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Abstract
Recently, the Kullback-Leibler divergence (KL), which captures the 
disparity between two distributions, has been considered as an 
index for determining the diagnostic performance of markers. In this 
work, we propose using a total KL discrete version (TKLdiscrete), after 
the discretization of a continuous biomarker, as an optimization 
criterion for cut-point selection. We linked the proposed TKLdiscrete 
measure with the Youden index, which is the most commonly used 
cut-point selection criterion. In addition, we present theoretically 
and numerically the derived relations in situations of one cut-point 
(two categories) as well as multiple category markers under binary 
disease status. This study also investigates a variety of applications 
of KL divergence in medical diagnostics. For example, KL can serve 
as an overall measure of diagnostic accuracy, which measures the 
before-test rule-in and rule-out potential. Graphically, KL divergence 
depicted through the information graph. A comprehensive data 
analysis of the Dutch Breast Cancer Data provided to illustrate 
the proposed applications. Other standard Receiver Operating 
Characteristic (ROC) measures are also discussed and shown 
in the data example as competing measures. Using simulation 
methods, we conducted a power study to compare the performance 
of our proposed methods with the Youden Index.
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Introduction
An obvious classification rule in medical diagnostics is binary 

(non-diseased or diseased.) However, many biomarkers measured as 
continuous variables. Let X1 and X2 denote marker values for diseased 
and non-diseased subjects, respectively. The ROC curve is a graph of 
true positive rate or sensitivity (Se(c) =P (X1>c)) versus false positive 
rate or 1- specificity (1-Sp(c)) (sp(c) = p (X2< c)) over all possible 
threshold values, c, of the marker. For a continuous biomarker, the 
diagnostic cut-point, c, is generally required to classify a subject 
either as a diseased or non- diseased in making a clinical decision. We 

assume that, without loss of generality, higher marker values indicate 
greater severity of the disease. This assumption of directionality 
is essential for the ROC analysis to guarantee valid values of ROC 
indices. In practice, it is common to summarize the information of 
the ROC curve into a single global value or index, such as the area 
under (AUC), the ROC curve to evaluate the discriminatory ability of 
a marker. For selecting an ‘optimal’ diagnostic cut point, the Youden 
index (J), defined as J = max c  { S e (c) +S p (c) -1},is frequently used 
[1]. The AUC and J have ranges of [0.5,1] and [0,1], respectively. For 
more details[2].

The Kullback-Leibler divergence (KL), also called information 
measure, or relative entropy, and measures the separation between 
two probability distributions. The KL considered for measuring the 
diagnostic performance of markers[2].It described an application 
of the KL divergence for discrete biomarkers. [2]Described the 
KL divergence as “an abstract concept arising from statistics and 
information theory.” However, [3]constructed a diagrammatic 
interpretation of the KL divergence from Lee’s application called 
an ‘information graph,’ as in [4]. Information graphs demonstrate a 
visual basis for the evaluation and comparison of binary diagnostic 
tests. Such a diagrammatic interpretation of the KL divergence may 
make its application more appealing to clinicians. 

For a binary test based on biomarker values, with the proportions 
of diseased subjects tested positive and non-diseased subjects tested 
negative in the testing categories are known and are denoted by g1 
=Se(c) and g2 =Sp (c). Then, the discrete versions of KL divergence
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can be interpreted as before-test potentials of rule-in and rule-out 
disease, respectively. This means a diagnostic test with a larger D (g 2, 
g 1) will, on average, a positive response makes the presence of disease 
more likely. A subject with a negative diagnosis resulting from a test 
with a large D (g 2, g 1) value will be more likely to be placed in the 
non-disease group because the potential of rule-out disease is higher. 
Similarly, a diagnostic test with a greater D (g1, g 2) will on average 
have non-diseased subjects more likely to be diagnosed as negative. 
A subject with a positive diagnosis resulting from a test with a large 
D (g1, g 2) value will be more likely to be placed into the disease group 
because the potential of rule-in disease is higher. 

In this paper, we show that KL divergence for a continuous 
biomarker contains information about the sensitivity and the 
specificity of the diagnostic test (we call the discrete part) and a 
reminder (loss of information due to dichotomized the continuous 
marker at specific threshold values, c). We propose using the 
total KL discrete version (TKLdiscrete= D (g1, g 2)+ D (g 2, g 1)) after 
dichotomized of a continuous marker, as an optimization criterion 
for cut-point selection (optimizing the total before-test rule-in and 
rule-out) and link the TKLdiscrete with some the common Receiver 
Operating Characteristic (ROC) measures. We investigate a variety of 
applications of KL divergence in medical diagnostics and demonstrate 
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how it is depicted through the information graph. We will present 
theoretically and numerically the relations in situations of one cut-
point (two categories) as well as multiple categories of markers under 
binary disease status.

The paper organized as follows: Section 2 describes preliminaries, 
including mathematical details of the KL divergence. In Section 3, 
we will show the relation between the KL divergence and some ROC 
indices that commonly used in medical diagnostics, with one or cut-
points. Following the difference between one and multiple cut points, 
we will derive how this measure used to select an optimal diagnostic 
threshold (cut-point). Section 4, we elaborateon the graphical 
interpretation of KL divergence and its proposed measures. A power 
analysis using simulation conducted to compare our proposed 
method with Youden Index as one of ROC indices in section 5.  A 
comprehensive example is given in Section 6 to illustrate the new 
applications. Section 7 gives a summary and discussion.

Preliminaries Kullback-Leibler divergence for continuous 
marker

TheKullback-Leiblerdivergence (KL) is a numerical summary of 
how differently two densities f1 (x) and f 2 (x) distributed. Let f1 (x) be 
the probability density function (pdf) for diseased patients and f 2 (x) 
the pdf for the non-diseased patients. The D (f1,  f2 ) discrimination 
information function using ( f2 ) as the reference distribution is given 
by
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asdefined by[5].

It can be shown that D (.,.)  > 0, and equality holds almost 
everywhere if and only if f1 (x ) = f 2 (x)therefore, the KL divergence 
is always non-negative, with a larger value indicating a greater 
separation between the two populations under consideration. It 
is zero if and only if the diseased and the non-diseased identically 
distributed concerning the diagnostic marker. In general D ( f1,  f2 ) 
≠  D (f2,  f1) and does not possess symmetric properties. However,[6] 
discussed the characteristics of the symmetry properties of bi-normal 
and bi-gamma ROC curves in terms of the KL divergences. This 
measure can be applied directly to discrete distributions by replacing 
the integrals with summations. However, as we will demonstrate 
mathematically, by categorizing an inherently continuous biomarker 
into discrete groups, the information presented by D(.,.) is reduced.

In the case of discrete distributions,[2] defined Pin =e D (g
1

, g
2

) and 
Pout  =  e D (g

2
, g

1
)and showed that  P in is the ratio, for a randomly selected 

diseased subject, of the post-test disease odds to the pre-test disease 
odds. Whereas the P out is the ratio of the pre-test disease odds to the 
post-test disease odds for a randomly selected disease-free subject. 
Hence, Pin (Pout) ( 1≥ ) measures the increase (decrease) in disease 
odds after a test for disease (control) subjects. In general, since both 
D ( f1, f2 ) and D ( f2, f1 )are non-negative and are not bounded, So[7] 
proposed a normalized transformation of the KL divergence given by 
the information distinguishability measure, which can be expressed 
as ID ( f1,  f2 ) = 1-exp [-D( f1,  f2 )]. This ID measure bounded between 
0 and 1, with ID = 0 indicating the marker distributions, f1 (x) and 
f 2(x) are identical, whereas ID = 1 indicates a complete separation 
of the marker distributions. This transformation gives a measure 

that is standardized, bounded, and can be used to compare different 
biomarkers understudy, similar to the AUC and Youden index, 
especially for before-test rule-in and rule-out potential.

In the next section, we will show that the T K L discrete (c) measure 
is closely related to the sensitivity and specificity, as well as to the 
Youden index kernel and the natural logarithm of the diagnostic odds 
ratio. Thus, for continuous markers, we propose using D ( f1,  f2 ) and 
D ( f2,  f1 )as overall diagnostic accuracy measures for potential rule-in 
and rule-out. This is comparative to the application of sensitivity and 
specificity. Additionally, we propose using 

T K L discrete (c)  as an objective function for selecting the optimal 
cut-point(s) to achieve the maximum information at the optimal 
cutoff for tests with high potential in both rule-in and rule-out 
situations. Similar to the application of the Youden index, which 
corresponds to the sum of sensitivity and specificity, TKL is the sum 
of rule-in and rule-out measure of accuracy.

Derivation of the Relationship of  KL Divergence with Com-
mon ROC Indices

Disease and non-diseased density functions with one cut-point

In this section, we will show how D ( f1,  f2 )  and D ( f2,  f1 ) are 
related to the sensitivity and specificity and hence to other indices 
such as the Youden index (J) and overlap measure (∆) [8]. Also, we 
will explain the rationale of using TKLdiscrete divergence measures for 
cut point selection. 

For one cut-point, let c be any diagnostic cut point. Assuming 
that the diseased individual will have a value larger than c, then we 
define
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where { f1c }is the truncated f1 density on the interval ( , )c−∞ and 
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to {f1c}. Therefore, D (f1, f2) and D (f1, f2) are based on the expected 
log likelihood ratio of the diseased population relative to the non-
diseased population and the expected log-likelihood ratio of the non-
diseased population relative to the diseased population for a given 
marker. Besides, we can derive the following similarly:
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When we dichotomize the diagnostic test at the cut point c, then 
as in the [2] discrete version of the two KL divergence measures we 
have
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We interpret the above measures as follows: A diagnostic test 
with D ( f1,  f2 ) stronger will on average make the positive diagnosis 
more likely among the diseased subjects (Se) in the testing population 
concerning false positive (1-Sp) among the non-diseased subjects. 
In this case, the potential of rule-in-disease is higher. This rule-in 
potential is the tradeoff between sensitivity (true positive) concerning 
false positive (1-Sp), and likewise, false negative (1-Se) concerning 
specificity (true negative). Whereas a diagnostic test with greater D ( 
f2,  f1 ), will on average make positive patient. It has a higher rule-out 
potential.

Moreover, from (8) and (9), the total sum of the two KL 
divergences of the discrete versions (T K L discrete (C)) is given by
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However, in case of continuous markers for a given cut point (c) 
by adding (6) and (7) we have
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Therefore, the continuous TKL  is a sum of the discrete part T 
K L discrete (C) and a non-negative remainder R(c), which is the loss 
of information from dichotomizing the continuous tests into a 
binary test at a selected diagnostic cut point. Also, this derivation 
demonstrates that the proposed measures of rule-in and rule-out by 
[2] was just the discrete part of KL measures when the continuous 
marker dichotomized into two distinct categories.

(i)Proposing using T K L discrete (C) for the optimal cut-point 
selection (c) and it’s rational: It expected that when selecting a 
threshold/cut point for an inherently continuous biomarker by 
dichotomizing to create a binary disease status (non-diseased versus 
disease), we will inevitably lose some information [9]. However, 
the objective function used to estimate the cut-point (s) should be 
selected according to the scientific (clinical) purpose and the data 
context. For example, if the clinician’s goal is to use a biomarker that 
is more for rule-in than rule-out, then it will be more appropriate to 
use the optimal cut-point, which maximized T K L discrete (C).Hence we 
propose to maximize the T K L discrete (C) measure, which minimizes 
the remainder R(c), loss of information, concerning the cut-point 
value (c) across all possible values. This method can be an alternative 
optimization criteria for the diagnostic cut point selection in this case. 
Several numerical approaches can be used to find the optimal cut-
point(s) in the literature, which are available in the standard software 
such as SAS and R. Those methods are fast and take negligible time 
to find the solution. For example, we can have the maximum of T K 
L discrete (C) by taking the first derivative with respect to c and equated 
to zero to find the optimal c, and check if the second derivative is 
negative at the maximum value c. Hence,
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By setting the above derivative to zero, we can solve for the 
optimal c associated with TKL divergence, denoted as klc

, that is 
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For applications, we can estimate the probability density 
functions (PDFs) and Cumulative Distribution Function (CDFs) of 
diseased and non-diseased groups, respectively with corresponding 
kernel density estimators, which are available in SAS and R. We can 
maximize the above equation numerically using Newton-Raphson 
method. For details of kernel density equations, see [10] and [11]. 
Alternatively, we can find the cut point by empirical searching for 
c: obtain the values of T K L discrete (C) for each c, and chose the C 
=CKl value that yields the maximum TKL discrete (c) However, the latter 
approach may be a little slower than the other numerical methods 
find a link between the

TKL discrete (c) measure and the Youden index { J (CP)} as

( ) ( )( ) ( ) ln ( ) (1 ) ln ( ) ,discrete p p p pTKL c J c OR c OR c= = − ∆

where OR (CP)is the diagnostic odds ratio at the optimal cut-point 
associated with the Youden index and ∆ is the overlap measure [8], 
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where they showed that∆ ( f1,  f2 ) = 1- J (CP) in case of one cut-point.

(ii) Proposed diagnostic measure of accuracy based on TKL: 
Although, the TKL can be used to measure overall of the accuracy 
of the total rule-in and rule-out performance, for one cut- point of a 
continuous biomarker, we also propose using an overall measure of 
the accuracy of the total rule-in and rule-out performance, namely 
the maximum of  as follows:

( ) max ( )discrete kl discretec
MTKL c TKL c= , 

where klc  are selected based on 

( )arg max( ) arg max[ ( ) ( ) 1] ln ( ) .discrete
c c

TKL Se c Sp c OR c= + −   

KL divergence measures with multiple (k) cut-points for binary 
disease groups(i.e., non-diseased versus diseased)

Assuming a continuous marker has k cut-points, say 
{c1,c2,...,ck},then from (1)
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Using similar argument as above, we have
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where 1 1 1( ) ( )i i iP F c F c −= − 2 2 1( ) ( ), 1, 2,..., 1i i iQ F c F c i k−= − = + .

Similarly, we have
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In addition, this derivation demonstrates that the proposed 
measures of ruling-in and ruling- out, by [2] for a binary disease, are 
just the discrete part of KL measures when the continuous marker 
discretized into k distinct categories. Similar to the case of one cut-
point, from (14) and (15) we have, using simple algebra,
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Again, in this case, we propose an overall measure of diagnostic 
accuracy for rule-in and rule-out, namely the maximum of (T K L 
discrete(c1,c2,...,ck)as 

( )
( ) max ( )discrete discreteMTKL TKL

′
′ ′=

c
c c

where c’=(c1,c2,...,ck) are selected based on  

( )
1
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Table 1 illustrates the pattern of decreasing loss of information 
when we increase the number of cut points for categorizing the 
continuous marker. This again demonstrates that using the threshold 
points (c’) by maximizing the discrete part TKL will yield the 
largest information or the minimum loss of information as well as 
quantifying the optimal information for the ruling-in or ruling-out 
nature of the marker.

Numerical illustrations: Table 2 provides some numerical 
examples under normally distributed non-diseased and diseased 
populations. The values of sensitivity and specificity at the optimal 
cut-point associated with the Youden index. (Se(Cp) and Sp(Cp) 
as well as those at the cut point associated with maximum TKL 
discret (c) presented. We also list values of rule-in and rule-out 
KL divergence measures (IDin ( f1, f2 ), IDout ( f2,  f1 )) and the AUC. 
Across all parameter settings, the sensitivity and specificity based on 
maximizing TKL discrete (c) show greater separation. In contrast, 
they are closer to each other when using the Youden index. Therefore, 
the cutoff point selection based Youden index is more balanced for 
the tradeoff of false positives and false negatives as the Youden index 
maximizes the sum of two probabilities (sensitivity and specificity).

On the other hand, TKL divergence minimizes the loss of 
information by selecting the cutoff point based on the maximizing 

( )discreteTKL c  of a continuous biomarker. However, it pays less 
attention to the balance of the two probabilities. We suspect the 
reason for this imbalance is that the sensitivity and the specificity 
are scaled by the log(OR(c)), which will always tend to scale up the 
probability, whichever is more dominant

Table 2 shows that, if the diagnostic test contains any information 
to discriminate against the diseased from the non-diseased, the more 
specific tests have higher rule-in potential. In contrast, the more sensitive 
tests perform better at ruling out disease. This leads to the ‘rule in–specific 
test’ and ‘rule out–sensitive test’ principle as hypothesized.

Note that the ID values (D (.,.)) flipped when we switch the disease 
and non-diseased distributions and we refer this as the symmetry 
of KL divergence, which proven to be valid under bi-normal and 
bi-gamma [6].This is also true for the ROC measures sensitivity, 
specificity, AUC, and Youden index.

Table 3 illustrates some numerical examples when the underlying 
distribution of non-diseased and diseased populations considers to 
be exponential. As in the normal cases, the sensitivity and specificity 
based on TKL is further away compared with that based on the 
Youden index. The pattern of rule-in and rule-out potential of the 
disease is also the same as the observations from normal distribution. 
Another interesting finding is that when AUC value is close to 0.5 
(AUC=0.526), both ID values are close to zero. This leads to the 
conclusion that diagnostic performance of a marker is close to 
random chance it barely has neither rule-in nor rule-out potential. 
Note that under bi-exponential distribution (which is a special case of 
bi-gamma), the ID values flipped when we switched the disease and 
non-diseased distributions, much like what occurred when values of 
ROC measures,  such as sensitivity, specificity and the AUC flipped. 
Results from other distributions are similar. 

The Diagrammatic Interpretation of KL Divergence for 
Continuous Markersat a Given Cut Point (c) concerning Bregman 
divergence: We discuss the diagrammatic interpretation of the KL 
divergence at a cut point for continuous markers, which he referred to 
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cp ci
( )discreteTKL ′c ( )R ′c

1.386 ( cp) - 0.2746 0.2260

- 2.302( klc ) 0.3084 0.1922

- 0.3, 1.386 0.2878 0.2128
- 0.3, 2.302 0.3391 0.1615
- 0.3, 1, 1.2, 1.386 0.2946 0.2060
- 0.3, 1, 1.2, 2.302 0.3391 0.1615
- 0.3, 0.5, 0.8, 1, 1.2, 1.386 0.2974 0.2032
- 0.3, 0.5, 0.8, 1, 1.2, 2.302 0.3775 0.1231

Table 1: Illustration of information loss using the discrete version of TKL for two exponential densities [non-diseased Exp (1) and Diseases Exp (2)], where TKL =0.5006.

1µ 1σ 1σ 2σ ( )pSe c ( )pSp c ( )klSe c ( )klSp c
outID outID AUC

1.3 1.0 1.0 1.1 0.677 0.442 0.817 0.291 0.045 0.053 0.580
1.5 1.0 1.2 1.5 0.760 0.408 0.906 0.236 0.094 0.135 0.603
1.8 1.0 1.1 1.0 0.604 0.695 0.521 0.771 0.281 0.239 0.705
2.0 1.0 1.5 1.2 0.549 0.751 0.395 0.878 0.333 0.233 0.699
1.0 1.3 1.1 1.0 0.442 0.677 0.291 0.817 0.053 0.045 0.420
1.0 1.5 1.5 1.2 0.408 0.760 0.236 0.906 0.135 0.094 0.397
1.0 1.8 1.0 1.1 0.695 0.604 0.771 0.521 0.239 0.281 0.295
1.0 2.0 1.2 1.5 0.751 0.549 0.878 0.395 0.233 0.333 0.301

Table 2: A numerical example of ( )pSe c , ( )klSe c , ( )klSe c , ( )klSp c , ID and AUC for two normal distributions.

2θ 1θ R ( )pSe c ( )pSp c ( )klSe c ( )klSp c ( , )in D HID f f ( , )out H DID f f AUC

1.00 2.00 0.50 0.500 0.750 0.316 0.900 0.264 0.176 0.667
1.20 2.00 0.60 0.457 0.729 0.285 0.877 0.144 0.105 0.625
1.80 2.00 0.90 0.388 0.651 0.211 0.823 0.006 0.005 0.526
2.00 1.67 1.20 0.667 0.399 0.828 0.230 0.017 0.015 0.455
2.00 1.54 1.30 0.679 0.417 0.836 0.247 0.031 0.037 0.348
2.00 1.00 2.00 0.750 0.500 0.900 0.316 0.176 0.264 0.333

Table 3: A numerical example of ( )pSe c , ( )klSp c , ( )klSp c , ( )klSp c , ID and AUC for two exponential distribution.

as an information graph’. In this case, the information graph provides a 
visual basis for the evaluation and comparison of continuous markers 
at each cut point. [3] showed that the construction of the information 
graph requires the representation of the discrete KL divergence as 
a discrete Bregman divergence [12]. Bregman divergences are the 
properties of convex functions. However, we will show that the KL 
divergence is the Bregman divergence associated with the negative of 
the Shannon entropy Function[13] when the marker is a continuous 
marker and related to the discrete case at a given cut point of a marker 
(c).  The negative of the Shannon entropy Function for continuous 
variables is defined as.

( )1 1 1( ) ( ) ln ( ) .I f f x f x dx
∞

−∞

= ∫                 (16)

Define ( ) ( )( )
11 1 1 1( ) ( ) ln ( ) ( ) ln ( )
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c

I f f x f x dx Se c E f Xc

∞

= =∫
and ( ) ( )( )

11 1 1 1( ) ( ) ln ( ) (1 ( )) ln ( )
c

c

c fI f f x f x dx Se c E f X
−∞

= = −∫ , then

( )( ) ( )( )
( ) ( )

( )( ) ( )( )

1 1

1 1

1 1 1

1 1

( ) ( ) ln ( ) (1 ( )) ln ( )

       ( ) ln ( ) (1 ( )) ln 1 ( )
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c c

c c

f f

f c f c

I f Se c E f X Se c E f X

Se c Se c Se c Se c

Se c E f X Se c E f X

= + −

= + − −

+ + −
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and similarly,

( ) ( )
( )( ) ( )( )

2 2

2

2 2

( ) (1 ( )) ln (1 ( )) ( ) ln ( )

       (1 ( )) ln ( ) ( ) ln ( ) .
c cf c f c

I f Sp c Sp c Sp c Sp c

Sp c E f X Sp c E f X

= − − +

+ − +
  (18)

However, for the case of a binary diagnostic test at the cut point 
(c), where 2( ) ( )Sp c F c=

and 2( ) ( )Sp c F c= , then as in Hughes (2013) we have   

( ) ( )( ( )) ( ) ln ( ) (1 ( )) ln 1 ( )I Se c Se c Se c Se c Se c= + − −  and

( ) ( )(1 ( )) (1 ( )) ln 1 ( ) ( ) ln ( )I Sp c Sp c Sp c Sp c Sp c− = − − +  In general, 
we can write the negative of the Shannon Entropy Function as

( ) ( )( ) ln (1 ) ln 1g P P P P P= + − − where

1 ( ) or  ( )P Sp c P Se c= − =  when the reference population is the 
non-diseased or the disease population, respectively. To calculate 
Bregman divergence, we need to find a tangent of the curve

1( )g P  with gradient 1 1 1( ) ( ) (1 ) Slopeg P Ln P Ln P′ = − − = , and an 
intercept 1 1 1(0) ( ) ( )g g P Pg P′= − , drawn at point P2 (the reference 
point); then, we can calculate the Bregman divergence, which is the 
distance between the tangent and the curve at point P2. The Bregman 
divergence then is given by

2 1 2 1 2 1 1( , ) ( ) ( ) ( ) ( )B P P g P g P P P g P′= − − −              (19)
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Distribution for H0 Distribution for Ha Sample size Power of the tests
Non-disease Disease Non-disease Disease n J TKL
N(1,1.5) N(1,1.5) N(1,1.5) N(1,1.5) 20 0.043 0.053

50 0.048 0.047

100 0.058 0.048

Scenario # 1
N(1,1.5) N(1,1.5) N(1.4,1.6) N(2,1.3) 20 0.349 0.245

50 0.662 0.566

100 0.912 0.860

Scenario # 2
N(1,1.5) N(2,1.5) N(1,1.5) N(2,1.5) 20 0.054 0.051

50 0.061 0.055

100 0.050 0.049

Scenario # 3
N(1,1.5) N(2,1.5) N(1,1.5) N(3,1.5) 20 0.527 0.475

50 0.889 0.885

100 0.992 0.993

Scenario # 4
N(1,1.5) N(2,1.5) N(1,1.5) N(2.1,1.5) 20 0.083 0.064

50 0.083 0.084

100 0.099 0.097

Scenario # 5
N(1,1.5) N(2,1.5) N(1,1.5) N(2.1,1.0) 20 0.181 0.296

50 0.319 0.522

100 0.495 0.837

Scenario # 6
N(1,1.5) N(2,1.5) N(1,1.5) N(2.8,2.0) 20 0.306 0.326

50 0.517 0.658

100 0.809 0.891

Scenario # 7
N(1,1.5) N(2,1.5) N(1,1.8) N(3,2.0) 20 0.261 0.240

50 0.514 0.496

100 0.779 0.802

Scenario # 8

Table 4: Power analysis for normal underlying distribution.

and for the particular g (P), we will show that this is a KL 
divergence. For a continuous variable dichotomized at a cut point c, 
we have from (18) and (19)

( ) ( )
( ) ( )

(1 ( ), ( )) (1 ( )) ln 1 ( ) ( ) ln ( )

{ ( ) ln ( ) (1 ( )) ln 1 ( ) } [(1 ( )) ( ))]([ ( ( )) ln(1 ( ))]

1 ( ) ( )=(1 ( )) ln ( ) ln (1 ( ), ( )).
( ) 1 ( )

B Sp c Se c Sp c Sp c Sp c Sp c

Se c Se c Se c Se c Sp c Se c ln Se c Se c

Sp c Sp cSp c Sp c D Sp c Se c
Se c Se c

− = − − +

− + − − − − − − −

   −
− + = −   −   

(20)

Furthermore, we can show that B (Se(c), 1-Sp(c)) = D(Se (c),1-Sp(c)., 
Therefore, in the information graph, KL divergences are represented 
by the vertical lines between the negative Shannon entropy curve and 
the two tangents to the curve at Se (c)and 1-Sp(c) [3]. And this gives 
a theoretical basis for drawing the information graph as in Figure 2.

Finally, in the case of continuous distributions, Bregman 
divergence is given by

1
1 2 1 1 2

2

( )( , ) ( ) ln ( , ).
( )

f xB f f f x dx D f f
f x

∞

−∞

 
= = 

 
∫

where T (t) is a strictly convex function on t. If we take T (t) = t 1n 

(t) then with a little algebra, we have

1
1 2 1 1 2

2

( )( , ) ( ) ln ( , ).
( )

f xB f f f x dx D f f
f x

∞

−∞

 
= = 

 
∫

Simulation: To gain insight into the performance of TKL, and 
compare it with the Youden index (J ), we conducted a simulation 
study to examine the empirical power under competing measures. 
In our simulation, we generated data from normal and gamma 
distributions for non-disease and disease groups. The choice of the 
distributions’ parameters are given in Tables 4 and 5. Scenario 1 and 
2 present the case where the underlying distributions for the non-
diseased and diseased groups are assumed to be identical under the 
null hypothesis (H0). Scenarios three through eight present the case 
when the underlying distributions for non-disease and disease groups 
considered tobe different under the null hypothesis. In the first case, 
the biomarker is medically irrelevant for clinicians because this 
type of markers cannot discriminate between the non-disease and 
diseased individuals with high accuracy.  However, in the second case 
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the underlying biomarker is relevant for clinicians and hence is more 
realistic in practice.

In our simulation, to find the critical value of those tests, under 
H0 and for each scenario, random samples are simulated 2000 times 
and the 95% quantiles for the statistics (J and TKL) are obtained. To 
estimate the power, 1000 replications were used. We reject the null 
hypothesis if the statistics estimated under the alternative hypotheses 
(Ha) are greater than their corresponding 95% quantiles under 
the null hypothesis.  The sample sizes used in our simulation are 
n=20,50,100. Table 4 presents the results of the normal underlying 
distribution of the non-disease and disease population, while table 
5 presents the results of the Gamma distributions. Tables 4 and 5 
show that, for scenarios (1 and 3) from table 4 and (1 and 4) from 
table 5, both diagnostic accuracy measures, J and TKL, provide a 
close estimation to the nominal value of the tests (0.05). Scenario 2 
in table 4 and 5, where the null hypothesis presents that non-disease 
and the underlying disease distributions are identical, shows that J is 
slightly superior to TKL measure. However, this type of biomarkers 

is irrelevant to medical diagnostics since they had no discrimination 
power. On the other hand, from scenarios 4-8 from tables 4 and 5-8  
from table 5 show that TKL measure is at least as good as J in some 
mean shift of the underlying distribution from the null to alternative 
hypotheses. However, TKL is superior to J for discrimination between 
non-disease and disease when the underlying distributions under the 
null hypothesis are different in shape in general and not only in the 
mean shift

In general, as the distributions under H0 and Ha become more and 
more distant and different, the power of the tests increases. In addition, 
the power of the tests increases as the sample size increases. Thus our 
power analysis shows that TKL can capture some differences among 
the disease groups that J does not emphasize. Finally, the choice of the 
right measure for diagnostics depends not only on the power of that 
measure to discriminate, but also depends on the purpose of using the 
underlying biomarker.  Our proposed TKL measure recommended as 
a cut-point selection criterion for several situations and when if the 
purpose of the diagnostics is before test rule-in and rule-out patients.

Distribution for H0 Distribution for Ha Sample size Power of the tests
Non-disease Disease Non-disease Disease n J TKL
G(2,1.5) G(2,1.5) G(2,1.5) G(2,1.5) 20 0.044 0.056

50 0.053 0.041

100 0.052 0.053

Scenario # 1
G(2,1.5) G(2,1.5) G(2,1.5) G(3.8,2.8) 20 0.137 0.070

50 0.252 0.223

100 0.456 0.441

Scenario # 2
G(2,1.5) G(2,1.5) G(2,1.6) G(3.8,3.5) 20 0.028 0.206

50 0.049 0.358

100 0.080 0.642

Scenario # 3
G(2,1.0) G(4,3.0) G(2,1.0) G(4,3.0) 20 0.062 0.050

50 0.043 0.052

100 0.049 0.054

Scenario # 4
G(2,1.0) G(4,3.0) G(2,1.0) G(4,3.5) 20 0.081 0.163

50 0.093 0.231

100 0.109 0.267

Scenario # 5
G(2,1.0) G(4,3.0) G(2,1.0) G(4,5) 20 0.014 0.638

50 0.015 0.842

100 0.045 0.975

Scenario # 6
G(2,1.0) G(4,3.0) G(2,1.0) G(4.2,5) 20 0.006 0.610

50 0.003 0.824

100 0.003 0.934

Scenario # 7
G(2,1.0) G(4,3.0) G(2,1.3) G(4.5,5) 20 0.037 0.160

50 0.042 0.225

100 0.054 0.324

Scenario # 8

Table 5: Power analysis for Gamma underlying distribution.
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Illustration Using Dutch Breast Cancer Data: In this section, we 
use breast cancer gene expression data to illustrate our methods. The 
RNA expression of 24481 gene biomarkers measured in 295 patients 
with breast cancer [14]. Based on the patients’ ER  and HER2 status 
and tumor stage, the patients divided into several subtypes. Of 295 
patients, 46 belong to a basal subtype; 81 patients belong to a luminal 
B subtype, while 88 patients belong to a luminal A subtype. Assuming 
missing at random, we deleted the cases with missing measures. The 
basal subtype has the worst prognosis, while the luminal A subtype 
has the best prognosis. Luminal B has a slightly worse prognosis than 
luminal A, but the distinction between luminal A and B is not always 
obvious based on some biomarkers. A detailed description of this 
dataset provided in [14]. If a gene found to be expressed differently 
among different breast cancer subtypes, the corresponding protein 
product may be detectable in blood or urine. It could be the basis for 
a population screening test. In the following, we illustrate how KL 
diverge (D ( f1,  f2 ), D ( f2,  f1 )and TKL)and the two common ROC 
measures, AUC and J, can be used to determine the differentially 
expressed genes.

We selected two genes, AB020689 (gene marker 1) and 
NM_002051 (gene marker 2) to illustrate the calculations and 
relationship between continuous and discrete TKL maximized w.r.t. 
a cut-point c, as well as AUC and J with respect to the binary disease 
gold standard. Note all the values of AUC, J, Se, Sp as well as TKL will 
be estimated by the nonparametric kernel-smoothed estimates. Based 
on the two selected genes, the distinction between Luminal A and B 
is not clear, therefore, we combined luminal A and luminal B into 
one “non-diseased control” category as opposed to the basal subtype 
as “disease” category. When the mean for the diseased group (basal 
subtype) was less than the “non-diseased” control (luminal A or B) 
, we flipped the diseased and control distributions to obtain valid 
values of the AUC and the Youden index under the ROC analysis 
assumptions that the diseased subjects generally have greater marker 
values.

The corresponding density plots are given in Figure 1. In addition, 
we calculated the nonparametric kernel-smoothed estimates for KL 

divergences (D ( f1,  f2) and D ( f2,  f1)), AUC and J.  We calculated 
six different values of KLs. Three KL divergence estimates, the total 
KL divergence and rule-in/rule out, for the continuous biomarker 
before making the test results binary based on a threshold/cutoff 
are calculated. The other three KL divergence estimates, the discrete 
TKL and rule-in/rule-out, are calculated discarding the remainder 
R (c) in (13), after dichotomizing the continuous biomarker into 
a binary diagnostic test. The two markers, marker 1 and 2, in 
Figure 1 had minimal location differences (similar AUCs) and 
small shape differences (similar total KL, AUC and Youden index 
values). In general, biomarker 1 and 2 are very similar in terms of 
overall diagnostic performance. However, after dichotomizing the 
biomarkers for making diagnosis,  marker 2 in (b) has larger rule-
in potential (KLin_discrete3.04>2.24). Furthermore marker 2 in (b) has 
much less rule-out potential, (KLout_discrete1.69<2.05), compared with 
marker 1 in (a). Therefore, on average, a patient diagnosed as positive 
by marker 2 is 123% (exp(3.04-2.24) = 2.23) more likely to turn out as 
true positive compared to marker 1. Hence, marker 2 is more specific 
and yields less false positives compared to marker 1.  Similarly, on 
average, a truly non-diseased individual with negative diagnosis by 
marker 2 is 30% (exp(1.69-2.05)=0.70 ) less likely to turn out as true 
negative compared to marker 1. Therefore, marker 2 is less sensitive 
with more false negatives.

Furthermore, comparing the continuous and discrete KL values, 
we found that sometimes the discrete KL divergence, also the Youden 
index, are misleading. For the two biomarkers in Figure 1, marker 
1 has larger overall information, which is not consistent with the 
Youden index nor with discrete when both estimated at some cut-
points. This again demonstrates the fact that by dichotomizing a 
continuous biomarker, we lose a certain amount of information 
which may lead to different conclusions. Therefore, the inconsistency 
between the continuous and discrete KL values may flag the incorrect 
number of classification needed for biomarkers. As we can see from 
marker 1 (a) in the Basal group is a mixture of two distributions 
with two modes. Hence the Basal group could be classified into two 
subgroups, in which case, we may have a three-disease status with 

(a)                                                                                                                                     (b)

Figure 1: Density plots of selected AB020689 (gene marker 1 in a) and NM_002051 (gene marker 2 in b).

(a) AUC = 0.98, J = 0.85; TKLdiscrete = 4.29, KLin_discrete = 2.24, KLout_discrete = 2.05;

TKL(c) = 9.69, KLin_continuous = 4.09, KLout_continuous = 5.60

(b) AUC = 0.98, J = 0.87; TKLdiscrete = 4.73, KLin_discrete = 3.04, KLout_discrete = 1.69;

TKL(c) = 9.17, KLin_continuous = 6.39, KLout_continuous = 2.30
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two cutoff points. This TKLdiscrete based on two cut-points will be larger 
than the one based on only one cut-point.

Note that KLin_discrete = D (Se (c), 1-Sp (c))in  (9) and KLout_discrete= D 
( 1- Sp (c),  Se (c)) in (10)

Another important finding is that the cutoff point based on 
maximizing TKL discrete (c), rather than on any other cutoff points, 
such as those based on maximizing J(c), will always minimize the loss 
of information by dichotomizing a continuous biomarker. Thus for 
marker 2, we can compare the information based on two cut points 
by J and by maximizing the TKL discrete (c), respectively, in Figure 2.  
The black dashed line is the shannon entropy as a function of p, any 
probability that ranges from 0 to 1, and the tangent lines were plotted 
at p=1- specificity and p=sensitivity at the cut points selected by TKL 
discrete (c) or by J using the control or the diseased population as the 
reference population, respectively. Note the lengths of the dashed 
lines are the vertical distances from the tangent points to the tangent 
lines, which indicate the amount of information of a biomarker 
making diagnosis based on cut points selected by J, red: KLin=2.82 
and KLout=2.50, and by the

TKL discrete (c), blue: KLin= 3.98 and KLout=1.97, respectively. 
Clearly the cut point selected by TKL discrete (c)gives more 
information, as indicated by the lengths of the two dashed blue lines 
(3.98+1.97>2.82+2.5), and especially larger rule-in potential, the 

blue line on the right, compared with the diagnosis based on the cut 
point selected by J for the same biomarker NM_004496 (dashed  red 
lines). Therefore, a patient diagnosed as positive using KL divergence 
cut point is approximately 3.19 times, {exp(3.98-2.82) = 3.19}, more 
likely to turn out as true positive. Thus the KL cut point yields more 
specific diagnosis (Sp = 0.99) with less false positives compared with 
a diagnosis test using J cut point. On the other hand, a non-diseased 
individual diagnosed as negative by KL cut point is around 41%, 
exp(1.97-2.5)=0.59, less likely to turn out as true negative compared 
with diagnosis based on J cut point. Thus it is less sensitive with more 
false negatives. This indicates that different choices of cut points 
sometimes provide vastly different diagnosis performance. Unlike J 
which balances Se and Sp, KL criteria highlights the fact that marker 
5 has an overall larger rule-in potential and gives more specific 
diagnosis at the cut point. However, in terms of overall diagnostic 
accuracy, even the optimization for KL is not based on maximizing 
(Se+Sp). We can see that the sums based on KL and J are very close. 

To illustrate how the situation of multiple crossing values 
differs from a single threshold case, we selected another two genes, 
AB033062 (gene marker 3) and NM_000906 (gene marker 3), which 
have minimal location differences between the disease (basal) and the 
control (luminal A or B) groups. The KL, J and AUC estimates as well 
as the corresponding density plots are given in Figure 3. For gene 
marker 3 in Figure 3 (a), the diseased (basal) mean was less than the 

Figure 2: Percentage of normal coronary arteries, non-obstructive and obstructive coronary stenosis detected by CCTA in retrospective and prospective 
ECG-gating groups. Exact number of patients in each group is presented in parentheses above the respective bars. (1V, single vessel disease; 2V, double 
vessel disease; 3V, triple vessel disease; LM, left main disease; CAD, coronary artery disease) 

(a)                                                                                                                                                   (b)

Figure 3. Density plots of selected gene markers 3 and 4.

(a) AUC = 0.49, J = 0.14, TKLdiscrete(one crossing) = 0.21, TKLdiscrete(two crossing) = 0.56, TKLcontinuous= 0.58

 (b) AUC = 0.54, J = 0.08, TKLdiscrete(one crossing) = 0.12, TKLdiscrete(two crossing) = 0.15, TKLcontinuous= 0.20
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control (luminal A or B) mean, so we flipped the two distributions to 
get the estimates of AUC and the Youden index. For both markers, 
we can see that KL information is the maximum if we treat the 
biomarker as absolute continuous, the information decreases as we 
categorize the biomarkers for making diagnosis. The more categories 
(cut-points) applied, the more information is retained.

Discussion
In this work, we investigated the applications of KL divergences 

in medical diagnostics in terms of the overall measure of before-test 
rule-in and rule-out potential as well as an optimization criterion for 
cut point(s) selection. This is an exciting and essential finding since 
this property of KL divergence measures can be used for diagnostic 
threshold selection/optimization based on a new perspective: 
minimizing the information loss from categorizing a continuous 
biomarker for making the diagnosis. Note that we usually use overall 
diagnostic measures such as KL divergence and AUC for selecting 
potential biomarkers in Phase I exploratory diagnostic accuracy 
studies. In addition, the surrogate biomarkers under evaluation 
generally used as screening tests instead of confirmatory diagnostic 
tests.

In general, we showed that, if the diagnostic test contains any 
information to discriminate against the diseased from the non-
diseased, the more specific tests have higher rule-in potential. 
In contrast, the more sensitive tests perform better at ruling out a 
particular disease. This confirms the ‘rule in–specific test’ and ‘rule 
out–sensitive test’ principle as expected. In addition, we linked 
KL divergence with some common ROC measures and presented 
analytical and numerical relationships in the case of one cut point 
as well as multiple cut points. Also, we discussed the graphical 
interpretation of KL divergence, which is referred to as the 
information graph and illustrated that by using real data, as shown 
in Figure 2.

Moreover, we establish through numerical examples under 
normal and exponential distributed non-diseased and diseased 
populations that across all parameter settings, the sensitivity and 
specificity based on maximizing ( )discreteTKL c  are further away from 
each other. At the same time, they are closed when the Youden index 
used. Therefore, the cutoff selection based Youden index is more 
balanced for the tradeoff of false positives and false negatives as the 
Youden index maximizes the sum of two probabilities. On the other 
hand, KL minimizes the loss of information from categorized as a 
continuous biomarker but pays less attention to the balance of the 
sensitivity and the specificity probabilities. We suspect the reason 
for such an imbalance from KL is because the sensitivity and the 
specificity are scaled by the log(OR(c)), which will always tend to 
scale up the probability whichever is more dominant.

In the data example, we showed that continuous TKLs are greater 
than the discrete TKLs, which is due to the loss of information. 
This may have the potential of losing information, which may lead 
to misleading conclusions by treating a continuous biomarker as 
discrete for evaluation purposes. Meanwhile, by comparing one cut- 
point and two cut- points for the same gene biomarkers, we show 
that adding more cut- points increases the information for evaluating 
a marker. Based on their density plots, moreover, we must include 
more cut- points for an accurate interpretation and application.

Finally, our power analysis showed that TKL can capture some 
differences among the diseases groups that J does not emphasize. 

However, the choice of the right measure for diagnostics depends not 
only on the power of that measure to discriminate, but also depends 
on the purpose of using the underlying biomarker.  Therefore, 
our proposed TKL measure is recommended if the purpose of the 
diagnostics is before test rule-in and rule-out patients.
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