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Abstract
Oxidized form of cellular nicotinamide adenine dinucleotide 
(NAD+) is currently intensively investigated topic in longevity 
science. However, if ageing is considered a defense mechanism 
against cancer, caution should be implemented regarding the use 
of NAD+ and its precursors. In the hypothesis presented NAD+ 
is shown as an important factor related to cancer formation and 
prevention. NAD+ depletion with age may play a major role in the 
process of cancer formation by limiting (1) energy production, (2) 
DNA repair, (3) genomic stability and signaling. Disruption of any 
of these processes could increase the cancer risk due to impaired 
genomic stability. NAD+ content is a critical protective factor in early 
carcinogenesis and can become detrimental factor later in cancer 
progression and promotion phase. Namely, NAD+ restoration 
could prevent or reverse the phenotype of malignant cells at early 
stages by inducing cellular repair and stress adaptive response 
as well as regulate cell cycle arrest and apoptotic removal of 
damaged cells. Contrary, during cancer promotion, progression and 
treatment increased NAD+ levels could have deleterious effects 
on the malignancy process due to growth advantage, increased 
resistance and greater cell survival. NAD+ levels can be increased 
with exercise, caloric restriction and ingestion of NAD+ precursors 
and intermediates or could be increased by using PARP and CD 38 
inhibitors. The evidence indicating that modulation of NAD+ levels 
could be important in cancer prevention, initiation and progression 
phase is presented.
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Introduction
Nicotinamide adenine dinucleotide NAD+, a coenzyme required 

for DNA synthesis, is involved in cellular redox reactions and plays 
integral role in basic energy metabolism such as glycolysis, citric 
acid cycle, and mitochondrial electron transport [1]. NAD+ is a 
substrate for many NAD-dependent enzymes and is a key substrate 
for signaling enzymes such as polyADPribosyl-polymerases, sirtuins, 
and ADPribosyltransferases [2]. Over 200 enzymes require NAD 
(H) and NADP (H) due to their reversible oxidation-reduction 
properties. The ratio of NAD+/NADH regulates many aspects of 
metabolism, including DNA repair, stress resistance, and cell death 

[3]. By regulating diverse pathways [4] and by inducing apoptosis, 
DNA repair and increasing cell defence the amount of available 
NAD+ could influence the malignant transformation. Namely, NAD+ 
is involved in molecular processes which are important early in cancer 
development, including DNA repair, stress responses, signaling, 
transcription, apoptosis, metabolism, differentiation, chromatin 
structure, and increased life span [5]. In human subjects, NAD+ 
content has been inversely correlated with malignant phenotype [6,7].

NAD+ and its precursor nicotinamide mononucleotide (NMN) 
levels decline with age and NADH level increase [8-10], as well the 
incidence of many types of cancer increase with ageing [11,12]. 
Although causal relationship remains to be elucidated, stimulating 
the NAD+ biosynthesis in second half of human lives with NAD+ 
intermediates or by stimulation of NAD+ synthesis could represent 
a novel strategy for preventing the incidence of malignant diseases. 

Pathways of NAD+ synthesis

Aerobic exercise, caloric restriction (CR) and fasting increase 
NAD+ levels, mitochondrial and sirtuin activity and lowers the 
NADH levels [13-15]. Baseline requirements for NAD+ synthesis can 
be met either with dietary tryptophan or with less than 20 mg of daily 
niacin, which consists of nicotinic acid and/or nicotinamide [16]. 60 
mg of Trp is considered the equivalent of 1 mg of niacin [17]. Greater 
rates of NAD+ synthesis may be obtained also by supplementation 
with nicotinamide riboside (NR), and possibly nicotinic acid riboside 
(NaR) which are NAD+ precursors and utilized through distinct 
metabolic pathways to form NAD+ [16]. Besides, O-ethylnicotinate 
riboside, O-methylnicotinate riboside, and several N-alkyl derivatives 
can increase NAD+ concentrations in vivo [18]. For example, 
mitochondria in muscles of elderly mice were reversed to a youthful 
state after injections with NMN (nicotinamide mononucleotide), 
thus raising NAD+ levels in old mice restored mitochondrial 
function to that of a young mouse in a SIRT1-dependent manner 
[19]. Additionally, in the recent experiment Khan et al., [20] treated 
mitochondrial myopathy mice with NR that effectively delayed 
early- and late-stage disease progression, by inducing mitochondrial 
biogenesis in skeletal muscle and brown adipose tissue. The work 
on genetically engineered mouse models indicates that enhanced 
SIRT1 activity (which requires NAD+) would be protective against 
the development of some types of metabolic syndrome-associated 
cancers [21]. 

DNA damage and repair

Cancer evolves through a multi-step process, where DNA 
damage, genetic mutations and altered metabolism act as drivers 
of cancer. In cancer cells, genes are either modified by mutations 
that alter the function of the encoded proteins or the expression 
patterns of oncogenes / tumor suppressor genes can be affected 
through the epigenetic changes (including acetylation, methylation, 
phosphorylation and ubiquitylation) [22]. Evidence will be presented 
that NAD+ or NAD+/NADH ratio can influence DNA mutation 
frequency (Figure 1), epigenetic changes in DNA and can influence 
metabolic programming. 

DNA damage response senses different types of DNA damage and 
coordinates a response that includes activation of transcription, cell 
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cycle control, DNA repair pathways, apoptosis, senescence, and cell 
death [23]. A major determinant of the quality of repair is the speed 
of repair, especially if mutation is replicated before being repaired, 
which leads to the formation of a permanent mutation. The activity 
of DNA repair systems decline with age [24]. The observed increase 
of DNA damage with age may be the consequence of a) an increased 
ROS generation and b) a decline of DNA repair mechanisms and 
clearance. For example, increased DNA damage and mutation level 
with age could be explained also by the depletion of NAD+ [8], which 
is necessary for the activity of sirtuins and PARPs involved in the 
genomic maintenance and repair of DNA. PARP activity increases 
with age in human cells and correlates with both age and NAD+ 
depletion in males [8,25]. The NAD+ as the link between oxidative 
stress, inflammation, caloric restriction, exercise, DNA repair, 
longevity and health span was described elsewhere by Poljšak and 
Milisav, [26]. 

ROS as the main cause of oxidative damage and the role of 
NAD+ 

ROS can cause severe damage to DNA, proteins and lipids, when 
produced at high levels. The major superoxide-producing component 
of the mammalian respiratory chain is NADH:ubiquinone 
oxidoreductase (Complex I). Redox state of complex I is the major 
source of ROS under pathological circumstances [27]. Redox state of 
complex I depends on numerous factors like substrate supply, ATP 
use and uncoupling which increase the oxidation of complex I and 
the flow of electrons down the respiratory chain, resulting in lowered 
electron leakage. Faster and more efficient electron transport may lead 
to a lower production of ROS by mitochondria. This occurs because of 
reduced leakage of electrons from the respiratory chain and/or lower 
oxygen concentrations in the mitochondrial microenvironment 
[28,29]. Deactivation of Complex I results in almost complete loss of 
its NADH-ubiquinone reductase activity and in increase in NADH-
dependent superoxide generation [30]. This theoretical postulate was 
confirmed observationally in mice when it was shown that across 
individuals it was those individuals with the highest energy metabolic 

rates that lived the longest, and such individuals had greater 
uncoupling of their muscle mitochondria [31]. 

The reduction state of complex I depends strongly on the NAD 
and NADH levels. Ameliorating the NAD+/NADH ratio would 
influence the intensity of superoxide-generation from the transfer of 
electrons to molecular oxygen at mitochondrial complexes I/III and 
from the plasma membrane redox system and can thus regulate a) the 
formation of reductive/oxidative stress [26] and b) the intensity of 
oxidative damage. Increased levels of oxidative damage of proteins, 
DNA and lipids were observed in animal models and aged human 
tissues [32] however, there was decreased oxidative damage and 
increased resistence to oxidative stress in long-lived compared to 
short-lived animals [32-34]. While oxidative damage increases with 
age [35-37], some data imply that the rate of oxidative DNA repair 
and other cell repair mechanisms decrease with age [38,39] as well 
as the level of antioxidative defense [40,41]. The duration of life-span 
and health-span as well as cancer prevention may thus be improved 
by manipulating cellular repair and maintenance systems. Approach 
to neutralize free radicals with antioxidants should be changed into 
triggering an adaptive stress response in order to increase the damage 
repair processes [42]. Regulation of the redox state of mitochondrial 
NAD+ is an essential antioxidant defensive system. Moderate stress 
induced by CR, physical activity or mimetic compounds, which all 
influence the level of NAD+, may induce such activation of endogenous 
antioxidative defense and cellular repair and maintenance processes 
[42,43]. Aerobic exercise, caloric restriction (CR), fasting and low 
glucose availability increase NAD+ levels, mitochondrial and sirtuin 
activity, while lowering the NADH levels [44-47]. NAD+ levels are 
also involved in the circadian clock regulation and this might be 
the missing link between the circadian clock, cell cycle control, 
DNA damage repair and cellular metabolism [48,49]. What is more, 
abnormal metabolism and aberrant cellular proliferation in cancer 
could be linked to a disrupted circadian clock [50].

It seems that increased ROS formation protects tested animals 
from cancer by increasing oxidative stress/damage and killing the 

 

  

 

 

 

 

 

 

Decreased NAD(+)/NADH ratio: 
− apoptosis inactivation  
− inhibition of DNA repair (↓PARP and ↓SIRT)  
− increased mutation rates 

Restored mitochondrial respiration and NAD+/NADH 
levels:  
− apoptosis activation  
− stimulation of DNA repair  

↑ Malignancy – 
generating genomic 
environment 

Figure 1: Possible mechanisms of NAD+ depletion and restoration in relation to apoptosis, DNA repair and mutation frequency. NAD+/NADH levels can be 
restored by converting NADH to NAD+; stimulating NADH-quinone oxidoreductase 1 (NQO1) that modulates cellular NAD+/NADH ratio; by dichloroacetic acid 
(DCA), 3-bromopyruvate (3BroP), 2-deoxyglucose (2-DG), nicotinamide riboside and nicotinamide precursors; by upregulating NAMPT with fasting and exercise, 
etc. 
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tumor cells [51] and conversely antioxidants stimulate cancer growth 
by decreasing oxidative stress and apoptosis [52]. Antioxidant 
treatment reduces ROS and DNA damage levels but increases cell 
proliferation. By reducing oxidative stress and oxidative DNA 
damage also p53 is reduced, resulting in decreased p53 surveillance 
and accelerated tumor proliferation [53-55]. Additionally, the 
tumor suppressor Nrf2 that controls many enzymes involved in 
antioxidative defense can actually promote cancer growth in some 
circumstances. Namely, Nrf2 is strongly activated in many tumors 
resulting in decreased oxidative stress [54,56]. Mendelsohn and 
Larrick [57] stressed the scenario when antioxidant treatment can 
reduce Nrf2 expression and down regulate p53 leading to decreased 
oxidative damage protection of already altered (pre-malignant and 
malignant) cells leading to tumor promotion. Thus, approaches 
resulting in increased absolute NAD+ level are important for 
maintaining optimal cellular functioning. However, the increases of 
NAD+ pool might cause double-edged effects - what might increase 
the longevity of normal cells can be harmful when the cells are already 
malignantly transformed. Namely, by lowering ROS leakage, e.g. by 
tighter control over the NADH pool, ROS damage and mutations are 
prevented, but also apoptosis is repressed; the latter is an essential 
defensive mechanism for elimination of damaged cells, including 
those that are precancerous and cancerous. What is more, NAD+ 
depletion may have a major role in the process of tumor development 
by limiting 1) energy production, 2) DNA repair and 3) genomic 
stability and signaling [3]. 

NAD+/NADH ratio regulates many cellular processes 

Cancer cells are characterized by altered mitochondrial 
bioenergetic and biosynthetic state (excessive proliferation, impaired 
cell death signaling, and deregulated metabolism). The NAD+/NADH 
ratio plays an important role in regulating the intracellular redox 
state and several enzymes involved in regulation of metabolism are 
influenced by the NAD+/NADH ratio. The NAD/NADH ratio itself is 
regulated by small changes in NAD+ concentration [58,59]. Changes 
in NAD+ concentration and/or the NAD+/NADH ratio can induce 
DNA repair and increase cell defence, by regulating diverse signalling 
pathways [60-62] and transcriptional events and thus play important 
role in cancer prevention (Figure 2). By increasing cellular NAD+ 
levels AMPK enhances SIRT1 activity, resulting in the deacetylation 
and modulation of the activity of downstream SIRT1 targets. It 
seems that NAD+ can activate PARPs, sirtuins and regulate the genes 
involved in the DNA repair and maintenance process [63]. This is 
especially true for the mammalian sirtuin 1 (SIRT1) whose activity 
depends on NAD+/NA(H) ratio. The DNA repair enzyme PARPs 
also use large amounts of intracellular NAD+ and are thereby in 
competition with sirtuins for the limited supply of NAD+ (Figure 3). 
NAD+ is the substrate for the synthesis of poly (ADP-ribose) (pADPr) 
by poly (ADP-ribose) polymerase (PARP). Poly(ADP)-ribosylation is 
a DNA strand-break-driven posttranslational modification of nuclear 
proteins that is catalyzed by PARP-1, with NAD+ serving as substrate 
and a key player in the immediate cellular response to ROS-induced 
DNA damage in eukaryotic cells. Upon DNA damage, PARP activity 
in the cell is highly enhanced. The activation PARP-1, the enzyme 
responsible for most PARP activity, would lead to NAD+ depletion, 
therefore limiting SIRT1 activity by lowering the bioavailability of 
this crucial coenzyme [64]. This reduced cellular NAD+ then reduces 
the effectiveness of sirtuins (SIRT1) which can deacetylate tumor-
suppressor proteins such as p53 [65] (Figure 3). p53 selectively 
regulates a set of its target genes, including cell cycle arrest, apoptosis, 

autophagy, and/or senescence, to exert its function in DNA damage 
and tumor suppression. Loss of p53 thus provides growth advantage 
to tumor cells; it enables cell survival under limiting nutrient 
conditions [66]. It was observed that NAD+ concentration can 
modulate expression of the tumor suppressor protein, p53, in human 
breast, skin, and lung cells [6,67]. Tummala et al., (2014) reported that 
replenishing the NAD+ levels by nicotinamide riboside (NR) prevented 
and abolished DNA damage and aggressive tumor formation [68]. 
Additionally, Tummala and Djouder propose that NAD+ depletion is 
a common molecular mechanistic basis for oncogene-induced DNA 
damage and tumor development [69]. Additionally, NAD+ dependend 
tankyrases (also known as PARP-5a and PARP-5b), which regulate 
telomererase activity and telomere maintenance, may also influence 
the carcinogenic process [70]. The NAD/NADH redox state regulates 
also the co-repressor CtBP (C-terminal binding protein) activity, 
component of critical complexes for specific repression events in 
cells, and therefore plays significant role in carcinogenesis [71] due to 
epigenetic reprogramming. The C-terminal binding protein (CtBP) 
is a NADH-dependent transcriptional repressor and requires NAD+ 
binding for activity, indicating that NAD+ plays a role in repression at 
a step subsequent to CtBP recruitment to the promoter. In situations 
of low glycolytic rates NADH will decrease, destabilizing CtBP/HIC1/
SIRT1 inhibitory complexes and allow the induction of SIRT1 mRNA 
levels [71]. 

PARPs, sirtuins, CD38 and Nampt inhibitors in cancer 
treatment 

Failure to repair the DNA damage leads to a loss of genomic 
integrity, carcinogenesis or cell death. Decreased availability of NAD+ 
in cancer cells might influence cancer treatment. Namely, the amount 
of NAD+ available for PARPs and sirtuins regulates the quality of 
DNA repair. Selective inhibition of NAD+ synthesis demonstrated 
induction of apoptosis of tumor cells [72]. For example, inhibiting 
nicotinamide-recycling enzyme nampt/PBEF with NAD biosynthesis 
inhibitor, FK866, resulted in anticancer effect [73] as tumor apoptosis 
inducer due to NAD+ depletion [72].

Sirtuin inhibitors are also emerging as antitumor drugs, and 
this function has been ascribed to the inhibition of SIRT1, which 
deacetylases p53 to promote cell survival [74]. SIRT1 inhibition 
induces growth arrest and reduces drug resistance of cancer cells 
in vitro [75,76]. Additionally, SIRT2 inhibition was reported to 
trigger apoptosis in C6 glioma cells and HeLa cells [74,77]. Contrary, 
Van Meter et al., (2011) proposed SIRT6 overexpression in cancer 
therapy, since it induces apoptosis in cancer cell lines but not in non-
transformed cells through its ADP-ribosyltransferase activity [78].

Also PARP1 inhibitors affect NAD+ concentration and could 
increase the effectives of cancer treatment. Certain tumors defective in 
homologous recombination mechanisms, may rely mostly on PARP-
mediated DNA repair for survival, and are sensitive to its inhibition 
[79]. Namely, fast growing cancer cells observed in tumours with 
BRCA1, BRCA2 or PALB2 are low in oxygen and sensitive to PARP 
inhibitors [80]. BRCA1, BRCA2 and PALB2 proteins are important 
for double-strand DNA breaks repair (DSBs). PARP-1 is involved 
in repairing single strand breaks (SSBs) and the replication of 
unrepaired SSBs causes the formation of double strand breaks [81]. If 
DSBs in tumors with BRCA1, BRCA2 or PALB2 cannot be repaired 
due to PARP1 inactivation, cell deat is stimulated. PARP-1 inhibition 
can thus sensitize cancer cells to anti-cancer therapies, for example, 
chemotherapy and radiation therapy [82], since poly (ADP-ribose) 



Citation: Poljsak B (2016) NAD+ in Cancer Prevention and Treatment: Pros and Cons. J Clin Exp Oncol 5:4.

• Page 4 of 15 •

doi:10.4172/2324-9110.1000165

Volume 5 • Issue 4 • 1000165

NAD+ and the cancer prevention     
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Note*: adenosine-monophosphate-(AMP-) activated protein kinase (AMPK); the target of rapamycin pathway (TOR); tumor necrosis factor-α (TNF-α); Forkhead 
Box O (FOXO); hypoxia-inducible factor 1 (HIF1); Sirtuin 1 (SIRT1); transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)γ coactivator 1α 
(PGC-1α), nicotinamide phosphorybosyltransferase (Nampt); nicotinamide mononucleotide (NMN); nicotinamide (NAM); nicotinamide phosphoribosyltransferase 
(Nampt); nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) 
Figure 2: NAD+ in cancer prevention: NAD+/NADH ratio in relation to cell energy availability, cell metabolism, DNA repair, genomic stability, cell signaling, 
cell survival and fate. Arrows indicate positive regulation while hash-marks indicate negative regulation; dashed lines indicate putative interaction. Note: some 
interactions have been omitted for simplicity.
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polymerase-1 (PARP-1) facilitates the repair of DNA strand breaks. 
Contrary, Ethier et al., (2012) reported that pharmacologic inhibition 
of PARP-1 promotes Akt activity and mTOR signaling resulting 
in decreased (cancer) cell death [83]. However, these results were 
contradicted by Wang et al., (2011) reporting PHLPP1-mediated 
downregulation of Akt activity and increased cell death following 
PARP inhibition [84].

By using the PARP or CD38 inhibitors NAD+  bioavailability 
could be increased and more NAD+ becomes available for sirtuins. 
Namely, SIRT1 activity is reduced when PARP1 is activated since 
NAD+ is the rate-limiting factor for the activation of SIRT1. PARP-1 
inhibition was shown to prevent NAD+ depletion, restore the ATP 
levels, activate SIRT1 and induce gene expression program that 
stimulates mitochondrial metabolism (Figure 3) [85-87]. Initially, 
PARP inhibitors were thought to work primarily by blocking PARP 
enzyme activity, thus preventing the repair of DNA damage and 
ultimately causing cell death. Muray et al., (2012) revealed that 
PARP inhibitors have an additional mode of action: trapped PARP–
DNA complexes are more toxic to cells than the unrepaired single-
strand DNA breaks that accumulate in the absence of PARP activity, 
indicating that PARP inhibitors act as PARP poisons [88].

Basal NAD+ turnover was prolonged threefold to fourfold by 
an inhibitor of poly(ADP-ribose) synthetase in resting human 
lymphocytes [89]. For example, nicotinamide (NAM) is PARP-1 
inhibitor and inducer of sister chromatid exchanger [90,91]. Low 
levels of NAM are beneficial for SIRT1 activity, because NAM can 
act as an NAD+ precursor, but accumulation of NAM could be 
deleterious through the inhibition of SIRT1 [64,92]. NAM between 
100-1000 mg kg-1 caused a high level of in vivo DNA strand breaks in 
tumour bearing mice and normal tissue cells. After cessation of NAM 
treatment a delay in repair of DNA strand breaks and regeneration 
of NAD+ was observed [93]. Additionally, large doses of oral niacin 
(nicotinic acid (NA) plus nicotinamide (NAM)) supplementation 
increase NAM levels in the body, which may result in inhibition of 
PARP-1 and increased genomic instability [94]since PARP-1 helps 
to stabilize genetic material with its role in DNA repair pathways 
including nucleotide excision repair (NER) [95] and base excision 
repair (BER) [96]. On the other hand, niacin is an oxygen radical 
scavenger and might increase the antioxidant defence against ROS 
[97,98], but as already mentioned, increased antioxidative stress 
influences intensity of proliferation. Besides, increased mutation 
rate and the diversity of cancer might be a consequence of niacin 
deficiency due to abnormal pairing of bases and its requirement 
for DNA synthesis [99]. It was observed that certain populations, 
including cancer patients (due to cachexia), could have subclinical 
deficiency in niacin [100,101]. 

The age dependent mitochondrial vicious cycle and aerobic 
glycolysis

Mitochondrial dysfunction is a hallmark of cancer formation, 
but its causes are still not well understood. Previous hypothesis 
speculated about free radical-induced oxidative stress as the main 
cause of mitochondrial inner membrane damage, which creates a 
positive feedback-loop. Namely, induction of ROS generates mtDNA 
mutations [102-104] in turn leading to a defective respiratory chain 
and stimulation of glycolysis. During glycolysis NAD+ accepts hydride 
equivalents to form the reduced dinucleotide, NADH. Glycolysis can 
function with or without the presence of oxygen. In humans, aerobic 
conditions produce pyruvate and anaerobic conditions produce 

Age related decline of NAD+* 

* Defect in NAMPT-mediated NAD+ biosynthesis and increased rate of DNA 
damage with aging, raises demand for NAD+ used during DNA repair. PARPs use as 
much as 100-150 molecules of NAD when activated by one DNA break. Other 
reasons for age-related decline in NAD are not well understood 

Disrupted NAD+/NADH ratio 

Decreased mitochondrial oxidation and insufficient ATP 
production 

Insufficient energy for important cellular processes 
(including DNA maintenance and repair) 

Disrupted mitochondrial communication 

Pseudo hypoxic state (expression of HIF-1alpha)  

 

Unregulation of insulin/IGF/PI3K/akt/mTOR pathway 

Metabolic reprogramming (Warburg type metabolism) with 
enhanced glycolysis 

Limited energy production, DNA repair and genomic 
instability, decreased p53 activation        

Figure 3: A vicious cycle created by a decline of NAD+.       

lactate. When oxygen is present, acetyl-CoA is produced from 
the pyruvate molecules created from glycolysis. Enzyme involved 
in catalyzing the conversion of pyruvate to acetyl CoA is pyruvate 
dehydrogenase and high levels of NADH and acetyl CoA inhibit 
this enzyme, while NAD+, CoA, or AMP can speed up the reaction. 
When oxygen is present, the mitochondria will undergo aerobic 
respiration which stimulates the Krebs cycle. However, if oxygen is 
not present, fermentation of the pyruvate molecule will occur. The 
goal of anaerobic glycolysis is to reduce pyruvate, thus regenerating 
NAD+ in the absence of O2. In the absence of oxygen, fermentation 
prevents the buildup of NADH in the cytoplasm and provides NAD+ 
for glycolysis. Defective respiratory chain and anaerobic glycolysis 
generates significant amount of ROS and forming a vicious cycle. 
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This vicious cycle creates even more damage to mtDNA and reduces 
energy formation from oxidative phosphorylation and further 
stimulates aerobic glycolysis, thus reducing the available energy for 
DNA repair and maintenance processes (Figure 3). 

Gene mutations and chromosomal abnormalities [105] determine 
the Warburg effect and compromised function of respiratory system. 
The metabolic impairment theory/mitochondrial theory of cancer [106-
111] claims that cancer can be best defined as a type of mitochondrial 
disease. The gene theory of cancer indicates that dysfunctional 
mitochondria would be the result and not the causal factor of cancers, 
while the contrary is suggested by the metabolic impairment theory. 
Although some studies challenged the Warburg hypothesis of aerobic 
glycolysis as the universal property of tumor cells [112], claiming that 
tumor mitochondria do respire and produce ATP, the important 
fact remains that cancer cells do exhibit high rates of glycolysis in 
aerobic or anaerobic conditions [113]. Even under conditions of 
plentiful oxygen, cancer cells choose to switch glucose metabolism 
from respiration to lactic acid formation. Since the nuclear genome 
integrity is largely dependent on mitochondrial energy homeostasis, 
damage to cellular respiration precedes and underlies the genome 
instability that accompanies tumor development. Once established, 
genome instability contributes to further respiratory impairment, 
genome mutability, and tumor progression [106]. Tumors display 
aerobic glycolysis partly through activation of oncogenes or loss of 
tumor suppressors, which are then further enhanced by stabilization 
of the hypoxia-associated transcription factor, the hypoxia-inducible 
factor (HIF-1a) [114]. Increased ROS stabilize (HIF) 1-alpha, 
resulting in metabolic reprogramming toward glycolysis and thus 
facilitating tumor development [115-117]. For example, Gomes et al. 
proposed a model linking decreased NAD+ to loss of nuclear SIRT1 
activity to stabilization of the HIF 1-alpha. HIF-1alpha promotes 
hypoxic-like (Warburg effect) state in the cell (Figure 3). Abnormal 
energy metabolism is a consistent feature of most tumor cells across 
all tissue types [106] and genes for glycolysis are overexpressed in the 
majority of cancers examined [118,119]. Numerous studies show that 
tumor mitochondria are structurally and functionally abnormal and 
incapable of generating normal levels of energy [120-128]. 

Could re-activation of mitochondrial oxidative metabolism 
in glycolytic tumors with altered mitochondria be obtained by the 
administration of NAD+? 

The altered metabolism of tumor cells confers a selective 
advantage for survival and proliferation, and studies have shown 
that targeting such metabolic shifts may be a useful therapeutic 
strategy. According to Mouchiroud et al. [129], boosting oxidative 
metabolism through modulating NAD+ levels could in itself prove 
to be a powerful anti-cancer regimen and actually inhibit the 
“Warburg effect” [129]. For example, different inhibitors can act as 
anti-Warburg agents by raising NAD+ levels and promote oxidative 
metabolism [64]. Additionally, it was reported that SIRT3 can repress 
the Warburg effect by regulating HIF - 1α and reprogramming cancer 
cell metabolism; from highly glycolytic to a shift toward oxidative 
phosphorylation [117,118,130,131]. Also SIRT1 inactivates HIF-
1alpha, consequently represses HIF-1 target genes and has negative 
effects on tumor growth and angiogenesis [132]. 

Here we introduce also the role of NAD+/NAD(H) ratio in 
regulating mitochondrial functions, as the bioavailability of NAD+ is 
the limiting factor for maximal oxidative capacity of mitochondria 
(Figure 2). As NAD+ levels decline with age, mitochondrial function 

is impaired [133] and the DNA repair activity declines as well [24] 
(Figure 3). The increase of DNA damage with age may therefore 
be the result of (a) an increased ROS generation and (b) a decline 
of DNA repair mechanisms and clearance affected also by lower 
substrate NAD+ for sirtuins and PARPs. Sirtuins and PARPs enhance 
cellular repair mechanisms while buying time for efficient repair of 
the damage (Figure 3). To sum up, the availability of free NAD+ and 
the perturbation of key redox couples such as the NAD(H)/NAD+ 
ratio can have profound effects on cells by regulating the apoptosis 
[134,135], accelerated ageing and cancer process (Figure 1, 2, 3). 

During the aging process, increased DNA damage accumulates 
in the nucleus, causing PARP over-activation and decreased NAD+/
NADH ratio. As NAD+ is the substrate for sirtuins, SIRT1 activity 
is reduced, resulting in increased PGC-1α acetylation and decreased 
mitochondrial transcription factor A levels. According to Imai and 
Guarente, these nuclear events reduce mitochondrial function in 
old mitochondria by affecting mitochondrial complex I and other 
mitochondrial components, or blocking the entry of electrons from 
NADH into the ETC, thereby creating an NAD deficiency [136]. 
NAD+ deficiency results in insufficient ATP production; metabolic 
reprogramming and limited DNA repair – the vicious cycle generation 
presented in Figure 3. 

Role of NAD+ in cell protection against oxidative and geno-
toxic damage 

The processes of cell division, differentiation, senescence and 
apoptosis, as well as DNA damage recognition and velocity of repair 
are important for cancer prevention due to their involvement in 
maintenance of genomic stability. Many of these processes could be 
influenced by perturbations in NAD+ concentration or/and NAD+/
NADH ratio (Figure 2). It will be shown the opposite effect of NAD+ 
on the cancer prevention and cancer treatment process. For example, 
decreased oxidative stress and damage can have positive effect on 
damaged (but non-malignant) cells during cancer prevention phase 
while detrimental effect on malignant cells or during malignant 
cellular transformation. The amount of ROS and oxidative stress 
can namely regulate apoptosis, cancer growth and invasion – the 
processes influenced by NAD+ concentration. 

NAD+ plays a protective role in genomic stability, as well as in 
mutation formation and cancer prevention. Many studies revealed 
that NAD+ protects cells against oxidative stress [137] or insults 
caused by oxygen-glucose deprivation [138]. DNA damage appears 
to stimulate NAD+ biosynthesis and recovery from DNA damage 
occurs several hours earlier in the presence of higher NAD+ or in cells 
undergoing active NAD+ biosynthesis [6]. Cells depleted in NAD+ were 
more sensitive to cytotoxic effects when exposed to DNA damaging 
compounds [139,140]. Namely, increased (oxidative) damage to DNA 
leads to PARP activation and the enzyme PARP-1 is highly activated 
by DNA strand breaks during the cellular oxidative and genotoxic 
stress response [95]. Increased cytotoxicity of many carcinogens 
was observed when PARP was inhibited [139,141,142] and PARP-1 
defective mice had increased spontaneous genetic rearrangements 
and increased sensibility to DNA damage [141,143,144]. PARP family 
of proteins is (directly or indirectly) involved not only in DNA repair 
but also in programmed cell death (apoptosis), cellular differentiation, 
proliferation, tumor transformation and gene expression (e.g. p53 
expression/ function) [143,145-150]. When activated, PARP-1 
consumes NAD+ to form ADP-ribose polymers on acceptor proteins. 
Chen et al., (2013) were the first to observe that the oxidative stress-
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induced reduction of intracellular ATP is mediated by the oxidative 
stress-induced reduction of the intracellular NAD+ [151]. Extensive 
activation of PARP-1 leads to glycolytic blockade, energy failure, and 
cell death [152]. ATP depletion in a cell leads to lysis and cell death by 
necrosis. PARP also has the ability to induce programmed cell death, 
via the production of PAR, which stimulates mitochondria to release 
apoptosis inducing factor (AIF) [153] and is prevented by PARP 
inhibitors or disruption of the PARP-1 gene [154]. 

The mammalian sirtuin family of enzymes is formed by paralogues 
Sirt1 to Sirt7 and some of them can regulate oxidative stress and 
programmed cell death. The function of human sirtuins has not 
been fully determined. Sirtuins were reported to be involved in many 
cellular processes, like: genome stability, cell cycle control, apoptosis, 
stress resistance, inflammation, energy efficiency and ageing through 
regulation of different metabolic regulatory transcription factors. 
The ability of mitochondrial NAD+ to prevent cell death caused by 
genotoxic agents is linked to a mitochondrial sirtuin, SIRT3, which 
is required for this protection [117-155] have shown that the SIRT3 
acts as a tumor suppressor via its ability to suppress ROS and regulate 
1α (HIF-1α). SIRT3 can regulate also oxidative stress by activating 
enzymatic antioxidative defence of MnSOD [115,156-158]. SIRT2 
may have a tumor suppressor role also through the regulation 
of microtubule network [159] and by preventing chromosomal 
instability during mitosis [160]. SIRT2 overexpression decreases 
oxidative stress-induced death of murine macrophages [161], 
decreases cellular levels of reactive oxygen species by increasing 
FOXO DNA binding and elevating the expression of FOXO target 
genes [162] and increases the expression of the antioxidant enzymes 
including MnSOD, glutathione peroxidase, and catalase [163]. 

Niacin (vitamin B3 or nicotinic acid) is one of B-complex 
vitamins and precursor of NAD+. Niacin deficiency was reported 
to increase the susceptibility of DNA to oxidative and alkylating 
agents and is associated with an increased risk of cancer [165-166]. 
Contrary, it was observed that NAD+ [167], as well as NADH [168] 
and NADPH [169], has negative effect on survival of different types 
of tumor cells by increasing oxidative stress and PARP activation, 
opening of P2X7 receptors (NAD+ can be transported across the 
plasma membranes of murine astrocytes by P2X7 receptors) and 
altering calcium homeostasis [170]. What is more, increasing the level 
of NAD+ resulted in beneficial survival of normal cells under stress 
conditions. Niacin deficiency in rats decreases bone marrow NAD+ 
and limits pADPr synthesis in response to DNA damage. Altered p53 
expression was observed in niacin depleted rat bone marrow cells, 
too. Expression of downstream p53-target genes was misregulated in 
niacin deficient bone marrow and apoptotic efficiency and cell cycle 
arrest were impaired following treatment with the chemotherapy 
drug etoposide (ETO).ETO-induced apoptosis was suppressed 
during niacin deficiency and enhanced by its supplementation [171]. 
Increased B vitamins may negatively regulate the enzymatic activities 
of Sir2/SIRT1, as a feedback mechanism. In this regard, caloric 
restriction-mediated activation of Sir2/SIRT1 may at least partly 
relate to the nutrient availability of B vitamins, including biotin and 
niacin. Although niacin restriction might increase cancer incidence, 
it might also improve outcome of cancer once the disease is formed 
by lowering the concentration of NAD+ and poly(ADP-ribose), by 
altering p53 expression, increasing genomic instability and impairing 
the cellular responses to DNA damage, as observed in different 
animal studies [165,172-173]. However, opposite effect was observed 
in nicotinamide-restricted HaCaT keratinocytes, which were able 

to proliferate indefinitely despite increased production of ROS and 
significant DNA damage - conditions that cause instability in the 
genome, genetic alterations and might ultimately lead to progression 
of carcinogenesis [5].

Controversial roles of NAD+ in promoting versus suppress-
ing cancer 

Neoplasms can be generated if damaged cells survive and evade 
apoptosis. Loss of apoptosis capability and increased genomic 
instability leads to greater cell survival and increased mutation 
frequency, respectively, putting an advantage to cancer cells, due 
to the growth stimulation. Mutant cells with growth advantage will 
undergo natural selection, clonal expansion which can end in cancer 
formation [174]. 

The function of nicotinamide adenine dinucleotide (NAD+) 
mediated reactions on the mechanism of apoptotic cell death is 
controversial [175] since it could act both, pro - and anti-tumorogenic. 
The tumor promoting or inhibiting properties of the NAD+ may 
thus depend mainly on a) the stages of cancer development b) 
concentration of NAD+ and /or NAD+ / NADH ratio and c) (de)
activation of PARPs and sirtuins. Evidence will be presented that 
PARPs and sirtuins can have beneficial or detrimental effects on cell 
survival, depending on the intensity of their activation (Figure 4). 

PARPs, sirtuins and the adequate availability of NAD+

PARPs: With the adequate availability of NAD+ and when PARPs 
and sirtuins are moderately activated, the genome is maintained by 
sufficient activation of cellular repair mechanisms and appropriate 
cell cycle velocity which “buys” time for efficient damage repair. 
It was observed that PARP-1 activity levels are lower in families 
predisposed to cancer and some cancers are found to have reduced 
PARP activities [176]. Additionally, it seems that longevity is 
associated with a higher poly-ADP-ribosylation capacity, as PARP is 
increased by 1.6-fold in centenarians [177] and PARP activity of 13 
mammalian species correlates with a species-specific life span [178]. 
On the other hand, overexpression of PARPs is not always beneficial. 
Higher PARP-1 activity might be detrimental for SIRT1 function and 
global metabolism as observed in mice expressing an additional copy 
of the human PARP-1 which had reduced median lifespan, impaired 
glucose homeostasis, and higher susceptibility to age-related diseases 
[179].

Cellular responses according to PARP activation intensity may 
vary (Figure 4), e.g. upon DNA damage, PARP activity in the cell 
is highly enhanced. Excessive activation of PARP after genotoxic 
stress leads to rapid NAD+ depletion, limited DNA repair, reduced 
cell survival and increased programmed cell death caused by the 
depletion intracellular ATP and bioenergetic collapse [145,180] 
(Figure 3). Severe PARP activation leads to depletion of intracellular 
ATP, Additionally, (NAD / poly(ADP-ribose) synthesis is involved 
in the regulation of p53 and its dependent pathways [181] and the 
release of apoptosis-inducing factor (AIF) [153]. Specifically, Parp1 is 
involved in modulating DNA repair, DNA replication, transcription, 
DNA methylation and chromatin remodeling through PARylation 
of downstream proteins. However, high expression level and activity 
of Parp1 are correlated with pluripotent status, reprogramming, 
and cancer [182]. On the other hand, PARP1 plays significant role 
in repairing single-strand breaks and the replication of unrepaired 
SSBs can cause the formation of double strand breaks. However, 
PARP1 mediated microhomology-mediated end joining (MMEJ) 
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Figure 4: PARP-family ADP-ribosyltransferases and sirtuin deacetylases all compete for NAD+ as substrate for ADP-ribosyl transfer. Sirtuins, PARPs and CD38+ 
are all NAD+ consumers and degrade NAD+ back to NAM. Availability of NAD+ influences the intensity of PARPs CD38+ and sirtuin activation.   
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repair is highly inaccurate when it is over-expressed, rather than 
under-expressed, and might stimulate formation of cancer due to the 
growth advantages [174]. It was reported that several forms of cancer 
are more dependent on PARP than regular cells and over-expresseion 
of PARP1 was observed in tyrosine kinase-activated leukemias [183] 
in neuroblastoma [184] in testicular and other germ cell tumors [185] 
and in Ewing’s sarcoma [186]. Additionally, it was recently reported 
that PARP6, novel member of PARPs family, may act as a tumor 
suppressor via suppressing cell cycle progression [187]. 

SIRTs: Sirtuins also play a significant role in tumorigenesis, 
but there are conflicting results regarding siruins role before and 
during tumorigenesis. For example, SIRT1 has been observed to both 
promote and suppress tumour growth [188]. It seems that sirtuins 
may have a cell protective role under stress and may give cancer 
cells a growth advantage [189] as well; by preventing apoptotic 
death, stimulating proliferation, facilitating acquired resistance 
through genetic mutations, promoting survival of cancer stem 
cells, and changing the tumor microenvironment for resistance 
[190]. Overexpression or activation of SIRT1 promotes cellular 
proliferation, increases growth rate and impairs cellular senescence 
via the activation of ERK/ S6K1 signaling [191], thus increasing the 
risk of cancer since the cell loss from apoptosis and senescence-like 
growth arrest may be important anti-cancer regulators. For example, 
NAD+ amount influences SIRT1 activity which can modulate cell 
death by increasing cell survival and proliferation. NAD/NADH ratio 
may regulate the tumour suppressor p53 via Sir2p/SIRT1 [192,193]. 
Sirt1 could be oncogenic and in several types of human tumours Sirt1 
is upregulated [194]. For example, Herranz et al., [195] revealed that 
SIRT1 over-expression increased incidence of thyroid carcinomas 
and their lung metastasis and promotes both tumor initiation 
and progression in transgenic mice. Namely, by SIRT1 produced 
deacetylation of p53 its degradation is increased and p53-mediated 
cell death can be prevented [192,196,197]. 

Both human and mouse SIRT1 are thought to promote cell 
survival by deacetylating and thus deactivating p53 tumour suppressor 
gene hence enhancing p53 degradation [59,60]. Deacetylation by 
Sir2/SIRT1 is dependent on high concentrations of NAD+ and also 
inhibited by increased PARP activity and by physiologic levels of 
nicotinamide [198,199]. Additionally, deacetylation of the DNA 
repair protein KU70 which blocks mitochondrial translocation of 
BAX and results in decreased apoptosis is another pro-cancerogenic 
effect where SIRT1 is involved [50]. To sum up, cellular apoptotic 
responses may vary, according to sirtuin activation intensity. As 
already mentioned moderate SIRT1 activation can prevent apoptosis 
while on the other hand, SIRT1 can increase the cell death by 
accelerating NAD+ depletion [200]. Additionally, SIRT1 inhibits the 
expression of DNA repair enzymes (e.g. p53, BRCA1 and 2) and the 
expression of apoptosis-associated genes and can thus contribute to 
the cancer formation [201].

SIRT1 overexpression can epigenetically repress the activity or 
expression of DNA repair genes and tumor suppressors including 
FOXO family members (FOXO1, FOXO3a, and FOXO4) [202], p73 
[203], Rb [204], MLH1 [205], and Ku70 [206].

Although SIRT1 can promote cell survival of malignant cells, many 
in vivo studies indicate that Sirt1 is a tumour suppressor [21,207-209] 
and SIRT1 expression is reduced in different human cancers, like 
glioblastoma, bladder carcinoma, prostate carcinoma, and ovarian 
cancer [209]. Tumor suppressor promotion by SIRT1 is involved 

in its DNA repair processes and genome stability maintenance 
[208,209]. Additionally, SIRT1 deacetylation of β-catenin leads to 
its inactivation and reduced cell proliferation [210]. What is more, 
SIRT1 might have a beneficial role in hormonal carcinogenesis by the 
deacetylation of androgen and estrogen receptors [211]. 

SIRT2 was reported to be downregulated in gliomas, breast 
cancer, head and neck squamous cell carcinoma, and esophagus 
adenocarcinoma [212-215]. Due to the ability of SIRT2 to induce 
the gene expression of both the proapoptotic enzymes as well as 
the antioxidation enzymes its dual effect on cell survival should be 
stressed [94]. SIRT3 is downregulated in breast cancer, hepatocellular 
carcinoma, and head and neck squamous cell carcinoma [216]. SIRT4 
is downregulated in lung cancer [217]. The SIRT6 chromosomal 
locus was found to be deleted in pancreatic, colon, and liver cancers 
[218,219]. On the other hand, some studies reported cancer promotion 
and overexpression of SIRT2 and SIRT6 in acute myeloid leukemia, 
neuroblastoma, pancreatic cancer [220,221]. SIRT2 is upregulated 
in acute myeloid leukemia, neuroblastoma, pancreatic cancer, HCC, 
and regulates the Myc oncogenic pathway [222]. 

It can be concluded that the role for SIRT1 in p53-mediated tumor 
suppression still remains to be fully elucidated. The Sirt1 tumour 
suppressive activity is mainly ascribed to the ability of Sirt1 to preserve 
genomic integrity in the face of p53 deficiency [208,209]. SIRT1 
deacetylates and inactivates p53, leading to down regulation of p53-
mediated growth arrest and apoptosis which may result in increased 
risk of cancer [194]. On the other hand, increased SIRT1 inhibits 
expression and/or activity of several oncogenes, leading to reduced 
cell proliferation, increased apoptosis, and tumor suppression [194]. 
Although SIRT1 represses apoptosis, it also enhances DNA repair, 
thus SIRT1 might stimulate the priority to repair over apoptosis 
[223]. It should be stressed, however, that according to Herranz and 
Serrano, [224] there is no direct link between p53 and SIRT1 activities 
suggesting that SIRT1 inhibition could lead to tumor suppression and 
SIRT1 activation would promote tumor formation. Data from SIRT1 
transgenic models challenge this hypothesis and point out that SIRT1 
activation actually suppresses tumor formation [63,224]. 

Many other mechanisms of Sirt1 cancer protection were 
reported, including protection from DNA damage, protection from 
diet-induced inflammation, and inhibition of the oncogenic activity 
of β-catenin [224]. For example, SIRT1 deacetylates and inactivates 
hypoxia-inducible factor 1α, thus inhibits the expression of genes 
targeted by hypoxia-inducible factor 1α in certain tumors [132]. 
SIRT1 inhibits proliferation of pancreatic cancer cells expressing 
oncogenic pancreatic adenocarcinoma upregulated factor, by 
suppression of β-catenin and cyclin-D1 [225]. SIRT1 can influence 
also inflammatory responses, mainly through the regulation of NFκB 
and FOXO transcription factors (Figure 2) [226-228].To sum up, 
SIRT1 might differentially regulate genomic stability and apoptosis 
in normal versus cancer cells. Sirtuins role in cancer is complex and 
it seems that a specific sirtuin is crucial for a specific type of cancer. 
Besides, SIRT1, SIRT2 and SIRT3 appear to have both pro and anti-
cancer roles [189]. 

Similarly, PARPs intensity influences cell death response. On the 
one hand activation of PARP-1 might preserve death of moderate 
damaged cells, while severe DNA damage leads to depletion of NAD+ 
and severe consume of ATP resulting in increased cell death. Exposure 
to PARP-1 inhibitors can again stimulate or prevent cell death due to 
regeneration of NAD+ and ATP [229,230] and activation of sirtuins. 
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Deactivation of SIRT1 activity due to PARP-1-mediated NAD+ 
depletion contrary stimulates the activity of several apoptotic effectors 
such as p53 [231], therefore, sensitizing cells to apoptosis. Adequate 
NAD+ levels are critical to maintaining SIRT1 activity, which can 
delay apoptosis and provide vulnerable cells with additional time to 
repair even after the repeated oxidative stress insult – what is good for 
normal (although damaged) cells but detrimential for neoplastic cells 
due to pro-survival programme activation. Namely, increased PARP-
1 and sirtuins expression in a cancer cells might exert a protective 
effect on the cancer cell’s genome and decrease the efficacy of chemo 
or radiotherapy. 

By increasing maintenance and repair systems with PARPs and 
sirtuins, different out-come in normal and cancer cells could evolve. 
On one hand cancer cell survival and proliferation by avoiding 
deleterious impact of DNA damage on key oncogenes could be 
stimulated with increased activity of sirtuins and PARPs, while 
increased DNA repair could lead to more selective mutations in cancer 
cells important for cancer evolution on the other hand. For example, 
increased PARP over-activation stimulates low fidelity DNA repair 
in cancer cells that might enable cancer cells to accumulate non-fatal 
lesions and mutations and evolve towards high grade malignancy 
leading to chemo and radiotherapy resistance. Contrary, moderate 
PARP and sirtuin activity in normal cells results in genome stability 
and tumor suppression. Increased PARPs and sirtuins can enable 
cells to survive in the face of stress that would normally trigger their 
programmed suicide. For example, Sirt1 does this by regulating the 
activity of several key cellular proteins, such as p53, FoxO and Ku70 
– all of them are involved in cellular survival under stress. What is 
important to emphasise at the end, different effects of NAD+ on the 
before mentioned processes could have opposite results in normal 
cells and in malignant transformation process (Figure 3). 

To sum up, SIRT1 has both pro-cancer and anticancer effects and 
small molecule activators or repressors of SIRT1 could be used as 
cancer therapeutics [50]. 

It could be concluded that there are conflicting literature reports 
on the effect of NAD+ on cell proliferation, cycle arrest, necrosis and 
apoptosis as well as on p53 dysregulation [181,192,232-235], and on 
PARP and sirtuin activation. 

Sufficient supply of niacin and other NAD+ precursors maintain 
sufficient amount of intracellular NAD+ pool that plays important 
role in genomic stability due to PARP-1 and sirtuin activators [94]. 

Conclusion 
NAD+ has multiple and diverse cellular functions. Changes in 

NAD+ metabolism have been associated with several pathologies, 
including cancer. In the hypothesis presented NAD+ is shown as 
an important factor related to cancer formation and prevention. 
It is not only the NAD+ as the cofactor in redox reactions that has 
important role in cancer biology, but also the NAD+ as the substrate 
for sirtuins and PARP signaling. How exactly NAD+ metabolism is 
regulated in the human cancer cells still remains to be fully elucidated 
as well as different metabolic changes that can take place following 
pharmacological supplementation with NAD+ precursors and 
NAD+ inhibitors. NAD+ levels can be influenced with sport activity, 
caloric restriction and ingestion of NAD+ precursors. PARP and 
sirtuin inhibitors are used also as anti-cancer agents. Namely, by 
decreasing intracellular PARP and sirtuin’s level apoptosis can be 
influenced. Additionally, cancer preventive strategies presented 

could have dichotomous roles in the later stages of the disease (once 
tumor has developed and progressed), namely they could be tumor 
preventive for healthy (non-mutated cells) or tumor suppressing at 
early stages of tumorigenesis and could be tumor promoting later 
on. Increased amounts of NAD+ may contribute to the development 
and/or progression of cancer once the cells already have cancer-like 
properties. 

Due to controversial role of NAD+ depletion on induction of cell 
death and its role in p53 activation and due to limited human trials, 
it is necessary to further elucidate mechanisms underlying the effects 
of NAD+in the process of cancer and the role of NAD+ on cancer 
prevention, initiation, promotion and progression phases. To devise 
better and different therapeutic strategies for cancer prevention and 
management in-depth understanding of how NAD+ metabolism 
affects cellular defenses, repair, energy production and programmed 
cell death in different phases of the malignant process and in a 
particular type of cancer is necessary. Prolonged human studies are 
required to exclude potential adverse effects of NAD+ administration 
and to establish optimal NAD concentrations for responding to 
DNA damage in non-cancerous cells and to find the optimal NAD+ 
concentrations in cancerous cells in order to stimulate their apoptosis.
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