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Abstract
Aedes aegypti mosquitoes are important vectors in the transmission 
of severe diseases responsible for million deaths per year. Intensive 
use of insecticides results in environmental damages and induced 
resistance in mosquitoes. Search for new molecules devoid of 
detrimental side effects is therefore an urgent need. In this context, 
we derived QSAR models for evaluating the acute toxicity of 74 
carboxamides and related chemicals to females of Ae. aegypti. 
These models based on PaDEL, 2D topological descriptors or 
CODESSA, 2D/3D geometrical and quantum variables, involved 
multilinear regression (MLR), and various machine learning 
methods namely support vector machine (SVM), projection pursuit 
regression (PPR) and artificial neural network (ANN).

We considered first the full dataset, and then, a more homogeneous, 
reduced set of 50 compounds with non-conjugated carbonyl. In all 
cases, for data fitting and leave-one-out cross-validation, satisfactory 
results were attained. Good performance was also obtained for 
extended validation sets. Generally speaking, the modeling methods 
were broadly equivalent. PaDEL 2D descriptors worked better than 
2D/3D CODESSA descriptors. A hybrid model combining the two 
descriptor sets gave improved results. Setting such QSAR models, 
linking activity to structural features of examined chemicals, will be 
of interest for prioritizing experimental tests on new candidates, and 
evaluate their toxicity and potential synergist effects.
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Introduction
Aedes aegypti mosquitoes are important vectors in the transmission 

and widespread of severe human pathogens (dengue, chikungunya, 
yellow fever and recently Zika) responsible of several million deaths 
per year worldwide [1,2]. Apart from repellents, avoiding bites 
by preventing adult mosquito to detect human odour [3], control 
can be carried out according to two main avenues [4,5]: larvicides 
(perturbing the metamorphosis process or inhibiting chitin synthesis) 
[6-9] in aquatic media or adulticides killing the terrestrial imagos [10-
15]. However repeated and intensive use of these compounds induced 
an increased resistance of mosquitoes to these substances and led to 

environmental contamination. New insecticides with more specific 
action and devoid of detrimental side effects are therefore urgently 
needed. As a part of our concern regarding mosquito control, we 
proposed, in a preliminary paper [11] a QSAR (Quantitative Structure 
Activity Relationship) model for the toxicity of 33 piperidines to 
Ae. aegypti. This study is now extended to a larger population of 69 
carboxamides and 5 miscellaneous chemicals identified as repellents, 
offering a wider structural diversity.

Several QSAR models relying on 2D, topology-based, descriptors 
or 2D-3D descriptors, including geometrical and quantum variables, 
are here developed. These models rely on multilinear regression 
(MLR), and varied machine learning methods (SVM, PPR, ANN). 
Good performances are attained in data fitting (recall) and leave-
one-out cross-validation. These models also possess good predictive 
ability. Such approaches are efficient tools for identifying and 
evaluating structural features responsible for toxicity. These points 
may be interesting for orienting the synthesis of new toxicants, and 
possibly useful for regulatory purposes.

Materials and Methods
Experimental data

24h LD50 values, obtained by topical application of chemicals 
on the mosquito females, were retrieved from Pridgeon, for 33 
piperidines [12], and 34 carboxamides [13], and completed by 7 
repellents [14]. This data set of 74 compounds studied in identical 
conditions was the basis of the present study. Additional data on 
4 isobutylamide alkaloids, derived from Piper nigrum [15], not 
incorporated in building up the models, were also considered as a 
possible extension of the treatment. Data initially expressed in µg 
per mosquito were converted in micromole/mosquito for the QSAR 
treatments. The pLD50 (log 1/LD50) ranged from 1.01 (compound #21: 
1-octanoyl-3-benzyl-piperidine) to 2.69 (compound #59: hexahydro-
1-(1-oxohexyl)-1-H-azepine). Compounds are identified by a unique 
ID number (from 1 to 78) from the original papers, irrespective of the 
data selection in the investigated splitting Table 1, Figure S1.

Model design and molecular descriptors

It is noteworthy that the constraints noted in a previous data 
set [11] remain (i.e., limited activity range, sparse occupancy of the 
structural domain, complex stereo-chemical and conformational 
problems). In a first step, the full population (74 compounds) was 
considered, and extension to the four isobutylamides examined. 
We have then considered separately the compounds with a non-
conjugated carbonyl group, constituting a “reduced” population of 50 
chemicals. 

It might be expected that working on a more homogeneous data set 
would allow for grasping more precisely structural characteristics and 
interaction mechanisms specific of that family, and led to increased 
performance in modelling (and predictive ability). Data on derivatives 
where the carbonyl group is conjugated with either a benzene ring or a 
C=C bond are too limited (24 compounds) for an in depth study. For 
each data set (full population of 74 compounds, or reduced set of 50), 
two parallel series of runs were systematically carried out: use of 2D, 
topology-derived, PaDEL descriptors [16] or alternatively CODESSA 
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Table 1: Experimental data.

ID            pLD50 Name

1                     2.10 1-(Cyclohexylacetyl)-2-methyl-piperidine

2                     1.97 (2R)-1-Decanoyl-2-methyl-piperidine

3                     1.51 1-Dodecanoyl-2-methyl-piperidine

4                     2.25 (2R)-1-Heptanoyl-2-methyl-piperidine

5                     2.34 1-(3-Cyclohexylpropanoyl)-2-methyl-piperidine

6                     2.30 1-[(4-Methylcyclohexyl)carbonyl]-2-methyl-piperidine

7                     1.76 (3S)-1-[(1-Methylcyclohexyl)carbonyl]-3-methyl-
piperidine

8                     2.09 (3S)-1-(3-Cyclohexylpropanoyl)-2-methyl-piperidine

9                     2.01 (3S)-1-Heptanoyl-3-methyl-piperidine

10                 2.09 (3S)-1-(cyclohexylcarbonyl)-3-methyl-piperidine

11                 1.71 1-Decanoyl-4-methyl-piperidine

12                 1.77 1-(4-Cyclohexylbutanoyl)-4-methyl-piperidine

13                 1.90 1-(Cyclohexylcarbonyl)-4-methyl-piperidine

14                 2.29 1-(3-Cyclohexylpropanoyl)-4-methyl-piperidine

15                 1.62 1-Dodecanoyl-4-methyl-piperidine

16                 2.13 1-(Cyclohexylcarbonyl)-2-ethyl-piperidine

17                 2.43 1-(3-Cyclohexylpropanoyl)-2-ethyl-piperidine

18                 2.04 1-Propionyl-2-ethyl-piperidine

19                 2.11 1-(3-Cyclopentylpropanoyl)-2-ethyl-piperidine

20                 2.48 1-Nonanoyl-2-ethyl-piperidine

21                 1.01 1-Octanoyl-3-benzyl-piperidine

22                 1.37 1-Undec-10-enoyl-4-benzyl-piperidine

23                 1.19 1-(Cyclohexylacethyl)-4-benzyl-piperidine

24                 1.39 1-(3- Cyclohexylpropanoyl)-4-benzyl-piperidine

25                 2.28 2-Methyl-1-undec-10-enoyl-piperidine

26                 2.54 2-Ethyl-1-undec-10-enoyl-piperidine

27                 1.98 2-Benzyl-1-undec-10-enoyl-piperidine

28                 2.11 3-Methyl-1-undec-10-enoyl-piperidine

29                 2.33 3-ethyl-1-undec-10-enoyl-piperidine

30                 1.66 3-benzyl-1-undec-10-enoyl-piperidine

31                 1.99 4-Methyl-1-undec-10-enoyl-piperidine

32                 2.26 4-Ethyl-1-undec-10-enoyl-piperidine

33                 1.55 Piperine: (E,E)-1-Piperoyl-piperidine

34                 1.85 N,N-diethyl-3-methyl-benzamide (DEET)

35                 2.67 N-butyl-N-ethyl-2-methyl-benzamide

36                2.61 N-ethyl-2-methyl-N-phenyl-benzamide

37                 1.84 N-ethyl-2-methyl-N-(2-methyl-2-propenyl)-benzamide

38                 2.16 N-butyl-N-ethyl-2,2-dimethyl-propanamide

39                 1.63 1-(1-Azepanyl)-2,2-dimethyl-propanone

40                 1.29 N-ethyl-2,2-dimethyl-N-(2-methyl-2-propenyl)-
propanamide

41                 2.07 N-butyl-N-ethyl-3-phenyl-propenamide

42                 1.89 N-ethyl-N,3-diphenyl-2-propenamide

43                1.29 N,N-bis(2-methylpropyl)-3-phenyl-2-propenamide

44                 2.09 N-butyl-N-ethyl-3-methyl-butanamide

45                 1.99 N,N-diisobutyl-3-methyl-butanamide

46                 1.77 N-cyclohexyl-N-ethyl-3-methyl-butanamide

47                 2.42 N-butyl-N,2-diethyl-butanamide

48                 1.66 N,2-diethyl-N-(2-methyl-2-propenyl)-butanamide

49                 2.15 N,N-diisobutyl-3-methyl-crotonamide

50                 2.06 Hexahydro-1-(3-methylcrotonoyl)-1H-azepine

50                 1.88 N-ethyl-3-methyl-N-(2-methyl-2-propenyl)-2-
butenamide

52                 1.66 N-butyl-N-ethyl-3-methyl-2-butenamide

53                  2.44 1-(1-Azepanyl)-2-methyl-1-pentanamide

54                 2.30 N-butyl-N-ethyl-2-methyl-pentanamide

55                 1.80 (E)-N-butyl-N-ethyl-2-methyl-pentenamide

56                 1.70 (E)-1-(1-azepanyl)-2-methyl-1-pentenamide

57                 1.53 (E)-2-methyl-N,N-di-2-propenyl-2-pentenamide

58                1.43 (E)-N-ethyl-2-methyl-N-(2-methyl-2-propenyl)-2-
pentenamide

59                 2.69 Hexahydro-1-(1-oxohexyl)-1-H-azepine

60                 2.45 N-butyl-N-ethyl-hexanamide

61                 2.48 N-cyclohexyl-N-ethyl-hexanamide

62                2.35 N-ethyl-N-phenyl-hexanamide

63                 2.05 N-butyl-N-methyl-hexanamide

64                 1.81 N,N-diallyl-hexanamide

65                 2.13 (E)-N,N-di-(2-methypropyl)-2-hexenamide

66                 1.91 (E)-N-butyl-N-ethyl-2-hexenamide

67                1.73 (E)-N-cyclohexyl-N-ethyl-2-hexenamide

68                 1.10 DMP

69                 1.87 Picaridin

70                 2.35 AI3-35765

71                 1.25 EHD

72                 1.60 IR3535

73                 1.50 PMD

74                 2.47 AI-37220

75                 3.12 Pellitorine

76                 2.35 Guineensine

77                 2.25 Pipercide

78                 2.34 Retrofractamide A

Piperidines correspond to compounds 1 [12] to 33, carboxamides #34 to#67 
[13], repellents #68 to #74 [14], and isobutylamides #75 to #78 [15]. 
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2D/3D descriptors [17]. In all cases, the QSARINS package [18] with 
ordinary least squares multilinear regression (OLS-MLR) was selected 
as modeling tool and for descriptor selection. With the same set of 
descriptors, the MLR results were then compared with three other 
non-linear correlation methods [19]: support vector machine (SVM) 
[20], projection pursuit regression (PPR) [21] and artificial neural 
network (ANN: three layer perceptron) [22]. 

A same strategy was developed in the different approaches. It 
consisted first in fitting the full data set (recall) without any prediction 
on a test set and then in evaluating the robustness of the model [23, 
24]. This was carried out in cross validation. The absence of chance 
correlation was checked by application of the QUICK rule [25] 
and verification of a low value for Q2Yscr (2000 runs on randomly 
scrambled property values).

Cross validation was first carried out by the classical leave-one-out 
process (loo-cv). More in-depth investigation was then accomplished 
in leave-some-out process (lso-cv), examining five subsets (M0 to M4) 
generated from the ID number of compounds modulo 5. So subset M0 
encompasses compounds #5, #10, #15 … and subset M1 compounds 
#1, #6, #11. Note that these splitting operations are quite random. 
They depend only on the rank of the compounds in the data file, with 
no consideration on the structural features or toxicological activity. 
For each of these five splitting (corresponding to a ratio train/test 
about 80/20%), the MLR was adjusted on the corresponding training 
set (which “knows nothing” about the associated validation set) and 
then applied for prediction on this validation set. The performance 
was checked on these five independent subsets M0 to M4, examining 
the (prediction) determination coefficient R2pred and the coefficient 
Q2pred corresponding to Q2-F2 of QSARINS [18, 24]. Within this 
sets, R2pred indicates how well variations of calculated values are 
proportional to those of the observed ones. On another hand, Q2 
specifies the ratio between the residuals observed for these calculated 
values and those resulting from a “null model” (mean of the observed 
values). It indirectly informs about the predictive ability of the model. 
In addition to R2 (and Q2) calculations for the correlation between 
observed and predicted pLD50 values, prediction accuracy could be 
also evaluated by the root mean squared error (RMSE), or the mean 
absolute error (MAE) [26].

In this approach, each compound was examined four times in 
training (leading in fact to very close results) and once in prediction. 
Gathering the predicted values in a single file allowed for comparing 
these predictions to the observed pLD50 via a linear regression, and 
so, gave a global estimate of the predictive ability of the model. As 
indicated farther, additional confirmation may be gained using leave-
many-out cross validation (statistical cross validation).

Descriptor calculation and selection

2D topology-based descriptors were calculated from the PaDEL 
software [16], incorporated in the QSARINS package (v-22) [18], 
leading to an initial pool of about 1200 descriptors. 2D and 3D 
CODESSA descriptors [17], calculated on geometries optimized at 
the semi-empirical AM1 level (Hyperchem software), amounted 
about 500 descriptors (constitutional, geometrical, topological, 
quantum-chemical). After elimination of (quasi) constant values 
and pruning pairs of highly inter-correlated descriptors, it remained 
respectively 267 (PaDEL) and 149 (CODESSA) potentially 
“significant” structural variables. Descriptor selection was carried out 
using a Genetic Algorithm-based procedure [27, 28] implemented 
in QSARINS, starting from examination of all the possible pairs of 

variables and extension of the pool via the GA (generally speaking 
5000 generations, chromosomes of 200 variables) [18]. GA currently 
leads, for a given data set, to a population of about fifty models with 
very close performances, but involving various different descriptors. 
The “winning” OLS-MLR model was selected on the basis of the best 
results in loo cross validation (Q2 or RMSE), satisfying the QUICK 
rule. The selected structural variables were subsequently used for the 
different models proposed.

It’s clear that the more variables used, better the recall results. 
However to limit the risk of overfitting, and not uselessly complicate 
the model, we limited the number of variables to 10 for investigating 
the 74 compound set, and 7 for the 50 compound set (non-conjugated 
carboxamides). This corresponds to a value about 1/7 for the ratio 
(#parameters/#compounds), better than the 1/5 ratio generally 
admitted to avoid overfitting.

Methods
Multilinear Regression (Ordinary Least Squares)

With easy calculations and straightforward implementation, 
OLS-MLR is clearly the most widespread modeling method used in 
QSAR/QSPR studies. Suffices it here to say that for building up a 
model between a dependent (univariate) variable yi (property value) 
and several independent variables (structural descriptors xi) for 
compound i

y = X b + e,				     

where X represents the matrix of the independent variables xi, 
b and e being the column vector of the coefficients and residuals 
respectively. The b coefficients are determined by minimizing the 
residuals by OLS method

b = (XT X)-1 XT y				  

and the calculated response ŷ is

ŷ = X b					   

Performance in recall (fitting all data in training) is characterized 
by the determination coefficient R2 of the correlation obtained between 
observed pLD50 and the corresponding structural descriptors.

Another important information attainable in MLR is the 
applicability domain (AD) related to “influential” objects: those that 
in training have an heavy importance in the definition of the model, 
and in prediction, points falling outside of this AD, that must be 
considered with caution. In the leverage approach, the influence of 
each object on the regression result (its “leverage”) is given by the 
diagonal element h of the “Hat” matrix H

H = X(XTX)-1XT				  

For a study involving n training samples and p variables, objects 
with h larger than the threshold value h* = 3(p+1) / n are considered 
outside the AD. Williams’ plot (standardized residuals vs Hat 
diagonal values h) immediately highlights points outside the AD or 
outliers with residuals larger than 2.5 times the standard deviation 
(the common norm).

Machine learning modeling methods

Machine learning methods are increasingly used in QSAR 
models, due to their high flexibility [19, 22, 29-33]. Although they 
generally don’t provide any, directly usable, explicit formula for 
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property/ activity evaluation, their easy setting, rapid training and the 
capacity to determine the global minimum of the response surface 
now make them privileged approaches in QSAR/QSPR studies, 
and applications to nanoparticle studies recently appeared [34-38]. 
Several publications presented and detailed these approaches and 
their implementation. We only summarize their basic characteristics. 
Implementation of these methods and their adjustments were carried 
out in the framework of the Caret package [39] from the Cran-R 
project.org [40].

Support Vector Machine (SVM):  introduced by Vapnik [20, 41] 
and then largely used [42-47] relies on two main ideas: the first one 
is to privilege robustness over an optimal recall, in view of a better 
predictive ability. The second one is to project (thanks to a kernel 
function) the initial data in a higher dimensional space where it may 
be hoped that a linear model might work better than in the initial data 
space. We used the very common linear kernel, (K(x,x’) = x*x’, x and 
x’ being independent variables).

The model depends on two tunable parameters: the regularization 
constant C, trade-off between the complexity of the model and its 
precision (too large values tend to overfitting) and “epsilon”, an 
estimation of the admissible error (roughly speaking the diameter of 
the “insensitive tube” around the regression line, where errors can be 
neglected when building up the model). Some techniques have been 
proposed for estimating these parameters [48, 49]. Working with 
scaled descriptor values, these parameters were here adjusted with a 
grid-search type procedure (ɛ varying from 0.10 to 0.40, and C from 
0.25 to 16) looking for the best loo performance.

Projection Pursuit Regression (PPR) : operates on projections 
of the original variables along selected directions [21, 33, 35, 36]. 
The regression function, linking the property to structural variables, 
is approximated by a sum of smooth ridge functions of these 
projections. An optimization routine allows for pursuing a sequence 
of projections revealing the most interesting data structures in the 
sample set.

Artificial neural network (ANN): Three layer perceptron 
encompasses 3 layers of elementary units (the neurons). The input 
layer, fed with structural descriptors transmits weighted values to 
the hidden layer units. On each hidden unit these scaled inputs are 
summed up and transmitted to the output unit through a transfer 
function. Biases can be added. The sum on the output unit (possibly 
transformed by another transfer function) gives the calculated activity 
value [22]. With the “nnet” program [40], the optimization process 
for the weights input-> hidden layers relies on the BFGS (Broyden–
Fletcher–Goldfarb–Shanno) algorithm [50]. To not multiply the 
number of connections (which may lead to overfitting) we restricted 
the hidden layer to a unique neuron in order to evaluate the interest 
of the ANN in its simplest form. 

Results
The statistical elements for the different approaches are now 

presented. Comparison of the methods and their results will be 
analyzed subsequently.

Full data set

Selected 2D PaDEL descriptors and MLR treatment: Starting 
from the 2D PaDEL descriptors, 10 variables were selected by 
MLR from the QSARINS software: In these 10 selected variables, 
five correspond to components of autocorrelation vectors, two to 

topological atom-type E-state (based on the electron mobile count), 
two to topological charge indices and one to Burden’s matrix. More 
details can be found in Table 2 [51-54]:

• With these descriptors the following MLR model was computed:

pLD50 = 44.5505 + 0.9581 ATSC2e + 3.7912 MATS1c – 4.4874 
MATS8c – 0.6636 GATS8c -2.9837 GATS2e – 3.1725 BCUTw-1l + 
0.1004 nsCH3 – 0.5414 maxHCsatu – 0.2682 GGI1- 13.2384 JGI6    (1)

With fitting parameters:

R2 = 0.758, RMSE = 0.19, MAE= 0.15, s = 0.21.

And leave-one-out cross validation parameters:

Q2loo = 0.695, RMSE = 0.22, MAE = 0.17.

The small difference between R2 and Q2loo is a good indication of 
the robustness of the model. In parallel, the low value of Q2Yscr (for 
2000 shuffled activity values; Q2Yscr = 0.138) indicates the absence of 
chance correlation (also confirmed with the QUICK rule).

The Relative Importance of the variables (determined from 
standardized coefficients in the MLR equation) decreases according 
to the following sequence:

MATS8c > GATS8c > GGI1 > MATS1c > GATS2e > ATSC2e > 
BCUTw-1l ~nsCH3 > maxHCsatu > JGI6.

Leave-Some-Out validation:   Predictive ability of this model 
was checked on the five subsets M0-M4 defined by the ID compound 
modulo 5 (see above). Gathering in a single file the predicted values 
obtained in these five subsets (and covering therefore the whole 
population) a linear relationship can be established between the 
observed and predicted pLD50

 leading to R2 = 0.708, RMSE = 0.21, 
MAE = 0.17.

Machine learning method treatments (2D descriptors)

For the selected machine learning methods, a same sequence was 
developed, using the structural variables (descriptors) previously 
selected from MLR: For each method: first, recall (data fitting on the 
global population); 

then, validation (prediction on the five subsets M0-M4). 

For each run, the relevant parameters were optimized: For linear 
SVM, parameters C (regularization) and epsilon (diameter of the 
error tube) were adjusted; in PPR, it was the number of projections 
(in fact best results were here obtained with one projection); and for 
ANN a unique architecture (with one hidden unit, and null decay rate 
in optimization) was confirmed in all trials. The main statistical results 
are gathered in Table 3 (including MLR for an easier comparison). 
Figure 1 displays a plot of calculated pLD50 values (linear SVM) vs. 
observed ones.

2D/3D CODESSA models

In a similar approach, 10 structural variables (over a pool of 149 
2D/3D CODESSA descriptors) were selected from QSARINS. They 
include topological indices, geometrical parameters and quantum 
values, identified in Table 4. 

•  These 10 variables led to the following MLR model:

pLD50 = - 75.6432 - 0.223 C047 - 0.3364 C077 – 27.616 C080 + 
0.0303 C83 - 0.0121 C145+ 0.591 C170 + 41.3063 C198 - 456.2506 
C200 + 0.6695 C324 + 0.4939 C377        			             (2)
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with, in recall (fitting data) R2 = 0.733, RMSE = 0.20, MAE = 0.16 
s = 0.22, and

in loo cross-validation: Q2loo = 0.644, RMSE = 0.23, MAE = 0.19.

From the standardized coefficients, the sequence of decreasing 
importance of the terms in equation (2) is: C077 > C198 > C047 > 
C083 > C377 > C170 > C080 > C145 > C200 > C324.

In the William’s plot, compounds #62 and #68 are only slightly 
out of the applicability domain, but these two molecules remain well 
calculated.

• Validation: From the predicted values obtained in the five 
subsets, a linear relationship can be established between the observed 
and predicted pLD50

 with

Table 2: The 10 selected topology-based 2D descriptors.

Acronym Definition

ATSC2e
Centered Broto-Moreau autocorrelation term, lag 2, weighted by Sanderson electronegativities. It corresponds to the sum, on all pairs of 
atoms (i,j) separated by a given topological distance, the “lag” (here two bonds), of the products of the property value associated to each 
atom of the pair (here Sanderson electronegativity, “e”). 

A AATSC2e e ei j ij i jδ= ∑ ∑
 with ij  = 1 δ  if atoms i and j are separated by two bonds, zero otherwise and A number of atoms.

MATS1c Moran autocorrelation lag 1, weighted by charges.
MATS8c Moran autocorrelation lag 8, weighted by charges.
GATS8c Geary autocorrelation lag 8, weighted by charges.

GATS2e
Geary autocorrelation lag 2, weighted by Sanderson electonegativities. Moran and Geary autocorrelation coefficients are very similar, with 
centered property values (wi), but weighted by the square of the centered property value on all atoms (Moran, Ik) or all minus one (Geary, 
Ck). So mean and standard deviation are accounted for [51].

 
( ) ( )

2
A A A

I  1 / k  w  w w  w  /  1 / A  w  wk i j i j ij i iδ
∧ ∧ ∧

= ∆ ∑ ∑ − − ∑ −
    
    
    

 

( ) ( ) ( )
22A A A

C 1 / 2 k w w /  1 / A 1  w wk i j i j ij i iδ
∧

= ∆ ∑ ∑ − − ∑ −
 
 
 

A number of atoms and Δk number of atom pairs at distance k.
Although looking rather similar, there are no significant inter-correlations between these variables for the data set under scrutiny.

BCUTw-1l
n high lowest BCUTS eigenvalue derived from Burden’s matrix (with atomic weight on diagonal elements and, for non-diagonal ones, 
0.1*traditional bond order (plus 0.1 if terminal bond) and 0.01 for non-bonded atom pairs. Other weighting schemes may imply charge 
polarizability or H-bond ability.

nsCH3  count of atom-type E-state CH3

maxHCsatu

max. atom-type H E-state H on Csp3 bonded to unsaturated C. nsCH3 and maxHCsatu belong to Roy et al. topochemical indices [52-54] 
based on the valence electron mobile (VEM) count. They take into account the atomic intrinsic state I of the considered atom i (depending 
on its electronegativity and vertex degree) and the perturbation ΔIj from the other atoms j, depending on their topological distance dij. 

( ) ( )2
I  I / d  1Ij j i j ij∆ = ∑ − +

GGI1 Topological charge index of order 1.

JGI6

Mean topological charge index of order 1.
GGI1 and JGI6 describe the charge transfer between pairs of atoms and therefore the global charge transfer from Galvez matrix (product 
of the adjacency matrix by the reciprocal square distance matrix . Diagonal terms may be also replaced by Pauling electronegativity or 
valence vertex degree)

Table 3: Statistical parameters for the linear and non-linear approaches used. Full population: 74 compounds. For recall, prediction and loo cross-validation, 
determination coefficient R2, Q2, root mean squared error (RMSE) and mean absolute error (MAE) are specified. For SVM the epsilon value, indicated between 
brackets in the first column (Method), corresponds to both recall and loo.  Prediction results refer to the correlation between experimental values and gathering the 
predicted ones in the five subsets Mo-M4 (with specific parameter optimization).

Method Recall Prediction        Loo C.V.
  R2 RMSE MAE  R2pr RMSE MAE Q2pr Q2      RMSE MAE
PaDEL descriptors  
MLR 0.758 0.19 0.15 0.708 0.21 0.17 0.707 0.695 0.22 0.17
SVM (0.10) 0.755 0.2 0.15 0.707 0.21 0.17 0.703 0.703 0.21 0.17
PPR 0.799 0.18 0.14 0.658 0.24 0.18 0.642 0.661 0.23 0.18
ANN 0.759 0.19 0.15 0.694 0.22 0.17 0.694 0.667 0.23 0.18
CODESSA descriptors
MLR 0.733 0.2 0.16 0.606 0.25 0.2 0.6 0.644 0.23 0.19
SVM (0.10) 0.73 0.2 0.16 0.623 0.25 0.2 0.612 0.675 0.22 0.18
PPR 0.821 0.17 0.12 0.549 0.27 0.21 0.522 0.674 0.22 0.18
ANN 0.732 0.2 0.16 0.584 0.26 0.21 0.579 0.635 0.24 0.19
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R2pred = 0.606, RMSE = 0.25, MAE = 0.20, Q2pred = 0.600.

•  The same variable set was introduced in a linear SVM, PPR and 
ANN. Statistical results are collected in Table 3 where results for MLR 
were repeated for the sake of comparison.

Random Statistical Validation (Leave-Many-Out process)

To avoid a possible bias (induced by the ordering of the 
compounds in the data set) on the splitting into five subsets (M0 to 
M4), we carried out a large number of runs on random partitions 
test/train (about 20%/80%). MLR was chosen for correlating pLD50 
with calculated values, since its performances are comparable (but 
not really largely superior) to the other approaches, and the method 
is relatively the most rapid with an easy implementation. The data set, 
ordered by activity, was subdivided into two parts with a frontier set 
at pLD50 = 1.94, leading to a subset of 34 less active compounds, and 
another one of 40 more active derivatives (the frontier was chosen 
corresponding to a light gap in the reactivity scale). In each subset, 
8 compounds were randomly assigned to the test set, the others to 

the training set, leading to a 16/58 partition. This corresponds to a 
statistical validation since involving a large number of trials, with on 
each draw, an adjustment on the training set quite independent of the 
corresponding test set. Retaining only draws with R2 recall > 0.7, we 
found that, typically, mean values for R2pred and Q2 were about 0.690 
and 0.643, with a mean MAE of 0.18 in prediction (Figure 2).

With CODESSA descriptors, similar results were obtained. For 
example, 1000 PPR draws led to R2train = 0.783, R2pred = 0.705, Q2pred 
= 0.651 (not shown). These good results, simultaneously obtained in 
training and validation, confirm that the selected descriptors and the 
used approaches possess a satisfactory modeling ability.

Tentative extension to isobutylamides

Insecticidal toxicity to Ae. aegypti (pLD50 values) have been 
reported by Park [15] for 4 isobutylamide alkaloids derived from 
Piper nigrum. Prediction of the pLD50 values for these chemicals 
with the just proposed different models led to divergent results, 
depending on the selected set of structural variables. Simply looking 
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Figure 1: Plot of experimental and calculated (Linear SVM, 2D descriptors) pLD50 for the full population (74 compounds), in recall and prediction (predicted 
values are shifted up 1.5 units for the sake of clarity).

Table 4: Selected 2D/3D CODESSA descriptors.

Acronym Definition

C047 Kier-Hall index order 2 ( ) ( ) ( )22
NSA 1  NSA 2 P 

2 2
� α α α= + − + − + With NSA number of non-hydrogen atom in the molecule, 2P number of paths 

of length 2 in the molecular graph. i i = (r  /C )-1 α with ri and Ci radii of atom i and sp3 carbon.

C077
Balaban index ( ) ( ) 0.5

J q / 1   SiSjµ
−

= + ∑  with µ = cyclomatic number of the molecular graph, µ = q – n + 1 with q number of edges and n number 
of atoms in the molecular graph. Si distance sums calculated over rows or columns of the topological distance matrix of the molecule. Summation is 
over all edges ij.

C080 Inertia moment C.
C083 YZ shadow area.

C145 HA dependant HDSA-1 (Zefirov). Hydrogen bonding donor ability of the molecule. HDSA1 DSD= ∑  where D = H-donor H atom, SD solvent 
accessible surface area of H –bonding

C170 HOMO energy.

C198 Min 1-e reactivity index C atom, Fukui index RA  i€A j€A ciHOMO cjLUMO= ∑ ∑  where c are the MO coefficients.
C200 Average 1-e reactivity index for C atom.

C324 FNSA-3 fractional atomic charge weighted partial negative charge surface area PNSA (PNSA-3/TMSA, Quantum) where PNSA-3 is the atomic 
charge weighted partial negatively charged surface area.

C377 Min e-e repulsion for C-H bond ( )Eee AB     P  P  |€A €B µν λσµν λσ µν λσ= ∑ ∑ < >  with Pµν , P  λσ  density matrix elements and 
|µν λσ< >  electron repulsion integral.
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Figure 2: External statistical validation: Histograms from 2000 MLR random draws with PaDEL descriptors (full population).

at the chemical structures, it is worthy to note that, in isobutylamide 
derivatives, the nitrogen atom bears a hydrogen atom whereas, in the 
other investigated carboxamides, N is linked to two carbon atoms.

In MLR, with 2D descriptors, systematic large residuals (from 
1.03 to 1.43) are observed, toxicity being under evaluated. A possible 
way to include these compounds in the model would be to introduce 
for isobutylamide derivatives, a supplementary indicator of about 
1.2 units, which would reduce the residuals to acceptable values (< 
0.30). Obviously, this correction should be verified over a larger set 
of chemicals (Figure 3). Conversely, using CODESSA descriptors, 
MLR predictions look quite acceptable for 3 of the compounds (with 
residuals 0.1-0.3). Only pellitorine, compound #75, predicted with a 
low activity (0.54) deviates of about 2.6 units! Important information 
on these discrepancies could be derived from examination of 
the applicability domain for the two MLR models. With PaDEL 
descriptors we checked that for the four compounds the “leverage” 
value (h) is largely higher than the threshold h* value (see above(§ 
MLR), which may explain the observed residuals. Conversely with 
CODESSA variables it appears that the three compounds (#76, 77, 78) 
are inside the applicability domain whereas compound #75 is largely 
outside (h = 0.86 for h* = 0.45). However, these observations must be 
examined with some caution. It is important to note that the average 
weight of Ae. aegypti female adults used by Park [15] was 1.955 mg 
while the weight of the female used by Pridgeon and co-workers [12-
14] was 2.85 mg. Park also stressed that pellitorine could have a more 
rapid penetration rate in the invertebrate increasing its toxicity. 

Reduced population (50 compounds)

Selection of compounds where the carbonyl group is not 
conjugated, with either a phenyl group or a C=C double bond, 
defines a more homogeneous ensemble of 50 chemicals: The same 
approaches as those just used for the full population were carried out: 
Determination of a reduced set of relevant descriptors from MLR 
analysis in the framework of QSARINS, and subsequent application 
of these variables in linear SVM, PPR and ANN. 2D PaDEL 
descriptors and on another hand, 2D/3D CODESSA descriptors were 
separately considered. Owing to the limited extent of the data set, the 
number of variables was limited to 7 to maintain a reasonable ratio 
#parameters/#compounds. These structural variables are listed in 
Table 5.

•  With these 7 PaDEL variables, a good MLR is obtained for 
pLD50:

pLD50 = 18.533 + 2.6836 ATSC6c + 0.1096 AATSC3m – 6.3326 
AATSC0i + 0.7536 GATS6c-11.6456 GATS2e + 0.3792 mindsCH – 
0.928 maxssCH2 					                (3)

with the following statistical parameters:

R2recall = 0.863, RMSE = 0.14, MAE = 0.11, s = 0.15.

Beside the good performance in recall, robustness of the model 
is established by the high value of Q2 (close to R2 value) in loo cross 
validation, and also in leave-many-out cv (20% data left out, 2000 
draws). The absence of chance correlation is also ascertained by the 
low value of Q2scrY (0.23) obtained on 2000 randomly shuffled runs 
and verified with QUICK rule.

 Q2loo = 0.807, 	RMSEloo = 0.17, MAEloo = 0.14, Q2lmo = 0.786, 
R2Yscr = 0.15.

• The relative importance of the different variables decreases 
according to the following sequence:

GATS2e > mindsCH > GATs6c > AATSC0i ~ AATSC3m > 
maxssCH2 > AATSC6c 

William’s plot indicates that points 62 and 40 are slightly out of 
the AD (but well calculated in recall).

• Similarly to the full-set treatment, validation was carried out on 
five subsets training/prediction. In each case, the MLR coefficients 
were recalculated on the corresponding training set, and the model 
applied to the associated set.

 R2pred = 0.832, RMSE = 0.16, MAE = 0.12, Q2 = 0.830.

• With the selected CODESSA descriptors, a good MLR was also 
obtained

pLD50 = - 538.6369 – 0.0399 C145 + 0.0061 C165 + 34.6035 C198 
+ 39.1031 C287 + 114.2452 C295 + 0.213 C320 + 3.1215 C370      (4)

With R2recall = 0.795, RMSE = 0.17, MAE = 0.14, s = 0.19

 Q2loo = 0.725, RMSE = 0.20, MAE= 0.17

 Q2lmo = 0.680, R2Yscr = 0.15.

And in validation:

R2 = 0.741, RMSE = 0.19, MAE = 0.16, Q2 = 0.740

• The relative importance of the variables is as follows: C295 ~ 
C145 ~ C287 > C198 >> C370 ~ C165 > C320.
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Figure 3: Piper negrum isobutylamides. pLD50 values predicted by MLR, with 2D (left) and 2D/3D (right) descriptors, using the models established on the 
full population. Black triangles correspond to the four isobutyl amides.

• Corresponding results obtained in linear SVM, PPR and ANN 
are collected in Table 6 where results for MLR were repeated for easier 
comparison. An example of these correlations is given in Figure 4 
It may be noted that defining specific descriptors for this reduced, 
more homogeneous, dataset, led to more accurate results. So, for 
example with MLR and PaDEL descriptors, we obtained (Table 6) 
in recall R2 = 0.863, MAE = 0.11 and in prediction R2 = 0.832, MAE 
= 0.12 in place of 0.746, 0.15 (recall) and 0.699, 0.15 (prediction) 
respectively when evaluating the compounds of the reduced set with 
the general equation (1) defined on the whole set. Conversely, trying 
to apply to the full set the descriptors defined on the reduced set led 
to significantly inferior results. For the considered 24 compounds, 
residuals (absolute values) are systematically superior to 0.5 (for 
pLD50) and generally in the range 1-2.8 units. This is consistent 
with the fact that working on the reduced homogeneous population 
allowed to select specific descriptors non able to correctly describe the 
situation for the more diversified compounds (including conjugated 
chemicals).

Conjugated carbonyl compounds

For this data set, encompassing 19 compounds, in an activity 
range 1.22-2.67, the same approaches were carried out. Due to the 

limited number of samples, this must be only considered as an 
exploratory treatment, restricted to MLR in recall and loo (building 
a test set would correspond to a sizeable loss of information). Three 
descriptors are however necessary for a satisfactory recall of activities. 
They are collected in Table 7.

Statistical parameters for correlations obtained in recall and loo 
(Table 8), are quite acceptable at least with PaDEL descriptors that, as 
previously observed, outperform CODESSA results. For example R2 = 
0.791 with PaDEL vs. 0.697 for CODESSA variables. The difference is 
more important in loo cv: Q2 = 0.709 vs. 0.488 (definitively too low). 
This origins from some important residuals higher in CODESSA than 
in PaDEL: for example, compound #58 residual = 0.48 vs. -0.13, and 
mainly #34 0.63 vs. 0.17. 

Discussion
Generally speaking, within a given population (74 or 50 

compounds) for a same set of descriptors (2D PaDEL or 2D/3D 
CODESSA) the performances of the four modeling methods (MLR, 
Linear SVM, PPR and ANN) are very comparable with highly 
consistent, neighboring and rather good results. Detailed results on 
individual patterns are collected in Table S1-Supplementary Materials. 
A more synthetic vision may be gained by examination of correlations 

Table 5:  PaDEL and CODESSA selected descriptors for the reduced 50 compounds dataset.

Acronym Definition
PaDEL 2D descriptors
ATSC6c Centered Broto-Moreau autocorrelation, lag 6, weighted by charge.
AATSC3m Average centered Broto-Moreau autocorrelation, lag 3, weighted by mass.
AATSC0i Average Broto-Moreau autocorrelation; lag 0, weighted by the first atomic ionization potential. 
GATS6c Geary autocorrelation, lag 6, weighted by charge.
GATS2e Geary autocorrelation lag 2, weighted by Sanderson electronegativities.
mindsCH min atom-type E-state = CH -.

maxssCH2 max atom-type E-state - CH2 -.(Details about the signification of these acronyms, and derivation of their values  have been previously 
specified, in Table 2, on similar descriptors).

CODESSA 2D/3D descriptors
C145 HA dependant HDSA-1 (Zefirov) Hydrogen bonding donor ability of the molecule.
C165 final heat of formation.
C198 mean 1e reactivity index for a C atom.

C287 max bond order of a O atom. Bond order  P  n c cAB €A €B i i i jµ ν µ ν= ∑ ∑ ∑
  ni occupation number of the ith MO.

C295 min valency of a C atom.
C320 max e-e repulsion for a C atom.
C370 max Coulombic interaction for a C-N bond.
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Table 6:  Statistical results for the correlations established for the reduced population (50 Compounds).
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Figure 4: Plot of experimental and calculated values (PPR with 2D descriptors) pLD50 for the Reduced set (50 compounds) in recall and prediction 
(predicted values are shifted up 2 units).

existing for calculated values in prediction between methods within a 
same descriptor set or between sets for a given method (Table 9). Off-
diagonal blocks reveal high determination coefficient observed on the 
corresponding predicted values obtained by the various methods with 
a, same set of descriptors.Upper triangle corresponds to CODESSA 
variables; the lower to PaDEL descriptors. Conversely, for a same 

method, correlation between pLD50 calculated from 2D and 2D/3D 
variables (diagonal cells) are of lower quality especially for the full 
set. This is in agreement with our previous remarks [29, 47] that, for 
a given problem, the nature of the descriptors is more important than 
the choice of the modeling method. Conversely the remark on Park’s 
isobuylamides stresses the importance of the “applicability domain” 

Method   Recall Prediction Loo-cv
    R2 RMSE MAE   R2pr RMSE MAE Q2pr Q2      RMSE MAE
PaDEL descriptions
MLR   0.863 0.14 0.11 0.832 0.16 0.12 0.83 0.807 0.17 0.14
SVM (0.25)   0.862 0.14 0.11 0.83 0.16 0.13 0.83 0.827 0.16 0.13
PPR   0.884 0.13 0.1 0.802 0.17 0.13 0.799 0.782 0.18 0.15
ANN   0.867 0.14 0.11 0.834 0.15 0.12 0.834 0.808 0.17 0.14
CODESSA descriptions
MLR   0.795 0.17 0.14 0.741 0.19 0.16 0.74 0.725 0.2 0.17
SVM (0.30)   0.79 0.17 0.15 0.745 0.19 0.16 0.744 0.752 0.19 0.16
PPR   0.834 0.15 0.12 0.718 0.2 0.17 0.714 0.683 0.21 0.18
ANN   0.801 0.17 0.14 0.749 0.19 0.16 0.749 0.729 0.2 0.17

Table 7: Selected descriptors for the 19 conjugated structures.

Acronym Definition
PaDEL descriptors
ATS2s Broto-Moreau autocorrelation-lag 2, weighted by I-state.
ATSC5p Centered Broto-Moreau autocorrelation-lag 5, weighted by polarizability.
GGI10 Topological charge index, order10.
CODESSA descriptors
C200 Average 1-e reactivity index for a C atom.
C280    Max Pi-Pi bond order.
C296 Max valency of a Carbon atom.

Table 8:  Statistical parameters for the 19 “conjugated carbonyl” compounds.

Method         Recall Prediction Loo-cv
  R2 RMSE MAE   Q2 RMSE MAE
PaDEL
MLR 0.791 0.16 0.13 NA 0.709 0.19 0.16
CODESSA
MLR 0.697 0.19 0.16 NA 0.488 0.26 0.2
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and the fact that using different descriptor sets may be useful to get 
complementary information in particular situations.

Method Equivalence

Starting first from 2D PaDEL descriptors, in the reduced data 
set, the global statistical indices R2recall (0.86 – 0.88), Q2loo (0.78 – 
0.83), Q2pred in validation (0.80 -0.83) largely outperform the usually 
admitted thresholds of acceptable values. With the full data set, 
results are a little more scattered, with slightly lower statistical criteria 
(although still satisfactory). (R2recall: 0.76 – 0.80, Q2loo: 0.66 – 0.70, 
Q2pred: 0.64 -0.71). For 2D/3D CODESSA descriptors R2recall values 
are close to the preceding ones whereas Q2loo and Q2pred values are 
less satisfactory.

This is illustrated in Figure 5 where are represented the main 
global statistical indices for the various methods applied for the 
two populations using 2D descriptors. It highlights that PPR led to 
slightly better results in recall and inferior in Q2pred., this behavior 
being more important in the full set. The same observation holds with 
enhanced importance with CODESSA descriptors.

Descriptors and structural information

Considering the two modes of structural description (PaDEL 
vs. CODESSA), generally speaking, the topological 2D descriptors 
give better performance, especially in prediction. A comparison of 
PaDEL and CODESSA selected descriptors is rather difficult since 
structural information is differently encoded in the two approaches. 
Topological-type descriptors largely rely on discrete elements of the 
molecular graph (atom, or bond types, pairs of atoms separated by a 
given distance). Quantum CODESSA variables (possibly localized on 
a bond or an atom) are derived from a wave function determined on 
the whole molecule. It may be noted that the six more important terms 
in equation (1) reflect the influence of charges and electronegativity 
for pairs of atoms distant by 8, 2 or 1 bonds. Atom types and 
organization of the molecular graph (depicted by Burden’s matrix) 
correspond to the least important terms. On another hand, with 
CODESSA descriptors, equation (2), organization of the molecular 
graph is approached via top-ranked Kier & Hall and Balaban indices. 
Electronic aspects intervene by the Fukui indices involving HOMO 
and LUMO localization. Shape is taken into account with shadow 
area and inertia moment.

Looking only at the two series of 10 selected descriptors it appears 
that, inside a given set, there are no strong correlations between them, 
except between C047 and C077 or C080 with R2 = 0.55. Comparing 
the two sets, C080 is correlated to GATS8c (R2 = 0.65), and C077 
to nsCH3 (0.69). Slightly better correlations are observed if two 
descriptors are simultaneously considered: for example comparing 
C047 to the pair GATS8c, GATS2e, R2 reaches 0.61 in place of 0.46 
for the “correlation” C047, GATS8c. Comparable results are obtained 
for C077 vs.nsCH3, GATS2e; or MATS1C vs. C047, C083.

On another hand, looking at the range of activity variations 
associated to the various descriptors, it appears that some terms 

bring contributions significantly varying over the whole population, 
whereas, for others, the contribution is nearly constant except a 
limited number of compounds; for example ATSC2E, BCUT or 
maxHCsatu (Figure S2-supplementary material). However, omitting 
these descriptors would lower the quality of the correlations, as 
evidenced by examination of various statistical criteria.

Efficiency and individual residuals 

Beyond a simple comparison of global criteria, a more detailed 
analysis of performances may be approached looking at histograms 
of residuals (obs-calc) computed for individual compounds. The 
subsequent discussion will be mainly focused on MLR (which results 
are illustrated in Figure 6) method giving the best performances with 
easy implementation.

In such analysis, two important thresholds may be considered: 
0.3 that corresponds to a ratio of 2 as to the amount (in µMol) of the 
lethal dose, and (here) to about 20% of the total activity range, and 
0.5 (ratio of 3 for lethal dose, and 30% of total activity range). Table 
10 summarizes the number and ratio of well-modeled chemicals 
(residuals < 0.3). In all cases, results are high, particularly with the 
reduced set, where they often reach or exceed 90%.

In most cases, these residuals are of comparable importance 
for the two descriptor sets, although generally slightly higher 
with CODESSA variables, both for positive or negative residual 
values. However for some compounds the error is definitely 
larger for CODESSA values (#42, 59, 62). Generally the two sets 
of descriptors led to deviations of the same sign (under or over 
- estimation) except in some cases (for example compounds #34, 
46, 50) (Figure 7).

Hybrid model 

Although generally in close agreement, the two approaches (2D 
or 2D/3D) gave non identical results. It may be hoped, therefore, than 
taking the mean of the two calculated values would offer an evaluation 
closer to the experimental observation. The benefit would be greater 
in the rare cases were the deviations are of opposite signs (Figure 
7) This does not correspond to a brute increase in the descriptor 
number (with foreseeable overfitting) but rather to a very simple type 
of cooperative model. Global statistical results for the three studied 
sub-populations are presented in Table 11.

As indicated in Table 11, a definite improvement in prediction 
(the important point for practical applications) is observed. For 
example, with the MLR method, as regards the full set, Q2pred = 
0.743, whereas for the reduced set it is equal to 0.835, and Q2 loo for 
the 19 conjugated carbonyls equals 0.814. 

Conclusion
Diverse approaches were developed for QSAR modeling of toxic 

activity to Aedes aegypti for a population of 69 carboxamides and 5 
related compounds. Two sets of 10 structural descriptors (topology-

Table 9: Determination coefficients for inter-correlations between predicted values by different approaches (sum of the prediction over the five subsets-see text-).

74 compounds 50 compounds
  MLR SVM PPR ANN MLR SVM PPR ANN
MLR 0.586 0.985 0.908 0.993 0.783 0.98 0.953 0.993
SVM 0.973 0.608 0.896 0.976 0.993 0.788 0.98 0.953
PPR 0.921 0.944 0.474 0.901 0.965 0.956 0.772 0.94
ANN 0.971 0.993 0.942 0.56 0.994 0.985 0.979 0.807
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Figure 5: 3D display of the main statistical parameters (R2recall, Q2pred, Q2loo) for the four correlation models (MLR, SVM, PPR, ANN) with 2D descriptors 
in the full and reduced populations.
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Figure 7: Residuals for MLR-predicted pLD50 with 2D PaDEL or 2D/3D CODESSA descriptors. Location of the patterns in the various quadrants (A,B), 
(C,D), (E,F), (G,H) indicates the sign of the residuals observed with either PaDEL or CODESSA descriptors. For example, patterns in quadrant (C,D) have 
a PaDEL residual, positive and a CODESSA one negative. Location of the patterns by respect to the indicated bisectors specifies if the PaDEL error is 
superior (or not) to the CODESSA one. For patterns in quadrant (C,D) and (G,H) the residuals are of opposite signs; hence a more efficient hybrid model.

based 2D PaDEL or 2D/3D CODESSA variables) relying on MLR, 
linear SVM, PPR and ANN, gave similar and satisfactory results for 
R2recall, Q2loo and R2pred, Q2pred in a in-depth validation gathering 

the results obtained on five subsets covering the entire population. 
Validity of the models was also confirmed from the statistical 
parameters obtained from a large number of random draws. With 
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the availability of several evaluations for a same compound, clearly, 
consistent values do not guarantee a right evaluation of activity, but 
divergent values cast some doubt on the efficiency of the approach for 
this compound.

Reduction of the dataset to a population of 50 carboxamides, with 
a non-conjugated carbonyl, gave similar results, but of better quality 
(higher R2 or Q2). This is not surprising due to the more homogeneous 
structural space. An intriguing point, however, is that the full dataset 
(74 compounds) includes structures devoid of the carbonyl group 
or bearing also others functions. Curiously, these compounds are 
well modeled. In line with these observations, it may be suggested 
that highly homogeneous population may be modeled with specific 
descriptors associated to definite interactions or mechanisms. 

Conversely, a more diverse population would require more general 
descriptors possibly applicable also to other chemicals. 

For these specific populations, PaDEL and CODESSA descriptors 
led to highly inter-correlated values for pLD50, but with better results 
for the PaDEL variables (except scarce examples). This prompted 
us to define a hybrid model where, for each approach, the activity 
was calculated as the mean of the values obtained with the respective 
PaDEL and CODESSA variables, leading to a definite improvement 
for calculated values. 

Our models will be of interest to find new adulticides, with a 
moderate toxicity, to be used as synergists on pyrethroid resistant 
strain of Aedes aegypti.

Table 10:  Number and ratio of compounds with a residual ≤ 0.30. (absolute value).

Method      Recall Prediction    Loo-cv
FULL SET
PaDEL MLR 61 0.82 57 0.77 54 0.73
  SVM 61 0.82 57 0.77 53 0.72
  PPR 59 0.8 55 0.74 58 0.78
  ANN 66 0.89 61 0.82 61 0.82
CODESSA MLR 55 0.74 54 0.73 52 0.7
  SVM 55 0.74 50 0.68 51 0.69
  PPR 64 0.86 53 0.72 48 0.65
  ANN 54 0.73 58 0.78 50 0.68
HYBRID MLR 59 0.8 61 0.82 61 0.82
  SVM 60 0.81 62 0.84 55 0.74
  PPR 65 0.88 61 0.82 62 0.84
  ANN 62 0.84 54 0.73 56 0.76
REDUCED SET              
PaDEL MLR 49 0.98 46 0.92 49 0.98
  SVM 48 0.96 47 0.94 48 0.96
  PPR 49 0.98 45 0.9 44 0.88
  ANN 49 0.98 47 0.94 47 0.94
CODESSA MLR 46 0.92 44 0.88 43 0.86
  SVM 45 0.9 44 0.88 44 0.88
  PPR 45 0.9 44 0.88 44 0.88
  ANN 46 0.92 45 0.9 45 0.9
HYBRID MLR 48 0.96 47 0.94 48 0.96
  SVM 48 0.96 48 0.96 48 0.96
  PPR 50 1 47 0.94 48 0.96
  ANN 48 0.96 48 0.96 48 0.96

Table 11: Statistical results obtained with the Hybrid Model. See Table 3 caption.

Method Recall Prediction  Loo-cv
  R2 RMSE MAE R2pr RMSE MAE Q2pr Q2 RMSE MAE
74 compounds
MLR 0.805 0.18 0.14 0.743 0.2 0.16 0.741 0.746 0.2 0.16
SVM 0.803 0.18 0.14 0.746 0.2 0.16 0.743 0.763 0.19 0.15
PPR 0.872 0.14 0.11 0.714 0.21 0.16 0.713 0.768 0.19 0.15
ANN 0.805 0.18 0.14 0.729 0.21 0.17 0.724 0.664 0.23 0.18
50 compounds
MLR 0.866 0.14 0.11 0.835 0.15 0.13 0.832 0.818 0.16 0.13
SVM 0.864 0.14 0.11 0.835 0.15 0.13 0.808 0.835 0.16 0.13
PPR 0.89 0.13 0.1         0.81 0.17 0.13 0.808 0.796 0.17 0.14
ANN 0.867 0.14 0.11 0.836 0.16 0.12 0.834 0.813 0.16 0.13
19 compounds
MLR 0.894 0.13 0.11      NA      NA      NA      NA 0.814 0.16 0.16
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