far removed from other data values and can have a 
significant impact on the results.

These boxes have variable widths, it is not a simple aesthetic 
transformation, and the width is proportional to the size of the 

( ) 31 hh C exp
a

γ   = − −    
The power variogram is characterized by:

( )  0 2bh Ch hγ = < <
For b = 1,the variogram is linear; b = 2,the variogram is a parabola

The formalism of variographic anisotropy: There are different 
types of anisotropies which enable to know the different orientations 
that spatialized data can take [17-20]. Geometric anisotropy is the 
simplest case. A geometric anisotropy is reflected in the experimental 
variograms by a range which varies according to the direction. 
Geometric anisotropy is observed when the variogram respects the 
following mathematical formulation:
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With ag the maximum range, ap the minimum range and aθ the 
range in the anisotropy direction θ

Anisotropy is called zonal when it cannot be solved by a simple 
geometric or linear coordinate’s transformation. It causes for the 
bearing variogram which varies according to the space direction.

The kriging formalism

Kriging is an interpolation method that gives the best unbiased 
linear estimate of the point value of a regionalised variable [2,3]. 
The kriging interest is that it enable to calculate the estimation 
error i.e the kriging variance [2,3]. It allows the taking into account 
of: the data configuration; the distance between data and targets; 
spatial correlations and external information. Kriging is an exact 
interpolator, it has a screen effect, it is almost without conditional 
bias. It is transitive, generally performs a smoothing and takes into 
account the field size to estimate and the position of the points 
between them [2,3].

The mathematic formulation of kriging imposes the minimization 
of the following variance [1-4]:
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To minimize the kriging variance we use the Lagrangian [1-4]:
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anomaly values. The widths of the two parts of the box-plot reflect 
the dispersion of the values located at the center of the series (the 
box contains 50% (approximately) of all anomalies: 25% at the 
top of the median and 25% at the bottom); in general, the box-
plots will be all the more extensive as the dispersion of the series 
of values is great.

The median is represented by the line in the box. The median is 
a common measure of data centering. Half of the values are lower or 
equal and half of the values are greater or equal.

When the data is asymmetrical, the majority of them are located 
on the upper or lower side of the graph. Asymmetry indicates that the 
data may not be normally distributed (Table 1). 

Variographic analysis of the data

Variographic analysis plays a key role in the process of assessing 
the correlation level of spatialized data and their modeling. It indicates 
problems related to data dispersion and allows kriging or mapping in 
a particular area [17-20]. 

Anisotropy analysis of the field data

Figure 4 shows the variograms of all Bouguer gravity data, 
regional and residual. Each variogram is represented by the cloud, 
the experimental variogram and the three theoretical models selected 
for the anisotropy tests. The experimental variogram is a graph that 
shows the contributions of each pair of points to the final variogram. 
The scatter plot gives a visual impression of the dispersion of values 
at different offsets. He has no precise direction. We chose a direction 
and a tolerance each time to obtain an unidirectional variogram 
which enable to neglect the lag h.

Anisotropy is the parameter that allows us to better know the 
spatial continuity of the values of Bouguer, regional and residual 
gravity fields. Figure 4 shows the simulation of theoretical 
Gaussian variograms across the experimental variograms cloud. 
These figures prove that bouguer, regional and residual gravity 
data present a geometric anisotropy. Spatial continuity is not 
necessarily the same in all directions. The Gaussian model fit the 
dataset quite well (Table 2).  

  

 

a)

b)

Figure 3: Box-plots representing Bouguer anomalies, regional and residual: a) field data and b) interpolated data. 
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Number X (Longitudes) Y (Latitudes) Bouguer anomalies Regional anomalies Residual anomalies

1 9,636 5,691 -44 -4,7204 6,72024

2 9,592 5,687 -43 2,75236 1,24764

3 9,567 5,679 -42 3,18388 -1,18388

4 9,487 5,701 -39 3,51149 -3,51149

5 9,463 5,697 -36 3,25523 -5,25523

6 9,439 5,696 -32 3,31059 -5,31059

7 9,352 5,701 -20 -0,17256 -2,82744

8 9,313 5,727 -18 0,14928 -4,14927

9 9,3 5,716 -15 0,53131 -3,53131

10 9,304 5,739 -16 -1,55684 0,55684

11 9,294 5,694 -12 -5,82415 9,82415

12 9,415 5,671 -28 -6,51968 3,51968

13 9,436 5,641 -30 -10,72953 7,72953

14 9,451 5,617 -31 -10,98765 5,57853

15 9,456 5,598 -33 -12,57853 4,98765

16 9,483 5,592 -36 -13,15335 6,15335

17 9,5 5,571 -33 -13,37963 5,37963

18 9,517 5,562 -27 -13,15335 1,65255

19 9,263 5,685 -8 -11,47765 -3,52235

20 9,234 5,678 -7 -9,4475 -6,5525

21 9,201 5,674 -7 -11,03323 -6,96677

22 9,184 5,682 -6 -15,87953 -4,12047

23 9,159 5,679 -3 -23,30415 -4,69585

24 9,126 5,706 -3 -28,72188 -1,27812

25 9,062 5,742 -1 -33,31109 2,31109

26 9,023 5,761 -3 -36,71332 3,71332

27 8,997 5,756 -4 -39,55585 3,55585

28 8,974 5,753 -3 -44,39541 11,39541

29 8,949 5,784 -3 -47,23789 20,23789

30 8,938 5,799 -2 -22,00851 -9,99138

31 8,857 5,812 4 -23,66246 -1,27812

32 8,89 5,808 2 -25,08232 -13,91768

33 8,921 5,806 0 -34,16419 -7,83581

34 9,101 5,708 4 -35,62284 -7,37716

35 8,8 6,03 2 -39,54111 -4,45889

36 9,66 6,03 -35 -49,29324 14,29324

Table 1: Bouguer anomaly values as well as regional and residual anomalies obtained from polynomial separation. 

Variographic analysis of grid data 

A variogram expresses the semi-variance of a regionalized 
variable and its variation as a function of the lag distance h. This 
variogram shows that, beyond a certain limit called range, no spatial 
correlation exists between the points. A theoretical variogram model 
is first computed to fit the experimental variogram obtained with the 
data, and is then used from Kriging [17-20].

The gridded data variograms are shown in Figure 5. The different 
experimental variograms clouds were fitted by the Gaussian theoretical 
variogram. The tolerances and directions chosen were a compromise 
between the need to have a sufficient number of pairs of points for 
calculating the variogram and the risk of too much smoothing of the 
curve. Overall the three variograms are unidirectional. The tolerance 
direction varies between 4° and 71° and the direction between -52° 

and 159°. These values were each time set so that the direction of any 
particular lag distance h, becomes unimportant (Table 3).

Interpretation of 3D wireframe maps   

3D Wireframe map models are three-dimensional cartographic 
forms of the superficial and deep geological formations commonly 
used in geology and mining. The wireframe model maps a set of 
points with known triaxial Cartesian (x, y, z) coordinates. Before the 
plot, a grid routine is used to place the randomly located field data 
into a regular grid with selected spacing. The wireframe plot results in 
an open grid (x, y) with the anomaly of each grid node corresponding 
to the z coordinate at that point. The wireframe structures that we 
present in this part are three-dimensional representations of the 
gravity data of the Mamfe basin. These wireframe structures cannot 
be larger or smaller than the extent of the grid data file.
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a) Simulation of the Bouguer data geometric anisotropy   

 
b) Simulation of the regional data geometric anisotropy  

   
c) Simulation of the residual data geometric anisotropy   

Figure 4: Simulation of the gravity data anisotropy.
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Bouguer Anomaly Data
Models Anisotropy angle Anisotropy  ratio
Gaussien 1 (green) 105 2
Gaussien 2 (yellow) 115 1.8
Gaussien 3 (blue) 140 2
Regional Anomaly Data
Gaussien 1 (green) 140 1.54
Gaussien 2 (yellow) 100 1.4
Gaussien 3 (blue) 10 0.7
Residual Anomaly Data
Gaussien 1 (green) 30 3.3
Gaussien 2 (yellow) 45 0.2
Gaussien 3 (blue) 15 0.1

Table 2: Characteristics of different models of anisotropy.

  
a) Fitted variogram of Bouguer grid data 

 
b) Fitted variogram of regional grid data 

 

  
c) Fitted variogram of residual grid data 
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a) Fitted variogram of Bouguer grid data 

 
b) Fitted variogram of regional grid data 

 

  
c) Fitted variogram of residual grid data 

Figure 5: Fitted Variograms of gridded data (Experimental (line with markers) and theoretical semi-variogram (continuous line).

Bouguer 3D wireframemap

The Bouguer 3D wireframe map gives an idea of the structural 
distribution of the superficial and deep geological formations (Figure 
6). It reflects the regular and continuous variations of the Bouguer 
gravity field of the Mamfe basin. The Bouguer 3D wireframe map 
indicates areas of existence of slopes and density discontinuities such 
as faults.

Regional 3D wireframe map 

The Regional 3D wireframe map shows the overall gravity 
regional trends affecting the basement of the Mamfe Basin (Figure 
7). These trends are N-S, E-W. This graph shows areas where the 
basement seems to have undergone a dilation confirming the 
hypothesis of magmatic upwelling in the basin; while the platform 
zone can be associated with a consolidation of the basement.

Experimental variogram 
and Models Max lag distance Lag with Vertical scale Anisotropy  ratio Anisotropy   Angle Tolerance Direction

Bouguer variogram 71 0.1775 231.3 2.3 100 4 16
Regional variogram 0.32 0.0008 194.2 2 70 4 159
Residual  variogram 0.32 0.0008 37.9 2 162.8 71 -52

Table 3: Characteristics of fitted experimental variogram.

 

Figure 6: Bouguer 3D wireframe model with draped contours of the mamfe basin.
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Figure 7: Regional 3D wireframe model with draped contours of the mamfe basin. 

 
Figure 8: Residual 3D wireframe model with draped contours of the mamfe basin.

Residual 3D wireframemap

The Residual 3D wireframe map gives a three-dimensional 
representation of the sedimentary layer in the Mamfe basin (Figure 
8). It is characterized by two negative gravity anomalies that can be 
associated with sedimentary infilling zones.

Conclusion 
In this study, thirty six gravity Bouguer data were collected in 

the Mamfe sedimentary basin. Third-order polynomial filtering was 
applied to the data. Third-order regional and residual gravity data 
were obtained. The dataset was plotted as boxplots to understand the 
influence of the outliers in the data and then to compare Bouguer 
gravity field distributions, regional and residual. The kriging analysis 
procedure was initiated to: describe the spatial variability of the 
different gravity data; identify spatial correlations and different trends 
and directions of experimental semi-variograms; check the possibility 

of the experimental semi-variograms anisotropy ; fit interpolated 
semi-variogram models using mathematical functions; Create the 3D 
wireframe  maps of the different gravity fields from the new data grids 
to evaluate the interpolated surfaces.  
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