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Abstract
Predictive maintenance has proven a cost-effective maintenance 
management method for critical equipment in many verticals. The 
semi-conductor industry could also benefit. Most semiconductor 
fabrication plants are equipped with extensive diagnostic and quality 
control sensors that could be used to monitor the condition of assets 
and ultimately mitigate unscheduled downtime by identifying root 
causes of mechanical problems early before they can develop into 
mechanical failures. Machine Learning is the process of building a 
scientific model after discovering knowledge from a data set. It is the 
complex computation process of automatic pattern recognition and 
intelligent decision making based on training sample data. Machine 
learning algorithm can gather facts about a situation through sensors 
or human input and compare this information to stored data and 
decide what the information signifies. We present here the results 
of applying machine learning to a predictive maintenance dataset 
to identify future vibration-related failures. The results of predicted 
future failures act as an aid for engineers in their decision-making 
process regarding asset maintenance.
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the fiercest commercial market share competition in the economy. 
Therefore, it is important that these manufacturers can reliably deliver 
adequate product quantity and quality, to ensure that their prices 
remain low and those they can maintain or attain market share [3]. This 
signifies the importance of mitigating and eliminating the probability 
of current and future equipment failures within the semiconductor 
industry, with the objective of minimising unscheduled downtime 
as much as possible. The predominant maintenance strategy within 
the semiconductor industry is preventative maintenance, through 
time-based or a variation of wafer-based maintenance activities. 
Preventative maintenance however has been proven to be less cost 
effective and less reliable as a maintenance management method 
compared to predictive maintenance. 

Industry 4.0, also known as the “Industrial internet of things” 
or “smart manufacturing”, refers to the latest technological 
advancements in industrial production, and the overall transition 
into the newest industrial revolution known as the “fourth industrial 
revolution” (Table 1). The German government first coined the 
term, when an initiative named “Industrie 4.0” was announced in 
2011, by an association of representatives gathered from Germany’s 
business, political and science sectors [4]. The aim of the association 
was to strengthen the competitiveness of Germany’s manufacturing 
industry. Although Germany still leads the charge today, companies 
around the world have been contributing to deliver the platform of 
industry 4.0.

Yet some professional and academic experts claim that the 
digitalisation of production is simply a continuation of the third 
industrial revolution, others argue that there are distinctive 
differences between Industry 4.0 and the other industrial revolutions. 
Those differences being that technological developments are growing 
exponentially, compared to the linear growth of technology in previous 
industrial revolutions. It is speculated that this is due to the exceedingly 
interconnected world, through technology such as the Internet of 
Things, and that through the introduction of new technology, newer 
and ever more efficient technology can be developed [5]. Industry 
4.0 has conceived the concept of “Smart factories”, which refers to 
the combination of Operational Technology (OT) with Information 
Technology (IT). It also seeks to build upon the computerization of 
the third industrial revolution through the importance of digitisation, 
by introducing Cyber-Physical Systems (CPS) and the Industrial 
Internet of Things (IIoT) to traditional production lines. CPS can be a 
collection of sensors, machinery or IT systems that can communicate 
with other CPS by using standard Internet-based protocols brought 
by the Internet of Things [6]. While the IIOT refers to the utilisation 
of the Internet of Things, and specifically the integration of big data 
and machine learning technology in “Smart factory” manufacturing. 
Which has introduced the ability to monitor the condition of 
individual machines, and ultimately has stemmed the functionality of 
predictive maintenance programmes.

Figure 1 shows the results of a PricewaterhouseCoopers survey 
regarding Industry 4.0 and whether firms were currently capable of 
making data driven decisions [7]. Approximately half of the firms 
engaged in data driven decision-making in 2016. However, by 2020, 
the expected participation in data driven decision-making doubles for 
almost every specified industry. So clearly there is a desire to engage in 

Introduction
The semiconductor industry includes companies who have been 

at the forefront of data analytics. Despite this however, very few 
semiconductor manufacturers have directly applied data analytics to 
their fab operations [1]. The manufacturing of electronic chips and 
more specifically wafers is a highly complex operation that can involve 
hundreds of individual industrial and quality control processes, which 
can take months of intensive processing from start to finish. Improving 
yield results is a commitment each manufacturer in the semiconductor 
industry seeks to fulfil. As faulty equipment can lead to overexposure 
or underexposure for specific processes, which can ultimately result in 
undesirable wafers that need to be recycled and for the semiconductor 
material to start its life as a wafer once more. Sub-components can also 
be the cause of faults within the fab, as some of the most complex tools 
used within wafer fabrication can comprise of more than 50,000 parts, 
acquired from numerous different suppliers [2]. 

It is important then that underlying mechanical problems are 
rooted out before the mechanical failure occurs. Especially when 
manufacturers within the semiconductor industry face some of 
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data analytics for those firms who do not already engage in data driven 
decision-making. Notably, the firms that expressed interest and those 
that already make data driven decisions, all come from industries that 
involve specialist processes and equipment that would highly benefit 
from utilising a predicted maintenance programme for their day-
to-day operations. So as manufacturers invest in new technology to 
meet industry 4.0 standards, predictive maintenance stands as one 
of the most critical functions for a ‘Smart factory’ to be considered 
‘smart’. As each manufacturer relies on specialist equipment used for 
processes unique to their product or industry, and for that equipment 
to operate at a high efficiency. Most importantly however, is for their 
specialist equipment to function uninterrupted of technical problems, 
so that their equipment can attain the highest uptime possible.

Predictive maintenance aims to reduce downtime of assets which 
it achieves through performing asset maintenance when it is required 
and to prevent unscheduled downtime due to asset failure. It also 
aims to monitor the performance and “health” of assets and pinpoint 
and eliminate the root cause of asset performance degradation. These 
objectives are achievable through using sensor data generated from 
monitored assets, to produce predictive models that can aid in the 
decision-making process for asset maintenance.

Methodology
This paper discusses the application of machine learning in a 

predictive maintenance solution to assist in the decision-making 
process of maintenance management to predict future vibration-
related failures. The solution calculates the Time to Failure (TTF) for 
equipment, by using variable data generated by equipment sensors to 
predict future equipment failures in the form of a predictive model by 
using the TTF variable. 

Predictive maintenance

Predictive Maintenance (PdM) is a proactive maintenance 
approach that emphasises the forecast of how and when equipment 
will fail through data analytics, and to perform maintenance precisely 
before the total failure occurs. This is achieved through the detection 

of possible failures by monitoring and analysing various equipment 
operation variables, by using an assortment of diagnostic sensors and 
other monitoring instruments. For example, monitoring equipment 
changes in; vibration, temperature, pressure or voltage, to name a 
few. The outcome then, is that maintenance will only be scheduled 
when a failure has been detected, rather than when equipment 
is perceived to require maintenance. A good PdM programme 
should set out to improve production efficiency through decreased 
equipment downtime, and maintenance effectiveness by eliminating 
unneeded maintenance. The result is lower overall costs involved in 
maintenance management while retaining high equipment uptime, 
since equipment wear can be analysed during production operations 
by using sensors. PdM has both high implementation and operating 
costs in addition to requiring a high level of skill to be able to interpret 
and act upon received sensor data.

Maintenance strategies

Preventive Maintenance (PM) or “Preventative maintenance” 
is the maintenance philosophy of performing maintenance tasks 
at predetermined intervals using triggers. These triggers can be 
derived by a specific amount of calendar days or when a tool has 
elapsed a defined amount of runtime [8]. Ideally, the expected 
result is a reduced likeliness for equipment failure to occur, as 
equipment should receive needed maintenance through these 
maintenance intervals before mechanical failures or malfunctions 
can occur. However, the most apparent issue in utilising PM is that, 
although failure due to equipment “wear” is considerably reduced, 
it is notably inefficient in terms of asset management, and can often 
result in unnecessary maintenance being performed, in what could 
be considered “operational insurance”. This is because maintenance 
schedules are determined by the “Mean-time-to-failure” (MTTF) 
statistic, which refers to the average lifespan or duration a specific 
tool is expected to operate, uninterrupted of technical issues, until 
the duration ends, and a failure eventually occurs. The MTTF can be 
derived from a manufacturer’s recommendation, the use of industry 
statistics or from the analysis of previous maintenance history from 
an asset within the same classification. Despite this, PM offers little 
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Figure 1: Expected data analytics participation by industry.

Industrial revolutions: 1.0 - 4.0

1.0 1784 The transition from craft production to the use of machinery through industrialization, following technological advancements in water and 
steam power.

2.0 1870 The popularization of mass production, following the division of labour and the use of production lines by employing electrical energy.
3.0 1969 Utilising computerised systems & information technology to automate mass production.
4.0 Today The digitisation of production through the implementation of Cyber-Physical Systems, brought by the Internet of Things.

Table 1: Summary of industrial revolutions.
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assurance for catastrophic failures and the need of “unscheduled” 
maintenance, and they are still just as likely to occur when adopting 
this maintenance strategy.

Run-to-failure Maintenance (RTF), also known as “Breakdown” 
or “Reactive” maintenance, is the most straightforward maintenance 
philosophy. When a machine failure has occurred, priority is placed 
on restoring that tool back to its original state of operation. The 
maintenance strategy embodies the saying; “If it ain’t broke, don’t fix 
it” and as you might expect from the name, no emphasis is placed on 
any proactive maintenance management. The RTF ideology is about 
maximising the use of resources in production, rather than increasing 
the usability of resources through improved lifespan of assets. This 
view on maintenance management anticipates that the repair cost 
and lost operation time involved in equipment failure is lower in 
value, than the cost required to implement and maintain any ongoing 
maintenance management network. The biggest flaw in this approach 
is that it is unpredictable, and its success is highly dependent on the 
type of machinery used with this approach.

Reliability-Centered Maintenance (RCM) is a hybrid 
maintenance philosophy, combining the use of PdM, PM and RTF. 
RCM acknowledges that not all equipment has the same level of 
importance and takes a systematic approach to identify the right 
strategy, for the right need. Despite this, the predominant strategy is 
PdM, which is applied to the most critical systems of operation, while 
RTF is utilised for the least.

Failure rate

To be able to adequately assess each maintenance strategies 
effectiveness, it is important to understand why failures occur. The 
bath-tub curve depicts the failure rate for most mechanical equipment 
and presents the three different stages of reliability throughout a 
machines lifespan (see Error! Reference source not found.). The 
“Break-in” phase, illustrates high failure rate expectancy for new 
equipment such as defective components and poor instalments 
(Figure 2) [9]. 

Over the course of a few weeks or months, machine reliability will 
be proven, and the tool will enter the “Useful life” phase, where it will 
spend most of its lifetime. During this stage equipment will maintain 
a constant probability of failure. As the tool operates uninterrupted 
from physical human involvement or worn out parts. Finally, the 
machine will unavoidably reach the “Wear-out” phase, representing 
an ever-increasing escalation of failure, as the equipment ages and 
wear becomes much more detrimental through extended use, until 
the failure inevitably occurs. This shows that predictive maintenance 
is most effective when deployed during the break-in and wear-out 
phase, where failure indication is strong. As the constant failure rate 
of equipment during the useful life phase is random in nature, and 
predictions made within the phase are less reliable. The objective 
of proactive and planned maintenance is to prolong the lifespan 
of equipment once it has reached the wear-out phase therefore, 
maximising the effective use of said equipment. But each maintenance 
programme has its own impact on the bath-tub curve concept, as 
shown in Error! Reference source not found.

The lifespan of equipment is prolonged and renewed through 
multiple maintenance iterations or “spikes”. PdM portrays short 
iteration cycles representing the early detection and resolution of 
technical issues before they arise into mechanical failures through 
using data analytics and machine learning. While PM also prolongs 
the lifespan of assets, most notably, the maintenance cycles are 

considerably greater as maintenance is scheduled at predetermined 
intervals, thus unsuspected problems may be in circulation longer, 
resulting in a greater failure rate risk. There is no prolonging effect 
when utilising an RTF strategy as no priority is given to maintenance 
methods until the failure has occurred, therefore the failure rate 
gradually increases until the failure occurs.

Machine Learning
Machine learning algorithms can be categorised into three 

distinctive learning model types; supervised learning, unsupervised 
learning or reinforcement learning. The use case of each type of 
learning model is highly dependent on the input used, and the 
expected output to be generated by the learning algorithm. Supervised 
learning is by far the most commonly used type of machine learning 
algorithm. The premise of supervised learning is; by training the 
machine learning algorithm to map the correct input to the correct 
output using historical data, the model in theory should be able to 
map previously unseen data to a predicted output value as well. The 
desired situation is that through training the predictive model, the 
machine learning algorithm should be able to predict the value Y, 
by using never seen before input data X. Supervised learning earns 
its name through using training data, which is used to improve the 
algorithms mapping accuracy, and test data, which is used to score 
the accuracy achieved by the machine learning algorithm. Meaning 
that to achieve the full potential of supervised learning, the desired 
output must already be known, and the dataset to be used with the 
supervised learning algorithm must be fully completed and labelled 
as well. Unsupervised learning refers to machine learning algorithms 
that are used to observe and extrapolate the context of unlabelled 
input data from highly data driven datasets. Unlabelled data is data 
that has no defined category, other than the value itself. A person 
can understand a list of unlabelled temperature values, even when 
not given the context. But a machine is only able to understand the 
data’s raw value; therefore it is the job of the unsupervised learning 
algorithm to deduce the context of the value without being explicitly 
told. Unsupervised learning algorithms achieve this through a 
process called Clustering, which attempts to find underlying patterns 
within the dataset, so that similarly valued data can be grouped 
together to identify data similarities. With the end goal of mapping 
the unlabelled data into labelled outputs. The main distinctive 
difference between unsupervised learning and the other learning 
models is that there is no specified assessment period used to verify 
the results of the unsupervised learning algorithm (Figure 1). This is 
because unsupervised learning algorithms are specifically used when 
a dataset contains unlabelled data. This means that there is no need 
to verify the prediction results or accuracy of the algorithm, as there 
is no test data to use in the first place. Therefore, observations made 
by the unsupervised learning algorithm can be best summarised as 
logical assumptions, rather than direct estimates that can be proven 
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Figure 2: Effect of maintenance strategies on bath-tub curve.
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with specific test data. The main applications of unsupervised learning 
algorithms are predominantly pattern recognition-based. This includes; 
object and face recognition, voting analysis, image segmentation and 
more recently network security for behaviour-based detection [10].

Reinforcement learning is used when the result of the machine 
learning algorithm is an action, rather than a prediction. Or 
alternatively, when emphasis is placed on the behaviour of the 
algorithm within a specific environment. The machine learning 
algorithm takes form as an agent, which is used to observe and learn 
how to map scenarios (input) into actions (output). Reinforcement 
learning is very similar to supervised learning, but the key differentiator 
between the two learning models is that, while supervised learning 
uses specified test and training data to verify the predictions made 
by the machine learning algorithm, Reinforcement learning employs 
a reward function that gives feedback to the algorithm (agent). A 
common and simplified example of reinforcement learning is the 
act of a child learning how to walk. In this scenario, the algorithm 
takes form as a child (agent) and the environment would be the 
ground. The algorithm observes the state of the environment – e.g. 
a child is taught how to walk by their parents. The algorithm then 
manipulates the environment and maps it into an action – e.g. 
the child tries to walk alone or not at all. The environment then 
provides feedback through a positive or negative reward based on 
the completion criteria. For example, if a child can walk alone, their 
parent rewards them. While if the child does not attempt to walk, no 
reward is given. It is trial, and error based. Another notable difference 
between reinforcement learning and supervised learning is the use 
of a ‘supervisor’. In a supervised learning model, test data is set aside 
with the specific purpose of verifying the results of the algorithms 
prediction. This test data acts as a supervisor in this scenario, as it is 
given knowledge of the environment and it shares that knowledge 
with the machine learning algorithm to verify the predictions made 
by the algorithm. In contrast, reinforcement learning is designed to 
overcome problems that have too many resolutions. In this type of 
environment, creating a supervisor to verify the results with every 
resolution in mind is impossible. Therefore, reinforcement learning 
algorithms rely on learning from past experiences using the feedback 
given from the environment. 

The learning algorithm type best suited for a predictive 
maintenance prototype is a supervised learning model as the 
predictive maintenance dataset is fully labelled and largely complete 
and emphasis should be placed on the reliability of predictions made 
by the learning algorithm, as unreliable maintenance will likely result 
in unnecessary maintenance being performed, which contradicts the 
value of predictive maintenance.

Supervised learning algorithms

With supervised learning as the selected learning model, 
consideration must now be given to the available supervised learning 
algorithms that will be used to map the predictive maintenance input 
and output. But first, supervised learning algorithms are prone to 
two specific modelling errors called ‘Overfitting’ or ‘Underfitting’ a 
predictive model. Furthermore, supervised learning algorithms also 
suffer a modelling problem called the ‘Bias-variance trade-off’. These 
two specific circumstances need to be discussed, in the future event 
that either of these modelling errors occurs in the development of the 
predictive maintenance model. 

The bias-variance trade off, sometimes known as the bias-
variance dilemma, is a specific modelling problem for supervised 

learning algorithms. The difficulty of the problem is through the 
act of simultaneously mitigating the effects of errors caused from 
high model bias and high model variance. Predictive models that 
can be described as having high variance, low bias, are referred to 
as ‘Overfit’ models. Overfitting will be the topic of discussion in the 
next subsection, but the key drawback of an overfit model is that the 
model cannot distinguish random “noise” from relevant data within 
the specified training set. Likewise, models described as low variance, 
high bias are referred to as ‘Underfit’ models. Underfitting will also be 
discussed in the next subsection, but the defective trait of an underfit 
model is that the predictive model makes too many assumptions, 
due to the high level of bias present within the model. This results 
in a predictive model failing to identify relevant correlation between 
dataset features and intended model outputs. The total error caused 
by high bias or high variance is the same. Only when the variance 
and bias are near equal in influence, is the expected total error for the 
predictive model reduced. Overfitting also known as “Overtraining”, 
describes a model that corresponds to the training data too well, 
and therefore fails to generalise to new data, to create reliable 
predictions. Overfitting is the result of a predictive model with high 
variance, which causes the algorithm to react to “random noise” in 
the training data, therefore negatively impacting the “predictive” 
effect of the predictive model. Regression models are particularly 
prone to overfitting, and in extreme situations the ‘trend line’ will 
unrealistically plot through each plotted point. In comparison, 
underfitting also known as “Undertraining” is the scenario when a 
model can be described as having too few variables, which can be a 
by-product of using an incomplete dataset [11]. This will result in a 
predictive model that performs poorly and ultimately fails to predict 
reliable future observations. Underfitting occurs when a predictive 
model has a high bias that causes the algorithm to make too many 
assumptions, and therefore fails to identify relevant correlation 
between the independent and dependent variables to achieve reliable 
predictions. Both overfitting and underfitting models can result in 
models with poor predictive performance, which places emphasis 
of a balanced approach. This will allow the predictive model to 
progressively predict future occurrences within an acceptable margin 
of error.

Regression analysis is the process of examining the relationship 
between; a dependent variable and one or more independent 
variables. Through examining and utilising historical data, the 
relationship correlation between the two or more variables, if any, can 
be revealed, which will allow the forecast of subsequent data. For the 
development of a predictive maintenance solution, a regression-based 
model is required to use with the time-to-failure variable calculated 
within the analysis chapter, to forecast the events of possible future 
vibration-related failures. As the name implies, linear regression 
is a statistical process used to identify if a linear relationship exists 
between; a dependent variable (y), and one or more independent 
variables (X). The function of linear regression is relatively simple, by 
understanding the relationship condition between of variables y and 
X, the value for X can be predicted for future occurrences of y. Linear 
regression models can be further divided into two categories. In the 
scenario where only one independent variable x exists, the model is 
referred to as a ‘Simple’ linear regression model. On the contrary, 
if multiple independent variables exist, the model is regarded as a 
‘Multiple’ linear regression model. Logistics regression modelling 
is primarily used to find the probability between two events. For 
example, the events may be success and failure, or broken and 
unbroken. For logistic regression to work as intended, the dependent 
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variable (y) must be a Boolean or binary value which represents the 
state between the two events. Although it is a regression modelling 
tool, it is widely used for classification problems, simply due to the 
nature of independent variables being grouped to one or the opposite 
state. Polynomial regression is a regression modelling tool like linear 
regression, as it too is used to identify the relationship type between 
a dependent variable and one or more independent variables. 
However, the main differences between the two modelling tools is 
that the relationship between X and y is modelled to the nth-degree 
polynomial. This produces a curvilinear relationship between the n-th 
power of y and X [12]. Polynomial regression only uses the operations 
addition, subtraction and multiplication.

A Predictive Maintenance Model
Microsoft has published a predictive maintenance dataset in the 

past, which is designed to be used within their Azure platform as a 
learning device [13]. This dataset satisfies the need to be relevant and 
usable, for the development and training of a predictive maintenance 
model, as it has been created with that purpose in mind. However, 
caution should be taken when directly comparing the results of this 
project with other predictive maintenance solutions, as although this 
‘simulated’ dataset provided by Microsoft is publicly available, there is 
no credibility that this dataset will represent realistic data values. But 
nonetheless, it is a valid dataset for the development of a predictive 
maintenance algorithm.

Dataset description

The dataset available from Microsoft’s GitHub repository comprises 
of five.csv files regarding machines, errors, maintenance, telemetry and 
failures. The breakdown of each file’s purpose is as follows;

Machines: Contains individual attributes of each machine that 
helps to differentiate one another. This includes each machine’s age 
and model type.

Error: A log of errors thrown during the operation of specified 
machines. Microsoft themselves state that these errors should not be 
considered mechanical failures by themselves. However, these errors 
may suggest the event of future failures [14].

Maintenance: A log of both scheduled and unscheduled 
maintenance transactions and outcomes. Unscheduled maintenance 

is the result of total failure by an individual machine, whereas 
scheduled maintenance only refers to regular planned inspections.

Telemetry: A log of metrics collected by each operating machine 
in real time. Operation metrics monitor changes in; voltage, rotation, 
pressure and vibration through sensors. The data for each variable is 
then averaged over an hour and is stored within these logs.

Failures: A log of machine failures designed to be used alongside 
the maintenance log. This failure log stores the specifics of each failure 
that has caused unscheduled maintenance. Data stored within these 
records include; the machine ID, the failure type and the date/time in 
which the required maintenance was performed. 

The data within each file is fully labelled and is void of empty 
records. Therefore, not much data preparation will be required other 
than calculating the remaining useful life attribute for equipment. The 
next stage is to analyse the patterns of each operation variable, and to 
identify which variable is the most viable for determining potential 
future failure risks.

Variable selection

A popular rule within the data science community is the “No 
free lunch theorem”. The rule, which when simplified, emphasises 
that no specific machine learning algorithm can adapt and perform 
well to multiple complex problems, and that the purpose of every 
machine learning algorithm should be as specific as the problem they 
are designed to solve [15]. Therefore, the predictive maintenance 
algorithm should be developed with a specific type of analysis in 
mind. Which means selecting a suitable variable that will form the 
basis of the supporting hypothesis.

Figure 3 shows the average values for each of the four operation 
variables found within the telemetry file. Analysing these values will 
be imperative for selecting the right variable, which will be used to 
identify variable-related potential failures for the machine learning 
algorithm to predict and verify. Analysis of each variables viability 
can be found below:

Pressure: Pressure values of equipment seem to fluctuate 
anywhere between 80-130 as normal operating parameters. However, 
most pressure activity appears to be between the values of 90-105, and 
there are a few occurrences of values outside this normal threshold 

Figure 3: Histogram of dataset variables.



Citation: Curran K, King R (2019) Predictive Maintenance for Vibration-Related Failures in the Semi-Conductor Industry. J Comput Eng Inf Technol 8:1.

doi: 10.4172/2324-9307.1000215

• Page 6 of 10 •Volume 8 • Issue 1 • 1000215

(under 80 or over 130). In terms of potential failures, low pressure 
may suggest that a failure has already occurred in the form of a leak, 
while extreme highs could suggest that pressure is about to implode, 
which would also result in a failure. While these scenarios are 
plausible, there appear to be too few cases in the dataset available to 
be able to test and validate pressure-related risks when developing the 
machine learning algorithm. Therefore, if pressure is selected as the 
chosen variable for a pressure-related hypothesis, it may not actually 
provide any meaningful pressure analysis due to how little data exists 
to test.

Rotation: Figure 3 shows that rotation values are diverse and 
can range anywhere from 250 to 600, however most rotation values 
seem to be equal to 400 or above. There are very few cases of ‘extreme’ 
low rotation values (under 250). Although there are records of 
values much higher than the average rotation value, which could 
include values outside the normal operational threshold. However, 
different tools are likely to have different rotation values depending 
on the process they were designed for. Furthermore, the result of high 
rotation would not necessarily be a clear indication of imminent or 
even eventual failure. As rotation-related failures are often the results 
of total failure by another component. For example, as rotating tools 
are prone to vibration as bearings age, vibration analysis would 
result in more meaningful research than rotation analysis. Therefore, 
rotation will not be considered for further analysis, as rotation values 
can be indicative of a failure that has already occurred but cannot be 
the sole determining factor when identifying potential future failures 
that have not occurred yet.

Vibration: Vibration appears to be an ideal candidate for 
vibration-related predictive maintenance, as the ‘normal’ parameters 
for vibration seem to be within the 36 to 46 range. High vibration 
values can suggest misalignments, loose connections, unbalance 
or vibrations too high for the intended systems tolerance, which 
given time, could result in connections being severed, which could 
cause total failure for the individual machine. However, lower than 
average vibration values are not indicative of anything. As it is 
hard to distinguish if extremely low values are the by-product of 
a machine performing well, or a machine not working at all. It 
requires prior knowledge of the process being used within the 
dataset which is not available. Therefore, if vibration analysis is 
chosen for the predictive maintenance solution, only higher than 
average vibration values will be of any use for identifying potential 
vibration-related failures.

Voltage: Voltage, regardless of the values, requires prior 
knowledge of the process being used, as different processes require 
different tools which will have different operating parameters. Some 
equipment may require a very low voltage current, while others 
may require a high amount of voltage. It is highly situational, which 
is the problem, as the dataset does not reveal which processes it is 
simulating, as it was never designed to. However, there is an argument 
to be made that fluctuating voltage for individual machines is a tell-
tale sign of a faulty power supply, which is plausible, but may add 
unnecessary complexity to the predictive model, which may have an 
adverse effect for the predictive maintenance solution.

Vibration appears to be the most viable variable for further 
analysis, as it appears that large amounts of vibration values are 
closely grouped together. Vibration also has a substantial amount 
of records that are significantly higher than the average, which 
could be machines with potential vibration fatigue or vibration-
related issues.

Vibration analysis

With vibration selected as the most viable variable to simulate 
failures within the available dataset, further vibration analysis is 
required to identify the causation of vibration-related failures. 
Through further understanding of the vibration data within the 
telemetry file, it will be easier to form a feasible hypothesis which will 
calculate the remaining useful life of assets. This remaining useful life 
variable can then be used by the predictive maintenance algorithm 
to identify future vibration-related failures. However, the first step 
in vibration analysis is to visualise the vibration values stored within 
the dataset.

Figure 4 shows the result of visualising the vibration activity 
for four randomly selected machines throughout the course of 
one year. The machines randomly selected within the dataset were 
machines; 12, 24, 72 and 112, which represent example A, B, C and 
D respectively. Each sampled machine above displays occurrences of 
both extreme high and low values, relative to the estimated average 
vibration value of 40. However as discussed during the variable 
selection argument, not many problems derive from experiencing 
low vibrations therefore, further analysis is required.

The next step was to reduce the scope of the vibration activity 
and to visualise the vibration values for randomly selected months for 
each sampled machine (Figure 5). Sampled machines A, B and C have 
been highlighted as they have each displayed higher than average 
vibration levels for a substantial period. Whereas example machine D 
only shows abnormal vibration activity for short periods, before de-
escalating back down to normal values. It was made abundantly clear 
that machine D would act as the control variable for future analysis. 
After discovering this abnormal activity for three of the sampled 
machines, comparisons were made to the datasets included failure 
log. When looking for failures within the same month as the three 
sampled machines, it was discovered that all three sampled machines 
experienced total failure during or shortly after the abnormal vibration 
activity occurred. While machine D, having displayed no abnormal 
activities, had no failures occur within the same month of July, and in 
fact the next failure machine D experienced was in mid-September. 
Therefore, the next action to take was to analyse the vibration activity 
for machine D within the month of September when the next failure 
occurred. 

Figure 6 shows the results of further analysis, which revealed 
the same abnormal vibration activity that had appeared for the 
other three sampled machines. It also appears to have concurred 
just before the machine D experienced total failure on the 15th of 
September. This appears to confirm that when machines experience 
this abnormal vibration activity, total failure follows shortly after. 
Unfortunately, since there are no yield metrics included within the 
dataset, no comparison of yield performance during these abnormal 
vibration activities can be made. However, this still proves valuable, 
and can be used to form the basis of a vibration-related hypothesis. 
Therefore, the next step will be to determine how to calculate the 
remaining useful life for equipment before an expected vibration-
related failure occurs. 

RUL calculation and hypothesis

To be able to determine when a specific machine is likely to fail, 
a special variable called the Remaining Useful Life (RUL) mainly 
used in prognostics needs to be calculated. The RUL is as simple as 
it sounds and will be used to store the specific number of days until 
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Figure 4: Time series of vibration activity by randomly sampled machines.

Example A – March (f)  

 

Example B – February (f) 

 

Failure Events 

 

Example C – September (f)

 

Example D – July 

 

Figure 5: Time series of vibration activity that correspond with failures within the dataset failure log.

the total failure is expected to occur. To calculate the RUL, we find a 
position A which represents the point of time in which a machine has 
been diagnosed of performance degradation. We also identify a point 
B which represents the minimum level of acceptable performance of 
the individual machine. The RUL of a machine is then calculated by 

estimating the distance between points A and B. However, because 
the dataset only gives a snapshot of vibration variables for a limited 
time, nor is there any yield metrics to measure, it is not possible to 
determine if machines are affected by performance degradation for the 
dataset being used. This means no minimum acceptable performance 
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Example D – September (f) 

Figure 6: Time series of vibration activity for machine D in September.

can be established. Therefore, the RUL will still be calculated, but the 
term TTF will be used to replace the concept of the RUL. Both serve 
the same purpose, but TTF more accurately describes the situation 
of identifying vibration-related failures with no performance related 
metrics considered. The pattern of which vibration escalates needs 
to be identified and calculated to be able to predict vibration-related 
failures instead. 

Calculating that vibration pattern is carried out with the formula 
maxWeekVib – AvgWeekVib = trend. By taking the maximum 
recorded vibration of a specified week and reducing it against the 
overall average of vibration values for the same entire week, will 
result in what will be referred to as the vibration ‘trend’. This trend 
will represent the increase in movement for vibration-related activity. 
The next step is to divide the trend against the current vibration value. 
RUL calculation for vibration analysis is shown in Equation 1.

(currentVib/(maxWeekVib-avgWeekVib)) × 7 = TTF(Days) (1)

By dividing the last recorded vibration for the current week with 
the vibration ‘trend’ identified earlier, this will calculate the estimated 
TTF value in week format for individual machines. Therefore, 
the result of the above calculation must be multiplied by seven, to 
attain the true TTF value in a day format, which will be used for the 
predictive maintenance algorithm. Multiple data science libraries 
were used to create the machine learning algorithm including Pandas, 
NumPy, Matplotlib and Sklearn.

Results, Discussion and Evaluation
As the failure logs contains all failures for every tool, it was 

decided very early in the development that the best verification of 
the algorithm’s prediction accuracy would be through measuring the 
algorithms predictions using the Time-to-failure hypothesis, with 
the actual failure logs. As the dataset includes the vibration related 
information and failure information for the entire year of 2015, the 
test plan shown in Table 2 was created:

To verify accuracy, the algorithm was trained using the data 
generated from one of the training months. Those predictions would 
be plotted with the actual failure date for each machine within the two 
test months. On the chance that a machine did not fail within either 
of the two specified test months, then the record for that machine was 
deleted rather than letting it risk the scale of the test. Figure 7 shows 
that the verification data for the first test is generated using variables 
from January’s production data. The predicted Time-to-failure values 

for each machine is tested and verified with the actual failure dates 
of the same machines found within the failure logs. Although some 
machines may have no failure dates within the specified test months, 
in that event the machine record was deleted. Only the training data 
from the first 4 weeks will be considered in the calculation of the 
Time-to-failure variable. As although this may provide estimated 
values, especially for months like October that have 31 days within the 
month. The calculation of the first 28 days per month should provide 
a balanced standard as each month in the year has at least a minimum 
of 28 days. It also means that the Time-to-failure calculation equation 
created in chapter 2 during the hypothesis case study does not need to 
be tweaked for individual months. This may result in underestimated 
values being calculated for the Time-to-failure variable, and therefore 
the predictions made, but these potential calculation errors should 
be within an acceptable margin of error and will be considered when 
evaluating the test results of the prototype.

Verification

The following show the prediction results measured against the 
actual failures of machines using the test plan.

The predicted results from the January-February-March test in 
Figure 7 showed promise, but also showed signs of overfitting.

The predicted results from the April-May-June test shown by 
Figure 8 removed the appeared overfitting.

The predicted results from the July-August-September test shown 
by Figure 9 showed that more accurate predictions were being made.

The predicted results from the October-November-December 
test shown by Figure 10 showed the best results with multiple accurate 
predictions being made, but still too few cases. When verifying the 
results, the accuracy of the predictions made by the algorithm using 
the Time-to-failure variable was significantly lower than expected. 
With only few occurrences of accurate predictions, it is not certain 
whether those predictions are in fact accurate, or simply just down 
to luck.

Figure 11 shows the extent of this situation:

This may be the result of not all failures within the failure log 
being directly related to vibration-related failures. Therefore, failures 
that have been caused by another component failure have not been 
identified, which renders the predicted Time-to-failure value useless 
for non-vibration related failures which may be obscuring the 
prediction results. Another possibility is that the predictive model 
simply cannot generalise to the new data given, as telemetry and failure 
logs are separate. It seems the algorithm suffered from overfitting, as 
predictions were made that the TTF for certain equipment would be 
over 250 days. However, in the following tests, there were occurrences 
of actual TTF values from the failure log with values that large, as 
seen from Figure 9. Unfortunately, the root problem cannot be 
determined regardless, as the dataset simply does not include enough 
information required to determine which failures in the dataset are 
explicitly vibration-related failures. Regardless of the few accurate 

Training Test
January February, March
April May. June
July August. September
October November, December

Table 2: Test plan.
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Figure 7: January-February-March predictions.

Entire Test Set 

 

Zoom in of Test Data 

Figure 8: April-May-June predictions.

Entire Test Set 

 

Zoom in of Test Data 

 
Figure 9: July-August-September predictions.

predictions made by the algorithm, the overall accuracy over the four 
tests is underwhelming at best. Within its current state, the prototype 
would not be suitable as a predictive maintenance solution, as it is 
completely transparent that the prototype requires additional work 
outside the project plan.

Conclusion
Predictive maintenance requires predictions that are reliable. We 

achieved this through linear regression which analysed the relationship 
between vibrations and failures. Semiconductor manufacturers care 
about yield results. Therefore, in a live environment consideration 
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Figure 10: October-November-December predictions.

Figure 11: Count of accurate predictions within manageable margin of 
error for Oct-Dec predictions.

must be given to the yield output by each machine and would likely 
be the sole variable for measuring performance degradation in 
semiconductor equipment. Our future work will employ multi-
class classification to verify if an asset is likely to fail outside of 
a predicted time window. For example, you would have labels 
for scenarios when the asset indeed fails within the time window 
and labels for assets that fail before or after their predicted failure 
window date to further help improve the accuracy of the developed 
predictive models [16].
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