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Abstract
This paper deals with the dynamics of human infection by zoonotic 
influenza of type H7N9 both in birds and in humans. A mutation 
to the virus can increase the infectiousness of zoonotic influenza 
and its risk to become pandemic influenza. We have formulated a 
mathematical model of avian influenza’s effect on the human and 
bird population. A basic reproduction number for both the human 
and bird population has been computed, 0

hR and 0 1bR > respectively, 
therefore we have proved that the model is locally and globally 
asymptotically stable for disease –free equilibrium points when basic 
reproduction number for both population is <1. Also proven is the 
endemic equilibrium point, which is globally asymptotically stable in 
the bird population when 0 1bR > . Extensive numerical simulations 
and sensitivity analysis are carried out for various parameters of the 
model. The effects of Vaccination, Sequestration and Recovery are 
critically analyzed and divide into their respective classes.
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human infections with the A (H7N9) virus, incubation period ranges 
from 1 to 10 days, with an average of 5 days [3]. In many patients 
infected by A (H5) or A (H7N9) avian influenza viruses, the disease 
has an aggressive clinical course. Common initial symptoms are high 
fever (greater than or equal to 38°C) and cough. Signs and symptoms 
of lower respiratory tract involvement including dyspnea or difficulty 
breathing have been reported. Upper respiratory tract symptoms such 
as sore throat or coryza are less common. Other symptoms such as 
diarrhea, vomiting, abdominal pain, bleeding from the nose or gums, 
and chest pain have also been reported in the clinical course of some 
patients. Complications of infection include hypoxemia, multiple 
organ dysfunction, and secondary bacterial and fungal infections. The 
case fatality rate for A (H5) and A (H7N9) subtype virus infections 
among humans is much higher than that of seasonal influenza 
infections [3].

The majority of human cases of A (H5N1) and A (H7N9) infection 
have been associated with direct or indirect contact with infected live 
or dead poultry. Controlling the disease in the animal source is critical 
to decrease risk to humans. Although H7N9 has potential to evolve in 
a global threat, right now it has one severe limitation that restricts its 
potential to spread: The virus doesn’t transmit easily between people. 
About 90 percent of people catch the virus by handling poultry. But 
person-to-person transmission is possible. During 2017, there were 
14 clusters of cases in which a person passed the disease to at least one 
other person [4].

As H7N9 has got high priority of public health problem in China, 
and most possibility of serious threat of spreading out to neighboring 
country or pandemic due to globalization of world market. The 
effects of different intervention, strategies, such as quarantine and 
vaccination, need to be investigated for the pandemic awareness 
plans that maximize practically, simplification and correctness. In this 
paper, in order to study the dynamics of human infection by avian 
influenza (H7N9). We have present the Susceptible Exposed Infected 
Quarantine Recovered and Vaccinated (SEIQRV) model for human 
population, and Susceptible Exposed and Infected (SIR) for bird 
population. There are few epidemic models on Zoonotic Influenza 
Subtype A (H7N9) has been formulated in last 4 years. Zhifei Liu et 
al. has developed SIR model for both human and poultry to evaluate 
the screening and culling of infected poultry on the evolution of the 
H7N9 epidemic [5]. 

The paper is organized as follows: Introduction is given in Section 
1, the basic assumptions and parameters of the model is discussed 
(Figure 1), and the epidemic model is developed in Section 2, 
Section 3 establishes the stability of the system developed, numerical 
simulations is given in Section 4, and finally conclusion in Section 5.

Model parameters and its formulation

We divide the human population into six classes SEIQRV  
(Susceptible-Exposed-Infected-Quarantined-Recovered-Vaccinated) 
and the bird population into three classes b b bS E I  (Susceptible-
Exposed-Infected).

Schematic flow of this model is shown in Figure 2 and the state 
variables and associated parameters of this model are given in Table 1. 

Introduction
Millions of people impacted by seasonal flu every year. The first 

massive outbreak of pandemic influenza occurred in 1918, and 1957, 
and 20 million humans died [1]. The first outbreak of avian influenza 
subtype A (H7N9) was reported in Eastern China, in 2013 [2]. In 
2013, human infections with the LPAI A (H7N9) virus were reported 
in China. Since then, the virus has spread in the poultry population 
across the country and resulted in several hundred human cases and 
many human deaths one imported case is reported in Canada, and 
one imported case in South Colombia [2]. The total number of cases 
reported from 2013 to August, 2017 is 1258 of which 460 died [3]. 
Aquatic birds are the primary natural reservoir for most subtypes of 
influenza A viruses. Most cause asymptomatic or mild infection in 
birds, where the range of symptoms depends on the virus properties. 
Viruses that cause severe disease in birds and result in high death 
rates are called highly pathogenic avian influenza (HPAI). Viruses 
that cause outbreaks in poultry but are not generally associated with 
severe disease are called low pathogenic avian influenza (LPAI). For 
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Figure 1: Schematic flow of avian influenza.

Figure 1a: The graph shows the changes in values between Recovered Class of Humans versus Infected Class of Humans.

Figure 1b: We have varied both infectivity rate from 1% to 90% in human population from exposed class to infected class, and infectivity rate from 57% to 
99% in bird population from exposed class to infectivity class to see dynamics of infected-recovered phase plane. The trajectory shows as the infectivity 
rate increases in both population, more human population moving to infected class, and it shows diseases free equilibrium.
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Figure 2: a and b: It shows the Schematic flow model of Susceptible-Exposed-Infected-Quarantined-Recovered-Vaccinated  and the bird population into 
three classes SbEbIb (Susceptible-Exposed-Infected).

S(t) : Susceptible humans in time t E(t): Exposed humans in time t
I(t) : Infectious humans in time t Q(t) : Quarantined humans in time t
R(t) : Recovered humans in time t V(t) : Vaccinated humans in time t
Sb(t) : Susceptible birds in time t Eb(t) : Exposed birds in time t
Ib(t) : Infectious birds in time t Nh(t): Total human population in time t
Nb(t) : Total bird population in time t B : Birth rate of humans
Bb : Birth rate of birds β: Infectivity of avian and mutant influenza from human-to-human
βb: Infectivity of avian influenza from bird-to-bird βbh: Infectivity of avian influenza from bird-to-human
η : Rate of transmission from exposed to infected humans γ : Rate of transmission from infected to quarantined humans
a: Rate of transmission from quarantined to recovered humans σ : Rate of transmission from susceptible to vaccinated humans
ρ : Rate of transmission from vaccinated to susceptible humans ξ : Rate of transmission from infected to recovered humans
ε : Rate of transmission from recovered to susceptible humans χ : Rate of transmission from exposed to infected birds
m : Natural death rate of humans δ: Death rate of humans due to avian influenza
mb : Natural death rate of birds δb : Death rate of birds due to avian influenza

Table 1: The state variables and associated parameters.

Model equations for human’s population

Based on the flow of transmission of avian influenza in human 
population as depicted in Figure 2, we have the following system of 
equations:

h bh b
dS BN SI SI V S S R
dt

β β ρ σ m ε= − − + − − +

( )bh b
dE SI SI E
dt

β β m η= + − +

( )dI E I
dt

η m δ ξ γ= − + + +

( )dR Q I R
dt

a ξ m ε= + − +  				                  (1)

( )dR Q I R
dt

a ξ m ε= + − +
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( )dV S V
dt

σ m ρ= − +

Similarly, for the flow of transmission of avian influenza in birds 
population, we have the system of equations as:

b
b b b b b b b

dS B N S I S
dt

β m= − −

b
b b b b b b

dE S I E E
dt

β m χ= − −  			               (2)

( )b
b b b bE I

dt
dI χ m δ= − +

And ( ) ( ) ( ) ( ) ( ) ( ) ( )hN t S t E t I t Q t R t V t= + + + + +

( ) ( ) ( ) ( )b b b bN t S t E t I t= + +  			                 (3)

Stability of the model

In this section, we find the basic reproduction number and 
stability of the model. We prove that our model is locally and globally 
stable for both disease-free-equilibrium and endemic equilibrium 
points.

Since all our model parameters are positive or non-negative, it 
is important to show that all state variables remain positive or non-
negative for all positive initial conditions for t 0≥ . From our model 
equation, we have

( )h
h h

dN B N I Q B N
dt

m δ m= − − + ≤ −

and, . b
b b b b b b b b

dN B N I B N
dt

m δ m= − − ≤ −

The closed set

( ) 8, , , , , , , : , b
b b b h b

b

B BD S E I Q V S E I N N
m m+

  = ∈ ≤ ≤ 
  

                (4)

is a feasible region of the model?

Theorem 1 states that the closed set D is bounded and positive 
invariant.

Proof: Since b
b b b

dN B N
dt

m≤ −

so Nb is bounded above by. b

b

B
m

Hence 0bdN
dt

<

Whenever ( ) b
b

b

BN t
m

>  .

On simplification, we have

( ) ( ) ( )0 1b bt tb
b b

b

BN t N e em m

m
− −≤ + −

As t → ∞ , 0bte m− →

and so ( )lim b
bt

b

BN t
m→∞

≤  .

The other case is similar. Thus, D is bounded and positively 
invariant in 8

+ .

Basic reproduction number

For any epidemic model, the basic reproduction number is the 
average number of secondary infectious cases produced by a single 
infection in total susceptible population.

The basic reproduction number is calculated by R0=ρ(FV-1), 
where ρ is spectral radius of the matrix FV-1 and F & V are the 
matrices of new infection terms and the remaining transmission 
terms respectively [6,7].

For the systems (1) and (2), the matrices F and V are as follows:

bh

b

0 0 0
0 0 0 0 0

F 0 0 0 0 0
0 0 0 0
0 0 0 0 0

β β 
 
 
 =
 

β 
  

( )
( )

( )
( )

( )
b

b b

0 0 0 0
0 0 0

V 0 0 0
0 0 0 0
0 0 0

− m + η 
 η − m + δ + ξ + γ 
 = γ − m + δ + a
 

− m + χ 
 χ − m + δ 

( )( ) ( )( ) ( )( )

( )( )

1 bh bh

b b b b b

b b

b b b b b

FV 0

0 0 0 0 0
0 0 0 0

0 0 0

0 0 0 0 0

− β χ ββη βη
= − − − −

m + η m + δ + ξ + γ m + η m + δ + ξ + γ m + χ m + δ m + δ

γ
β χ β

−
m + χ m + δ m + δ

( ) ( )( ) ( )( )
1

0 FV  ,  b

b b b

R max β χβη
m η m δ ξ γ m χ m δ

−   = ρ =  + + + + + +  
.

The basic reproduction number for human population 0
hR  and 

bird population 0
bR  are given by

( )( )0
hR βη

m η m δ ξ γ
=

+ + + +  and ( )( )0  b b

b b b

R β χ
m χ m δ

=
+ +

respectively.

Theorem 2 states that he systems (1) and (2) are locally 
asymptotically stable for disease-free equilibrium, when 0 1hR <  and

Proof: Jacobian matrix of the system (1) and (2) is as follows: 
( )

( )
( )

( )

( )

J  
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0

0

0

bh

bh

b

b

b

b

b

σ m β ε ρ β

m η β β

η m δ ξ γ

γ m δ a
ξ a m

σ ρ m
m

m χ

χ m δ

β
β

=

− + − −

+

− + + +

− + +

−

− +

− −

− −

−−

The eigenvalues of Jacobian matrix J are as follows:

( )1λ m δ a= − + +

( ) ( )2

2

4
2 2 2

δ ξ γ η βηm δ ξ γ m ηλ
+ + − ++ + + +

= − − +

( ) ( )2

3

4
2 2 2

δ ξ γ η βηm δ ξ γ m ηλ
+ + − ++ + + +

= − − −

4λ m= −

( )2

5

4
2 2 2

ρ σ ρσρ m σ mλ
− ++ +

= − − +
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( )2

6

4
2 2 2

ρ σ ρσρ m σ mλ
− ++ +

= − − −

7 bλ m= −

( )2

8

4
2 2 2

b bb b b
χ δ β χm χ m δλ

− ++ +
= − − +

( )2

9

4
2 2 2

b bb b b
χ δ β χm χ m δλ

− ++ +
= − − −

Eigenvalues 61 73 94, , , , ,λ λ λ λ λ λ  have negative real value and on 
simplifying 5λ , we get 5λ m= − .

We can easily verify that the eigenvalue 2 0λ < , when 0 1hR <  and

8 0λ < , when 0 1bR <

Hence all eigenvalues of Jacobian matrix J are negative when 

0 1hR < and 0 1.bR <

This proves that the system of SEIQRV for human population and 
the system of SEI for bird population are locally asymptotically stable 
when 0 1hR < and 0 1.bR <

Global stability of disease-free equilibrium

We show the global stability of the model using the method given 
by Kamgang and Sallet [8]. In this method, to show global stability, the 
model has to satisfy the five hypotheses, which has been summarized 
briefly in Appendix Theorem 3 states that the system (1) and (2) are 

globally stable for disease-free equilibrium when 0 1hR ≤ and 0 1bR ≤ .

Proof: We have shown above that ( ) 8, , , , , , , : , b
b b b h b

b

B BD S E I Q V S E I N N
m m+

  = ∈ ≤ ≤ 
  



is bounded and positively invariant in 8
+ , where the hypotheses A1 

and A2 are satisfied.

In our model, 1 ( , , , , ) bX S V Q R S=  and ( )2 , , , b bX E I E I=

The matrix A2(x) is given by 

( )
( )

( )
( )

0
0 0

0 0
0 0

b

b b b

b b

S S

S

m η β β
η m δ ξ γ

m χ β
χ m δ

− +
− + + +

− +
− +

As required by hypothesis A3, for any 8x +∈  the matrix is 
irreducible.

Now, for hypothesis A4, there is a maximum and uniquely realized 
in 8

+  if S=1 and 1bS =  at DFE. This maximum matrix is J2, the block 
of the Jacobian at DFE, corresponding to the matrix A2(x) is given by

( )
( )

( )
( )

2

0
0 0

0 0
0 0

b

b b b

b b

S S

J
S

m η β β
η m δ ξ γ

m χ β
χ m δ

 − +
 − + + + =  − +
 

− +  

For the hypothesis A4 the diagonal block matrix 2
11A  and 2

22A  are 
bounded by the matrices

( )
( )

2
11A

m η β
η m δ ξ γ

 − +
=  − + + + 

and 
( )

( )
2
22 b b

b b

A
m χ β

χ m δ
 − +

=  − + 
, which are maximum. This 

maximum is realized at each point of manifolds ( )1  E 0,  I 0= =  
and ( )2  0, 0b bE I= = . This implies that these points belong to the 
manifold with equations E  I 0b bE I= = = = . Thus, the hypothesis A4 
is satisfied.

Now for the hypothesis A5, the condition 2
11( ) 0Aa ≤  and 

2
22( ) 0Aa ≤ can be expressed as:

( )( )
1βη

≤
m + η m + δ + ξ + γ

 and 
( )( )

b

b b b

1β χ
≤

m + χ m + δ
. Thus, the 

hypothesis A5 is equivalent to h
0R 1≤  and b

0R 1≤ .

This proves that the model is globally stable for disease-free 
equilibrium when h

0R 1≤  and b
0R 1≤

Endemic equilibrium

We assume the endemic equilibrium points of system (2) are 
( )* * * *, ,b b bE S E I=

Using equation (3), we have for endemic equilibrium point,

0b b b bdN dS dE dI
dt dt dt dt

= + + = .

On simplification, we get

* ( )b b b
b

b

B NI m
δ

−
= .

Now, applying 0bdS
dt

=  and putting the above value of *
bI , we get 

( )
* b b b
b

b b b b b b

B NS
N B

δ
β m m δ

=
− −

.

Similarly, applying 0bdI
dt

=  and putting the above value of *
bI , 

we get 

( )* ( )b b b b b
b

b

B N
E

m δ m
χδ

+ −
= .

So, the endemic equilibrium points of system (2) are as follows:

( )
( )* ( ) ( )( , , b b b b bb b b b b b

b b b b b b b b

B NB N B NE
N B

m δ mδ m
β m m δ χδ δ

+ − −
=

− −
.

Theorem 4 states that the unique endemic equilibrium point E* is 
globally asymptotically stable if 0 1bR > .

Proof: We will prove the global stability of endemic equilibrium 
E* using geometric approach [9,10], which has been attached briefly 
in Appendix 2. The sufficient conditions for the global stability are 
shown in the hypothesis (H1) and (H2) with the Bendixson criteria 
given in Theorem (Appendix 2). 

For the general solution ( ) ( ) ( )( ), , b b bS t E t I t  of system (2), the 
Jacobian matrix is

0

0

b b b b b

b b b b b

b b

I S
J I S

β m β
β m χ β

χ m δ

− − − 
 = − − 
 − − 

.
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The matrix [ ]2J , the second additive compound matrix of the 
jacobian for n=3, is defined as

[ ]
11 22 23 13

2
32 11 33 12

31 21 22 33

j j j j
J j j j j

j j j j

+ − 
 = + 
 − + 

.

So, its second additive compound matrix [ ]2J  is 

[ ]2

2
2 0

0 2

b b b b b b b

b b b b

b b b b

I S S
J I

I

β m χ β β
χ β m δ

β m χ δ

− − − 
 = − − − 
 − − − 

Let the function ( ), ,  b b bP P S E I=  be defined as

( )

1 0 0

, , 0 0 1, ,

0 0

b b b
b b b

b b b

b

b

E E EP P S E I diag
I I I

E
I

 
 
 
    = = =   

    
 
 
  

Then, ' '
1

' '

0 0 0

0 0

0 0

b b
f

b b

b b

b b

E IP P
E I

E I
E I

−

 
 
 
 
 = −
 
 
 −
  

 , where fP  is the matrix 

obtained by replacing each elements of P by its derivative in the 
direction of f.

[ ]21 1
f fB P P P J P− −= + =

' '

' '

2

2 0

0

b b
b b b b b b b

b b

b b b
b b b b

b b b

b b
b b

b b

E II S S
I E

E E II
I E I

E II
E I

β m χ β β

χ β m δ

β

 
− − − 

 
 
 − − − + −
 
 
 −
  

= 11 12

21 22

B B
B B

 
 
 

,

where [ ]11 2b b bB Iβ m χ= − − −  , 
12   b b

b b b b
b b

E IB S S
I E

β β
 

=  
 

, 
21

0

b

b

E
IB

χ 
 =  
  

 and

' '

22 ' '

2 0b b
b b b b

b b

b b
b b

b b

E II
E I

B
E II
E I

β m δ

β

 
− − − + − 

 =  
 −
  

.

Now, for a vector ( ), , u v w  in R3, we select a norm as 
( ) { }, , ,  u v w max u v w= +  and denote L the Lozinskii measure 

for this norm. So, ( )1 1 11 12k B B= +L , where k1 and k2 are defined as 
follows:

( )1 1 11 12k B B= +L  and ( )2 1 22 21k B B= +L , where 12B  and 21B  
are matrix norms with respect to the vector norm L1 and 1L  denotes 
the Lozinskii measure with respect to the vector norm L1. So, We have 

( )
'

1 1 11 12 2 ,   2  b b b b
b b b b b b b b b b b b b b b

b b b b

E I I Ek B B I Sup S S I S I
I E E E

β m χ β β β m χ β β m
 

= + = − − − + = − − − + = − − + 
 

L , 

(by putting 
' Ib b b b

b
b b

E S
E E

β m χ= − −  from model equation of exposed 

class in bird population (2). 

This implies that 
'

1
b

b
b

Ek
E

m≤ − .

Similarly, ( )
' '

2 1 22 21 2b b b
b b

b b b

E I Ek B B
E I I

m δ χ= + ≤ − − − +L .

 Putting 
' Ib b

b b
b b

I
I E

χ m δ= − −  from model equation of infected class 

in bird population (2), we have, 
'

2
b

b
b

Ek
E

m≤ − .

Hence, ( ) { }
'

1 2sup , b
b

b

EB k k
E

m≤ ≤ −L  and so, ( )
'

0

1log
t

b
e b

b

EB ds
t E

m≤ −∫L .

So, 2 0q < , and hence the Bendixson criteria is also satisfied, 
which thus proves the global stability of the endemic equilibrium.

Numerical simulations and effect of parametric values

In this section, using Runge-kutta-Fehlberg method of order 
4 and 5, we numerically simulate our system (1) and (2) with real 
parametric values as given in (Table 2) and also establish the stability 
of models by taking different examples. MATLAB is used to simulate 
the systems.

Example1: Consider the different rate of transmission of human 
from exposed class to infected class (η) from 0.01 to 0.95, rate of 
transmission of bird from exposed class to infected class (χ) from 0.57 
to 0.99, and the parametric value given in the (Table 2) to stabilize the 
case the three situations shown in (Figure 1a, 1b,1c) [11-14]. 

(Figure 1a) has basic reproduction number R0
h=0.0857 <1 for 

η=0.5, and R0
b=0.770 to 0.776 <1 for χ=0.57 to χ=0.96 respectively. 

To show the global stability of diseases free equilibrium point in both 
human and bird class, when R0

h <1, and R0
b <1, in infected-recovered 

phase plane, we consider the global dynamics of the trajectory towards 
the diseases free equilibrium point. From (Figure 2a) we observe that 
the nature of trajectory tends to diseases-free equilibrium point from 

Parameter Value
β_bh 0.2
β_b 0.4
β 0.12
B 0.03, 

 12.2/1000(China)
Bb .5
η 0.5
γ 0.5
α 0.6
ξ 0.5
μ 0.008, 

7.44/(1000) ( China)
σ 0.1
δ 0.37
ε 0.05
ρ 0.08
μb 1/100
χ 0.6
δb 0.5

Table 2:  Parametric values for systems (1) and (2) [11,12,13,14].



Citation: Sinha DN (2018) Mathematical Model of Zoonotic Influenza Subtype A (H7N9) Spread in Human Population. J Immunol Tech Infect Dis 7:1.

• Page 7 of 12 •

doi: 10.4172/2329-9541.1000158

Volume 7 • Issue 1 • 1000158

rate will increase in human population the number of population 
will increase in infected class as well as at the constant rate 50% of 
quarantine population of infected class exhibits the longer period of 
time of recovery than if we increase the quarantine population from 
45% to 95% of infected population. So, more quarantine will end up 
with faster recovery.

In Figure 3c Infected and quarantine phase population has 
simulated for birth rate B=0.00672 to 0.04512, and death rate=0.00153 
to 0.01749 to see the trajectories nature of country wide population. 
For convenience both birth rate and death rate has been used 
in increasing order and the birth rate and death rate of China has 
been used to compare the nature of trajectories. Even there are 
several hidden factors needs to investigate and it varied county to 
country based on climax, immunity, Socioeconomics condition, and 
geography of reasons that are very sensitive in transmission of viruses 
in human population. But overall the nature of trajectory exhibits the 
increase in quarantine population will have faster recovery.

Example 4: Here we have considered the sensitivity analysis 
of vaccination class and infected class of human population with 

any initial point for constant infectivity rate 50% in human population 
from exposed class to infected class, and range of infectivity rate in 
bird population from exposed class to infected class range from 57% 
to 96%, which shows the global stability of diseases -free equilibrium 
point when basic reproduction number is less than 1. 

Example 3: Consider the infected-quarantined phase plane of 
human population to compare the both simulated and country-wise 
world population of human classes when R0

h<1 and η=.01 to 0.95 and 
γ=.45 to .95.

In Figure 3a, we have plotted the infected and quarantined class 
for different values of eta, from =0.01 to η=0.95 and γ=0.5. In this 
case, the basic reproduction number R0

h=0.05nd R0
h=0.19 for η=0.01 

and η=0.95 respectively.

In (Figure 3b) we have plotted the infected and quarantined class 
for different parameter values of γ, from γ=0.45 to γ=0.95 and η=0.5. 
In this case, the basic reproduction number is R0

h=0.086 for all the 
above values of γ.

The nature of trajectory shows in (Figure 3a) that if infectivity 

Figure 3a: We have plotted the infected and quarantined class for different values of eta, from =0.01 to η=0.95 and γ=0.5. In this case, the basic 
reproduction number R0

h=0.05nd R0
h=0.19 for η=0.01 and η=0.95 respectively.

Figure 3b: We have plotted the infected and quarantined class for different parameter values of  γ, from γ=0.45 to γ=0.95 and η=0.5. In this case, the 
basic reproduction number is R0

h=0.086 for all the above values of  γ.
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various values of vaccination parameters and its comparison between 
country wide simulated vaccination class and infected class of human 
population with constant vaccination parameter and varying birth 
rate and death rate.

In Figure 4a, the nature of trajectory indicate that increase the 
vaccination parameter σ from 10% to 99%, the infection rate decreases 
which is very true and its play a vital role in faster recovery. 

In Figure 4b, we have used constant rate of vaccination parameter 
σ=10% and varied the birth rate and death rate in increasing order. 
We found that the country which has smaller birth rate as well as 
smaller death rate have faster recovery than country which has higher 
birth rate and higher death rate. So, the socioeconomic condition, 
immunity, climax, and several other hidden factors plays vital role in 
recovery from infected class too.

Example 5: We have studied the sensitivity analysis of recovered 
human with quarantine human and infected human for China 

Figure 3c: The graph between the Quarantine Class of Humans and the Infected Class of Humans has been shown.

Figure 4a: The nature of trajectory indicate that increase the vaccination parameter σ from 10% to 99%, the infection rate decreases which is very true 
and its play a vital role in faster recovery. 

population in Figure 5(a) and (b), and varied birth rate and death rate 
for different country human population in Figure 5c and 5d.

It is very clear from (Figure 5(a) and 5(b) that as we increase 
the population of quarantined humans, the recovered population of 
human also increases. From (Figure 5c and 5d) it clearly indicates that 
quarantining population in infectious population is strong remedial 
action, but birth rate and death rate with hidden factors also impact 
the recovery class of human population. 

Example 6: We have considered the sensitivity analysis of 
vaccination parameter  varied from 10% to 95% in Figure 6a, varied 
infectivity rate η=1% to 90% from exposed class of human to infected 
class of human in Figure 6b, and varied birth rate, and varied death 
rate in increasing order for different country human population as 
well as for China in Figure 6c. We found that in each case the recovery 
time is approx. 40 to 45 days.
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Figure 4b: We have used constant rate of vaccination parameter σ = 10% and varied the birth rate and death rate in increasing order. We found that the 
country which has smaller birth rate as well as smaller death rate have faster recovery than country which has higher birth rate and higher death rate. So, 
the socioeconomic condition, immunity, climax, and several other hidden factors plays vital role in recovery from infected class too.

 
5(a)

                             

5(c)                       5(d) 

5(b)

Figure 5: a and b: Indicates the increase in population of quarantined humans, the recovered population of human also increases. c and d: Clearly 
indicates that quarantining population in infectious population is strong remedial action, but birth rate and death rate with hidden factors also impact the 
recovery class of human population. 
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Conclusion
We have developed Susceptible-Exposed-Infected-Quarantined-

Recovered-Vaccination (SEIQRV) epidemic model for human 
population and Susceptible-Exposed-Infected (Sb Eb Ib) epidemic 
model is developed for bird population. The basic reproduction 
number for both epidemic model are computed, which are 

( )( )0
hR βη

m η m δ ξ γ
=

+ + + +
and 

( )( )0  b b

b b b

R β χ
m χ m δ

=
+ +

 For human and 

bird population respectively. We proved that the model is locally and 
globally asymptotically stable for disease-free equilibrium point when 
R0

h <1 and R0
b <1. We also prove that the unique endemic equilibrium 

point is globally asymptotically stable in bird population, when R0
b 

>1. From the results, it is evident that quarantine and vaccination play 
a vital role for early recovery of the disease. The more we quarantine 
the infectious population, more is the recovery. This model stablishes 
the true recovery time that is 40 to 45 days, that is clinically proved 
[15]. This model is stabilized for the world population country wise 
with real parametric values, due to its potential threat of becoming 
pandemic.

Our aim is to study the spread of avian influenza subtype A 

  
                

6(a) 6(b)

 

 
 

 6(c)
Figure 6: a: Shows the σ varied from 10% to 95%. b: Shows the infectivity rate η = 1% to 90% from exposed class of human to infected class of human. 
c: Varied birth rate, and varied death rate in increasing order for different country human population as well as for China.

(H7N9) due to its potential threat of becoming pandemic, to gain a 
better understanding of transmission mechanism. Our model yields 
satisfactory results as evidenced by the simulations and may be used 
for the prediction of future situations of epidemic in country wise. 
We utilize real data at these various scales and our model allows 
one to generalize our predictions and make better suggestions for 
the control of this epidemic. Our next research will be based on 
consideration of hidden factors by geographical reason that impacts 
the immunity, birth rate, and death rate.
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