
A S c i T e c h n o l J o u r n a lResearch Article

Franklin, J Comput Eng Inf Technol 2020, 9:3
DOI: 10.37532/jceit.2020.9(3).224 Journal of Computer

Engineering & Information
Technology

All articles published in Journal of Computer Engineering & Information Technology are the property of SciTechnol, and is
protected by copyright laws. Copyright © 2020, SciTechnol, All Rights Reserved.International Publisher of Science,

Technology and Medicine

SiMAMT: An Interactive
3D Graphical Simulation
Environment for Strategy-
Based Multi-Agent Multi-Team
Systems
Michael Franklin1*

Abstract
Multi-agent multi-team environments are complicated and complex.
The normal approach is to simplify the structure by using a single
policy for each agent, such as in swarming or flocking algorithms.
While this type of simulation environment may provide multiple
agents working within the system, their interactions are single-
dimensional and their group behavior minimal. SiMAMT, in
contrast, is a hierarchical, strategy-based approach that provides
large-scale, complex strategic initiatives realized by independent
intelligent single agents. These agents are independent because
they have their own talents, skills, abilities, and behaviors that are
influenced by the commands given to them from the layer above
(e.g., the team). These agents can all have their own behaviors,
or several could have similar behaviors, or entire teams could
share one behavior, depending on the scenario. Further, SiMAMT
utilizes strategy-based behaviors at every level, so the players
are influenced by the team’s strategy, the teams are influenced
by the unit’s strategy, the units are influenced by the battalions’
strategy, etc. Whichever hierarchical structure the environment
needs — sports, military, organizational, etc. It can be supported
by the SiMAMT system. The simulation environment provides the
3D visual environment to view the progress of the simulation from
both an overall perspective and from a first-person perspective from
each agent. This combination view provides insight into how each
layer of the structural hierarchy is performing agents, teams,
overall interaction, etc. Additionally, it provides overall views
of the strategy that each team is using, each agent’s behavior,
and the overlaps of both. The simulation also provides statistics
as the simulation is running to relay observations, transitions,
most likely strategies in play (the SiMAMT framework provides
strategic inference to determine the most likely strategy being
employed by the other teams in the environment), and overall
simulation results. Overall, the goal of the simulation is to allow
multi-agent teams to perform strategically in interactive time while
performing strategy-inference to improve their performance.
The SiMAMT simulation achieves this goal, and this will be
demonstrated in the experiments.

Keywords

Artificial intelligence; Multi-agent systems; Strategy; Simulation

*Corresponding author: Michael Franklin, Department of Computing of Software
Engineering, Kennesaw State University, Marietta, GA, USA. Tel: +25-19224-06360;
E-mail: mfranklin@trulyintegrated.com

Received: July 02, 2020 Accepted: July 21, 2020 Published: July 28, 2020

Introduction
When multi-agent scenarios move beyond singular, short- term

goals and into the realm of multi-layered strategies the complexity
quickly scales out of the practical [1]. Much of the research in multi-
agent systems revolves around single- goal systems where multiple
agents each work independently to achieve the same goal [2]. This
does not accurately model the real-world scenarios found in larger
systems where each Column Break independent agent has their own
initiatives but still works together to achieve team goals. The SiMAMT
framework is designed to allow a hierarchical strategy structure that
works at each level to enforce policies that work at that particular level.
Each sub-level of the hierarchy then works at its’ particular level order
while considering the orders filtered down from the higher level. In
this manner, the entire structure incorporates a multi-level strategy
without having to use a large, monolithic policy (these large policies
arise from applying small-scale solutions to much larger problems).
When policies are allowed to grow in scale with the number of agents
and the complexity of the system, they become computationally
too complex to be applied, recognized, and changed in interactive-
time. Strategy- based systems utilize group policies to aggregate the
policies of individuals into a larger team policy (which we refer to
as a strategy). Each of these strategies can be grouped together into
a larger strategy at the next level. The SiMAMT framework creates
a system to setup, model, control, and analyze multi- level strategies
such as these.

It has been shown that strategies offer significant performance
enhancement to artificially intelligent agents, that strategies can be
recognized in real-time when complexity is limited, and that AI’s
utilizing strategy inference will outperform their originally superior
opponents [3]. The entire SiMAMT system can be reviewed in the
journal article in which it is explained in detail [4], but some relevant
back- ground is provided here for context. Additional content on the
development of the strategy inference engine can be reviewed in [5].

SiMAMT creates a realistic and complex environment in which
the agents and teams of agents will act. The SiMAMT Framework
is comprised of five distinct phases of processing in Figure 1, with

Figure 1: SiMAMT Framework Overview.

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 2 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

the Strategy Simulation Module expanded. The first phase is the
initialization phase called Strategic Modeling. SiMAMT is contingent
on the ability to model strategy (i.e., to formulate complex systems
of behavior into cohesive models). Once the models are in place
the process commences with the Strategy Simulation module. This
paper concerns itself with this module of the SiMAMT Framework.
The simulation module produces data that is fed into the Strategy
Inference Engine (SIE) for processing. Once this data is consolidated
and processed it is moved forward to the Evaluation Engine where
it is analyzed. This evaluation is then forwarded to the Intelligent
Strategy Selection Engine (ISSE) where a final decision is made as to
the current strategy that should be in place given the evaluation. The
cycle then repeats as the simulation continues until termination. This
framework provides high-fidelity modeling of real-world interactions
at each hierarchical level according to individual policies, behaviors,
and group strategies.

Related works
In the work of Anchez PS [6], the authors propose a multi-agent

simulation system for modeling traffic and emission from traffic.
Their approach is agent-based. This system is based on discrete
events and models stations where vehicles can arrive, be serviced, and
depart. This system is much simpler that the system proposed herein,
and is typical of many well-received simulations extant today. Their
system is fine for this application, but there are many simplifying
assumptions made to keep the interaction limited and the number of
agents low. There is also a reduced complexity to the overall system,
such as agents of the same type having the same policy, or stations
having similar policies. To accomplish the goals of increased, strategic
complexity, our system offers individual agents, each with their own
policy, comprising teams, which also have their overall group policy,
Column Break that are part of an organized hierarchy with policies
at each layer. Further, each of these policies can be changed during
operation in reaction to real-time data analysis.

Similarly, in the work of Firdausiyah N [7], the authors are
attempting to analyze traffic flow patterns in an effort to reduce
emissions. They are also using multi-agent systems, and are having
to take steps to reduce the overall complexity due to the inherently
complex nature of multi-agent systems. However, these authors
chose two additional steps that produce stronger results: first, they
are using Adaptive Dynamic Programming (ADP) to attempt a more
reactionary learning and adaption method; second, they are using
Reinforcement Learning (RL) to learn from experience. These two
methods move their solution closer to ours, but they are still using
fixed policies with small adjustable parameters, and they are using the
same policy generator for the same class of agent in their simulation.
Our solution adapts in real-time, uses strategic thinking, and reacts
to both teammates and enemy (again, our simulation is multi- team
as well).

In a work that is similar to another application of the SiMAMT
framework [5,8], the authors, Zhou Y [9] propose the use of a multi-
agent simulation to delve into the world of energy. Their work takes
on peer-to-peer (P2P) energy sharing mechanisms. Their system
uses multi-focal evaluations and heuristics to tune the policies of the
agents to maximize energy sharing and reduce energy waste (or loss).
Their approach is proof positive of the applications of multi-agent
simulations within this context. However, their approach models
the systems as cooperative, but does not model the environment or
other energy reduction elements as adversarial teams. That is, they

do not have intelligence modeling the counter effects, a hallmark of
SiMAMT.

Though the context is different, the article from Treuille A [10]
elucidates the increasing complexities of simulations that require
interactive-time interactions amongst many disparate elements.
Further, in [11] this idea is built upon and grown. The authors present
several correlated instances where the simulation must simulate,
detect, and adjust for multitudinous particles inter- acting in a variety
of patterns, flows, and avoidances.

In the work of Laviers [12], the authors seek to make an
alternative play based on reading the opponent’s previous formations
and predicting their current play. If the current play they recognize
is predicted to outperform their own play, they attempt to make the
change to a better play in real-time. Their work is not multi-agent in
that it considers the play itself and not the individual actions of the
players, nor is its multi-team as they are only considering one team
(namely, the opponent). Their procedure and overall idea are very
well done and informative for our work.

This work provides a general background in both Game Theory
and Decision Theory [13], specifically as it applies to multi-agent
system [14]. It introduces Game Theory into multi-agent learning.
These works give several approaches to solving multi- agent learning
systems and their mathematical foundations. These reference works
provide the underpinning of the work that will be introduced herein
in multi-agent systems and large-scale game solutions.

There is much foundational work in both game theory and learning
in multi-agent systems. Rather than review each of the multitudinous
examples like [15,16 17] in this proposal, there is a larger work that
summarizes each of these and compares them. Bowling, M [18] also
firmly establishes this background while entrenching itself in the
multi-agent learning scenario, and in particular in how the related
work from game theory (e.g., the Nash equilibrium) fits into the more
limiting field of multi-agent learning. This served as a check for the
formulation of the stochastic game introduced in this research so that
individual agents can exhibit behaviors that lead to the inference
of their own behaviors, and subsequently lead to the inference of the
team strategy. Without this mathematical foundation and exemplary
work to stand on, this proposal would be weighed down with many
more proofs and theorems. Instead, this work utilizes these well-
formed ideas and builds on them.

An excellent treatise on team management, role assignment, and
in-game communication can be found in [19]. This work gives good
design principles and framework information on exactly the type of
scenario envisioned by this proposal - multi-agent team coordinated
behavior with both cooperative and adversarial elements. This paper
provides much of the initial material for considering teamwork
inside of the stochastic game presented in this proposal and in the
communication sections of the multi-agent and strategy inference
portions.

Strategy- based system specification (SIMAMT)
It utilizes a model-based approach to agent management, but

the actual model is flexible. Previous iterations have used finite state
machines and search tree implement. When the strategies, and their
associated policies, can be derived (or provided) probabilistically then
they can be represented as either Finite-State Automatons (FSAs) or
Probabilistic Graphical Models (PGMs). These models can then be
encapsulated in two ways: first, as diverse sets of graphs for each such

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 3 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

policy where the relevant walks in the graph represent strategic action
chains (representing policies); second, as multiple isomorphic graphs
where the weighting of the edges encodes the decision process. This
means that multiple agents interacting within the same environment
can use strategies (with their related set of policies) to execute their
actions and, thus, act intelligently. In this scenario, then, it is possible
to reverse engineer this strategic interaction based on observations of
the actions taken by a particular agent (this is the work of the SIE).
By comparing the observed actions with the probable actions of each
policy a belief network (BN) can be formed that leads the particular
agent to predict the policy of another agent within the system.
Combining the agent’s observations of policies inferred from the
observation of other agent’s actions, the team leader can then infer
the most likely strategy in play by the other teams in the scenario. In a
system with increasing complexity, where calculating multiple factors
may be time-prohibitive, the ability to match these candidate graphs
(e.g., PGMs) with the currently forming belief network Column
Break image (another graph) in real time can be challenging. As
noted in [20], an approximate solution is available and can perform
this matching in real-time.

This work utilizes a FSA that allows for a similar action set for
each agent but with customizable factoring (probabilistic progression
through the model), shown in Figure 2. The distinct phases can
be thought of as Markov random fields with multiple variables,
reflecting real-world agents. The model progresses through the states
(e.g., a move, a cover, a fire, or an observation phase). The weighting
(factoring) of each agent action is probabilistically determined by the
individual agent’s policy. This policy is given to them from the strategy
the team is following. Thus, the agent considers their action with their
own probability (based on their player type) which reflects their own
‘personality’. This probability is then modified by the policy according
to the overall policy goals. Finally, the team strategy weighs in on the
probability. This gives the effect of individualized performance with
overall short- term goals and team performance with match-wide
long-term goals. This is critical to the real-world performance of the
simulation system: it must emphasize individualized activities but
constrain them (or at least influence them) by the team’s overall goals
(as realized in the team strategy).

In particular, the FSA will model the basic behaviors and their
probabilistic pathing. In the FSA shown in Figure 3, the agent starts
in the Idle position. They have a probability of making a move,
seeking cover, and firing on the other team. They have a certainty
of observation, both active (noting other agents in view) and
passive (noticing zones from which they are receiving fire). These
observations of the other agent’s positions, and, most notably, their
transitions from position to position, are the key elements of the
strategic inference during the simulation.

By way of example, let’s examine the inner-workings of a model
utilized in a peak-shaving algorithm simulation or energy modeling.
In this scenario, there are two teams. The first team is the campus. It is
a hierarchical network of rooms, aggregated into sections, aggregated
into floors, aggregated into buildings, aggregated into a campus. The
second team is the population. They are a hierarchical network
of people, aggregated into groups, aggregated into preferences,
aggerated into years, aggregated into the population. These two teams
are adversarial. The population is using energy, the campus is trying to
save energy. The simulation allows for the preferences of each element,
at each hierarchical level, to be expressed (i.e., modeled and simulated
with variability within the set of agents). With this structure in mind,

we can inspect one or two small elements within this simulation to
see how they are motivated. A person has a set of preferences. These
preferences are sliding values that can be assigned pseudo- randomly,
statistically, or modeled as a distributed population.

Text Box Text Box (e.g., w.r.t. heating and cooling preferences,
20% prefer 3 degrees, 30% prefer 2 degrees, 40 % prefer 1 degree and
10% are neutral.) This means that during their Move phase they will
determine if there is better environment nearby and move there or
they will move to their next scheduled location (according to their
individual customized policy). In their Offense (action) phase they
will adjust the thermostat to suit their needs. During their Defense
(adjust) phase, they will remove a jacket or pick up a blanket, for
example. In their Observe phase they will take measurements of
their surroundings and the time of day. Within each of these phases,
there is a system that chooses the next or best action from the set
of actions. This is accomplished using a probability analysis of the
preferences matched to the simulated environment. The policies
are modeled as FSA’s, as mentioned, and so the simulation moves
them through their progression of states according the probabilistic
pathing through the policy space as laid out in the FSA. Further, these
policies are evaluated at each stage and can be swapped out with
the next best policy according to the strategy being employed by the
group. Next, viewed from the opposite side, the rooms are modeled
similarly. Each room has it own characteristics, such as heat loss,
exposure to sun, etc. Each room is simulated in response to the day
as it progresses, the heat outside, the weather, etc. The simulation
moves each room through its own progression, just as it does for
every other agent. The room will use its Move phase to determine if
it can move (it likely cannot). It will use the Offense (action) phase to
manipulate any settings it controls, like lowering shades or opening a set
of baffles. The Defense phase will be its reaction to the agent’s actions,
like mitigating against the actions of the person in the room by column
break limiting the adjustments or restricting controls (per its policy).
Finally, the Observe mode is used to gather new information from the
environment. This is a small example, but it should be emphasized that
each policy is customized for every single agent and, while the steps are
similar, the simulation will take customized actions for each of them.

Strategy simulation
Creating simulations for multi-agent multi-team interactions

is a daunting task. It is non-trivial to compose a situation where
each individual agent maintains their own ‘personality’ while still

Figure 2: SiMAMT Framework: Strategy Simulation.

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 4 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

following the assigned policy dictated by a team’s central command.
Further, the complexity is inflated by ensuring that each of these
agent policies is coordinated into a cohesive team strategy. Finally,
peaking the complexity, is evaluating the performance of the team’s
strategy against other teams’ strategies in interactive time. This is the
work of this research, proposing SiMAMT, the simulation space for
multi-agent multi-team engagements, and testing it. We will first
cover the system and how well it models the virtual environment for
strategic interaction. Second, we will deliver results from a practical
test of strategy inference within such an environment using the SIE
(Strategy Inference Engine).

In multi-agent multi-team scenarios, teams of agents are often
trying to use the observed actions of the other team’s agents to
predict the behavior of the other team. Strategy inference in such
environments assumes that there is some underlying strategy
that these teams are following, that such strategies can be inferred
through observed actions, and that they can counter such strategies
in interactive time by selecting a superior strategy. These strategies
may be modeled using various graph structures such as trees, finite
state machines (FSMs), or probabilistic graphical models (PGMs).
To best determine which strategy a team is following it is necessary
to match prospective models representing observed behaviors or
policies with known models (each of which represents previously
learned strategies and their related policies). Matching these models
is difficult when their progression is probabilistic, the models can be
homeomorphic (one is a subgraph of the other) or isomorphic (the
bijection is true (i.e., homeomorphic in both directions)), and there
are a variety of factors weighting each branch of the tree [21]. Such
intensive matching is taxing even on HPC systems, especially when
interactive time decision making is key to the scenario. Further, the
complexity of the multiple teams, each of which is running their own
strategy, and multiple players, each of which is following a distinct
policy customized for them by their strategy, make interactive time
computation challenging. The results will show that the environment,
which shall be of a satisfactorily complex nature, is successfully
modeled as a multi-agent system (i.e., each agent following their
own policy, each of these policies coordinated by a strategy at the
team level) with multiple teams; further, the environment is able

to be analyzed by the SIE, and that experiments verify both the
execution of strategies and their recognition (inference). Finally,
the experiments will show that this inference leads to interactive time
decision making within the match.

It will be shown that strategies offer significant performance
enhancement to artificially intelligent agents, that strategies can be
recognized in interactive time when complexity is limited, and that
AI’s utilizing strategy inference will outperform their originally
superior opponents. In contrast, classical ma- chine learning
requires repetitive trials and numerous iterations to begin to form
a hypothesis as to the intended actions of a given agent. There are
numerous methodologies employed in an attempt to reduce the
number of examples needed to form a meaningful hypothesis. The
challenge arises from the difficulty created by the diversity of possible
scenarios in which the machine learning algorithm is placed. Given
enough time and stability a machine learning algorithm can learn
reasonably well in a fixed environment, but this does not replicate the
real world very accurately. As a result, strategies offer an opportunity
to encapsulate much of this policy-space in a compact representation.
Strategies have to be learned as well, but the AI is learning smaller,
individualized models rather than one large, monolithic policy.
These models are also transmutable to another instance of a similar
problem. Additionally, they can be pre-built and then modified to
suit the exact situation. If these strategies are represented as graphs
then they can be classified, categorized, identified, and matched. In
particular, they can be represented as a variety of highly expressive
graphs such as PGMs, FSMs with probabilistic progression, or other
graph structures composed of complex elements. The SIE uses
Column Break FSAs to build a belief network of candidate strategies
from which it selects the most likely strategy an opposing agent is
using. Once created, this research scales this to work at even larger
scales and with higher complexity.

The main view of the Strategy Simulation module’s output, the
simulation itself, can be seen in Figure 4. This view shows the POV
cameras for each team, the control panel for the simulation, the team’s
data panels, the simulation’s data panel, and the field view (Figure 5
shows the layout of these modules).

Figure 3: Expanded Agent Finite State Automaton Model.

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 5 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

Through the Strategy Simulation module, SiMAMT is
coordinating the individual agents, each of which has their own unique
features (e.g., speed, armament, etc.). It then groups these agents into
any number of teams, as requested by the simulation configuration.
These teams, then, have a leader (e.g., coach, captain, etc.). This leader
first selects which agents on its roster to make active, then assigns
a role and a policy to each agent according to the strategy for
the team. This means that the list of roles (i.e., types of behaviors in
the simulation) is distinct from the agents. Since the team leader is
assigning roles to the individual agents on their team then matching
the right agent to the right role is imperative for success. This may
be a good matching or a poor matching (this variability allows for
unique combinations of teams, roles, and agents, and thus adds
‘role assignment’ to the list of elements the simulation is modeling).
Further, the individual agent’s policy contains many variables about
how the agent will act in the various game phases. This accomplishes
the goal of maintaining individuality while imprinting each agent with
their portion of the team plan. This could lead to individual agents
breaking away from their orders and rebelling (where the agent’s
personal desires overwhelm their policy-assigned behavior), or it
could lead to an agent’s compliance (where the policy settings take
precedence). This is an example of the many factors available for each
agent, and reflective of the expressivity of the simulation (that claims
to model complex strategic interaction between team members and
between other teams). Additionally, the team leader has more policies
available than players, so they can reassign, switch, or drop policies
during the match. The leader is also responsible for evaluating the
overall performance of the team and, ultimately, deciding if the team
should switch to another strategy. This process is addressed in the SIE
portion of the research.

The Strategy Simulation follows the model loaded for execution.
This model is hierarchical in that it incorporates a model built of
models. Each layer of the hierarchy corresponds to a layer of the
execution model in the simulation - strategy models, policy models,
etc. For example, consider Figure 2 that shows an expansion of the
Strategy Simulation with a sample model. This model shows the
procedure for simulating the action of a single agent in a particular
scenario. The agent is initialized by assigning all of their characteristics
to an agent created inside the simulation (this agent will have
distinctive qualities from other similarly created agents because of
the variety of the characteristics and control variables even though
the model may be the same). Once initialized, the simulation starts
the agent control loop. Depending on the desired functionality, these

various steps, shown here in a cycle, can be done serially or in parallel.
The robustness of the simulation is that it follows the models, so it can
work either way. Regardless of the mode of execution, the various steps
are examined as indicated by the model. In this example, the agent
makes a determination about whether or not it should move, take an
offensive action, make observations, and take any defensive actions.
There are a variety of factors that go into each of these decisions, but
the overall view is that the strategy has initiatives, realized through
the policies’ behaviors, that direct the individual agent. The agent,
however, has innate characteristics that determine how likely it is to
obey the orders directly without question or to act as an autonomous
agent. The simulation progresses each agent through this cycle and
relays commands to the agents and receives observations from the
agents to pass along to the SIE.

Additionally, SiMAMT can also enforce additional constraints in
the simulation, such as not being able to shoot or observe when under
cover. It can set maximums or minimums, control overall conditions
(e.g., weather, duration, etc.), and observe the overall performance
of each team, each agent, and the simulation itself. The simulation
engine can handle any number of players, active players, field
positions, policies, and strategies as long as the data files provided
detail each of them.

The simulation environment is constructed from data files. The
files contain all of the configurable data that describes each aspect of
the simulation in detail. The simulation engine is designed so that the
inner workings of the engine are held within the system specifically
so that it can be easily adapted to new simulations. As illustrated
previously in the model- based diagram for SiMAMT, Figure 2,
the data files that configure the simulation are held in the Strategic
Modeling portion of the framework. This section is separate from the
execution-cycle elements of SiMAMT because it is the portion of the
framework where the users can configure the models, parameters, and
any other necessary configuration elements of the simulation. With
the files configured and the scenario confirmed in the models, the
framework then proceeds to the execution-cycle. Again, this portion
of the framework utilizes those models that were input, so the inner
workings of the framework do not have to be altered for simulation
execution. Once all of the data is loaded that configures the frame-
work, the agents are then recruited onto teams. Once fully configured,
the simulation assigns strategies to each team. These strategies then
match agents with agent types (e.g., commander, sniper, etc.) and
assigns an initial policy to each. Each player’s policy then assigns
them a particular behavior, complete with their movement diagram.

Figure 4: SiMAMT Simulation: Beginning.

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 6 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

Each player is then moved to their initial state (the home position on
them movement diagram) and then the simulation begins.

One critical element to understanding and deploying strategy
within a simulated environment is the Movement Dependency
Diagram (MDD). The MDD is a diagram that is the result of a search
through the entire state space (in each sys) Column Break teem, states
are defined by that system as locations, positions, or situations where
an agent is located and from which they can take actions to shift their
state). Generically, the state space of an environment is the list of
connected states that are reachable through every possible action. In
strategic simulations this is the entire list of movements - that is, any
and every action that moves an agent from one position to another.
This creates a diagram that shows all possible movements and all
possible subsequent movements from those, thus creating a Total
Movement Dependency Diagram. The Total Movement Dependency
Diagram can be made into sub-graphs where each sub-graph contains
a particular set of connected moves within the larger set of moves.
These sub-graphs can then be tied to certain strategic behavior (e.g.,
playing a particular position in soccer).

Figure 6 shows the aggregate MDD’s for the green team, the
yellow team, and both teams. Each color represents the MDD for each
team member. The sum total of these MDDs shows the team’s MDD,
and, thus, their overall strategy being. This team MDD is a subset of
the Total MDD. Correspondingly, as the simulation progresses and
observations are being made the teams begin to formulate their best
estimate of the other team’s MDD. This can be seen in the simulation
progress images shown in Figure 7. This forms the basis of the Strategy
Inference Engine’s Belief Network (matching these sub-graphs to the
known set of strategy graphs). Each of these images are close-ups of
the central screen of the simulation engine, the overhead view, shown
previously in Figures 4 and 5.

The simulation is a discrete-time simulation where each agent
(and each element of the environment) can both exe- cute and
receive actions at each interval. This is an agent- based simulation
(or, agent-model-based, to be more precise). Algorithm 1 is utilized
in the execution of the simulation. As previously mentioned, the
FSA for each agent makes decisions at each interval. Based on the
FSA shown earlier Figure 8, the various sub-models are executed in
the order needed (some steps can be skipped, done more than once,
etc., depending on the model selected or the strategy in force). Using
this sample FSA, each action can be considered in turn. First, the
agent examines its behavior to determine the next move. This is done

probabilistically based on the behavior (that lists each next move
and its accompanying probability). Next, the probability of a move
is based on the Movement feature of the strategy. If a move is issued,
the agent proceeds to the next state at the speed dictated by the policy.
It should be noted that the speed with which they move determines their
vulnerability during the move and the ability to aim during the transition.
This provides an added realism to the simulation that is sensible (e.g.,
if an agent sprints, they are less likely to be hit, but less likely to aim
correctly). The next action for consideration is defense. The probability
is based on the Aggression and Posture factors. Again, defense may
choose cover, and under cover the agent is unlikely to be hit but is unable
to fire or make active observations. The next probable action to consider
is offense. This probability is based on the strategy factor of Aggression
and Posture and metered by the agent type and policy. The next action
to consider is observe. This involves the same basic flow as the firing
phase, but they are only noting which agents are visible and noting any
transitions. If they are being fired upon then these positions are inferred
to contain other agents and are so noted (this uses an inverse kinematic
to determine reverse trajectories based on those positions observable
from this current position). This completes the action selection FSA for
this agent and the simulation moves on to the next stage.

To better understand the strategy factors involves examining
them in context. For example, in the 5-vs-5 speedball paintball
scenario, the Aggression speaks to how the strategy might overwhelm
the policy to force a player to move where they might not have
otherwise. It may also overwhelm their choice to take cover. Likewise,
the Movement factor controls how likely they are to move and also
in which direction. For example, the players may start to retreat
(move backwards through their move list) as the number of active
players remaining on their team diminishes. The Distribution often
overrides move probabilities to move players closer to each other or
farther apart depending on this setting. The Posture factor controls
fire aggression, movement aggression, and the agent’s likelihood to
stand and fire vs. retreat. Finally, there is a Persistence factor that
keeps the players on their current policy or freeze them to move
to another policy. These factors, as well as the subset of policies,
differentiate the strategies one from another. It is important to note
that the complexity of this environment is possible even with each
agent in the simulation following the same model (though with
different probabilities). If the models varied, the SIE would be even
more effective because the engine would have more diversity in the
observations provided for inference. The simulation is comprised of a
series of engines that drive in Figure 9.

Figure 5: SiMAMT Simulation: Areas of Interest.

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 7 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

Figure 6: SiMAMT Simulation: MDDs.

Figure 7: SiMAMT Simulation: Observations.

Figure 8: SiMAMT Simulation: Observations.

Algorithm 1 Simulation Engine for Strategic Multi-Agent
the action of the simulation forward. As the simulation runs it is
gathering data and passing the data on to both the Evaluation Engine
(EE) and the Strategy Inference Engine (SIE). The Evaluation Engine
(EE) analyzes the policies in place for the team based on their strategy
and decides if any players need to be assigned new policies for better
performance. The SIE gathers data on what is being observed by
the agents in the field and decides on the most likely policies and
strategies being followed by the other teams in the system. Both of
these engines produce output, and this output (i.e., their evaluation)
is fed into the Intelligent Strategy Selection Engine (ISSE). The ISSE
takes this evaluation data and analyzes it in comparison to the most
likely strategies in play by other teams. It then decides if a change in
strategy is warranted. The ISSE makes the final decisions on strategies
in play, strategy comparisons, and strategy decisions.

Results
The experiments pit the same 16 players, placed on the same

two teams (Red and Blue), against one another while varying the
strategies that each team is using. A match is configured as two
teams, 8 player max per team, 5 active players per team, and 1 - 3
hits to eliminate a player from the contest. As a result, even though
the players do not change, they are assigned differing roles, differing
overlying strategic factorizations, differing policies to follow, and
each match is still probabilistically projected. There are nine available
strategies comprised of a combination of the 26 policies used in
this experiment.) For example, the Strong Defense strategy has two
Heavies, two Riflemen, and one Commander. One heavy takes the
back right defensive position and, as a heavy, will concentrate fire on
the enemy while protecting its own team members. The heavies are
not very mobile, so they make up for that fact with heavier fire rates.

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 8 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

Figure 9: Algorithm.

The two riflemen move rapidly to the front right and left position to
set up the forward attacking position and spotting the flag. Finally,
the commander oversees the battlefield and provides support to both
of these pairs of players while keeping the team together. As a result,
the commander stays more centrally located in the field but keeps
under cover. Each of the strategies is formulated for such an effect
(e.g., offense, defense, balanced, etc.).

Each team has their own side with a number of obstacles of
varying size, protection, and position. While both sides are similar,
they are mirrors of each other, so there is a right- and left-hand
portion to each side of the course. Figure 10 shows an official field
diagram from the PSP Event held in Phoenix, AZ [22]. Additionally,
it shows a television still frame of the actual field, and provides a 3D
model of the same field. This field was then rendered in Unity as a 3D
model with each obstacle created as a distinct object. The agents were
then placed in this 3D environment at their default state (here, home
base). The simulation then uses the underlying strategic models with
their policies and behaviors to move the players through the field. In
so doing, the agents form strategic formations and have a coordinated
plan of attack. Additionally, they begin to gather observations and
transitions about the agents on the other team and that is used in
the strategy inference. The agents can also begin to eliminate agents
from the other team as they observe them and fire paintballs at them.
The simulation uses ray casting to determine which agents can be
observed and which can be fired upon. As noted previously, the firing
process is probabilistic and governed by the simulation variables, to
their varying degrees of accuracy.

As an important note, even though the simulation engine is a
multi-agent multi-team simulator with the particular application
of 5-vs-5 speedball paintball, it could easily be converted to run
any similar system with any number of teams, players, policies, or
strategies.

Some additional settings in this particular simulation: no blind-
firing (a player must see another player before it is allowed to fire),
no stacking (no double-occupancy of any one side of a particular
obstacle), and all match stats are tracked (e.g., the number of hits
before elimination, size of each team, etc.).

There are a number of variables that affect the decisions made by
the simulation engine as it progresses players through the simulation.
First, the rate of fire is determined by the player and the player type.
The fire probability is measured once per round fired. Second, the
strategy factors of Distribution (how close the agents on a team stay
to each other), Aggression (how likely the agents are to move or fire),
and Posture (offensive, defensive, etc.) weigh in. Additionally, the
policy itself speaks to the firing positions and lanes where the player
can fire. Finally, there are a number of global simulation variables that
determine if shots fired actually hit or affect the target (e.g., general
accuracy of paintball guns, probability of breakage of the paintball,
etc.). These provide a stronger level of realism for the simulation and
demonstrate the flexibility and expressibility of the framework.

As the simulation is running the control panel controls the view
of the main field (overhead view). It can be toggled, as indicated, to
show the simulation field with all agents visible, the MDDs for each

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 9 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

Figure 10: SiMAMT Simulation: Mid-Simulation (3v5).

team or the aggregate of both of them, the inference models observed
thus far, and the aiming and progress of the agents. The data panel
for each team is showing the current inference data for each known
strategy, highlighting the current most likely strategy in force for the
other team(s). The simulation data panel shows the observations and
transitions noted so far. When combined with POV cameras for each
agent, the simulation output shows the progress of the simulations
while provided analysis and insight into the step-wise progress of
each agent, each team, and the overall simulation. This panel proved
an invaluable tool in understanding the interactions of strategy-based
teams and agents as the progress through their assigned tasks. The
simulations can also be easily recorded to be walked back through in
even greater detail.

The simulation was run effectively and efficiently, the strategies
were realized accurately, and the matches run with high-fidelity. The
results have been published previously with the standard simulation,
but this new simulation produced the same results strategic
interactions can be implemented, inferred, and adjusted while the
simulation is running.

Conclusion
The goal of this work was to create an interactive-time strategy-

based simulation that provided constant feedback to the user. This
goal was fully realized, with high-fidelity to real- world versions of the
game simulated. This work proves that the strategy-based SiMAMT
framework can be used in highly- interactive 3D environments that
mimic strongly their real- world counterparts. Additionally, the
insight provided by the simulations output proved to be an invaluable
tool in assessing strategy (both at the individual agent and team level).
This success has shown that this highly-complex type of interaction
can be modeled, simulated, analyzed, and understood; further,
the tool itself can be used to learn more about this type of strategic
interaction and to share such data with others.

Future work
This work will next be applied to higher-degree hierarchical structures,

like military simulations. This will further prove the applicability of this
framework and the usefulness of this simulation environment.

Reference

1.	 Luke S, Cioffi-Revilla C, Panait L, Sullivan K, and Balan G, et.al. (2005)
“Mason: A multiagent simulation environment,” Simulation, 81: 517-527.

2.	 Horni A, Nagel K, Axhausen KW (2016) The multi-agent transport simulation
MATSim. Ubiquity Press London.

3.	 Franklin DM (2015) “Strategy Inference in Stochastic Games Using Belief
Networks Comprised of Probabilistic Graphical Models,” Proceedings of
FLAIRS.

4.	 Franklin DM, Hu X (2017) “SiMAMT: A Framework for Strategy-based
Multi-Agent Multi-Team Systems,” International Journal of Monitoring and
Surveillance Technology Research.

5.	 Franklin DM (2016) “Strategy Inference in Multi-Agent Multi-Team Scenar-
ios,” Proceedings of the International Conference on Tools for Artificial
Intelligence.

6.	 Anchez PS, Pato D, Martın G (2019) “Ctransport: Multi-agent-based
simulation”.

7.	 Firdausiyah N, Taniguchi E, Qureshi A (2019) “Modeling city logistics using
adaptive dynamic programming based multi-agent simulation,” Transportation
Research Part E: Logistics and Transportation Review, 125: 74-96.

8.	 Franklin DM (2019) “Hierarchical modeling for strategy-based multi-agent
multi-team systems,” in 2019 IEEE Second International Conference on
Artificial Intelligence and Knowledge Engineering (AIKE): 259–266.

9.	 Zhou Y, Wu J, Long C (2018) “Evaluation of peer-to-peer energy sharing
mechanisms based on a multiagent simulation framework,” Applied Energy,
222:993-1022.

10.	Treuille A, Lewis A, Popovi Z (2006) “Model reduction for real-time fluids,” in
ACM SIGGRAPH 2006 Papers, ser. SIGGRAPH ’USA 826–834.

11.	“Model reduction for real-time fluids (2006) ACM Trans. Graph, 25,826-834.

12.	Laviers k, Sukthankar G, M. Molineaux DW Darken (2009) “Improving
offensive performance through opponent modeling.” in AIIDE.

13.	Simon P, Michael W (2002) “Game Theory and Decision Theory in Multi-
Agent Systems,” Autonomous Agents and Multi-Agent Systems, 5:243-254.

14.	Michael B, Manuela V (2002) “Multiagent Learning using a Variable Learning
Rate,” Artificial Intelligence, 136:212-250.

15.	M. Littman M (1994) “Markov games as a framework for multi-agent reinforce-
ment learning,” in Proceedings of the Eleventh International Conference on
Machine Learning, 157:163.

16.	Hu J, Wellman M (1998) “Multiagent reinforcement learning: Theo- retical
framework and an algorithm,” in Proceedings of the Fifteenth International
Conference on Machine Learning, vol. 242:250.

https://www.researchgate.net/publication/220165043_MASON_A_Multiagent_Simulation_Environment
https://www.researchgate.net/publication/220165043_MASON_A_Multiagent_Simulation_Environment
https://link.springer.com/chapter/10.1007%2F978-981-15-4301-2_9
https://link.springer.com/chapter/10.1007%2F978-981-15-4301-2_9
https://link.springer.com/chapter/10.1007%2F978-981-15-4301-2_9
https://doi.org/10.4018/IJMSTR.2017010101
https://doi.org/10.4018/IJMSTR.2017010101
https://doi.org/10.4018/IJMSTR.2017010101
https://link.springer.com/chapter/10.1007/978-3-642-35612-4_1
https://link.springer.com/chapter/10.1007/978-3-642-35612-4_1
file:///F:/1.Subramanyam%20Team/1%20DATA/SciTechnol/JCEIT/JCEITVolume.9/JCEITVolume9.3/JCEIT9.3_AI/h
file:///F:/1.Subramanyam%20Team/1%20DATA/SciTechnol/JCEIT/JCEITVolume.9/JCEITVolume9.3/JCEIT9.3_AI/h
file:///F:/1.Subramanyam%20Team/1%20DATA/SciTechnol/JCEIT/JCEITVolume.9/JCEITVolume9.3/JCEIT9.3_AI/h
https://doi.org/10.1016/j.apenergy.2018.02.089
https://doi.org/10.1016/j.apenergy.2018.02.089
https://doi.org/10.1016/j.apenergy.2018.02.089
http://doi.acm.org/10.1145/1179352.1141962
http://doi.acm.org/10.1145/1179352.1141962
http://doi.acm.org/10.1145/1141911.1141962
https://doi.org/10.1023/A:1015575522401
https://doi.org/10.1023/A:1015575522401

Citation: Franklin M (2020) SiMAMT: An Interactive 3D Graphical Simulation Environment for Strategy-Based Multi-Agent Multi-Team Systems. J
Comput Eng Inf Technol 9:3.

• Page 10 of 10 •Volume 9 • Issue 3 • 1000224

doi: 10.37532/jceit.2020.9(3).224

17.	Greenwald A, Hall K, Serrano R (2003) “Correlated Q-learning,” in ICML, 20:
242.

18.	Bowling, M (2004) “Existence of multiagent equilibria with limited agents,” J.
Artif. Intell. Res. (JAIR) 22:353-384.

19.	Stone PVM (1999) “Task decomposition and dynamic role as- signment
for real-time strategic teamwork,” Intelligent Agents V: Agents Theories,
Architectures, and Languages,293-308.

20.	Franklin DM (2016) “Strategy Inference via Real-time Homeomorphic and
Isomorphic Tree Matching of Probabilistic Graphical Models,” Proceedings
of FLAIRS.

21.	Vazirani VV (1989) “{NC} algorithms for computing the number of perfect
matchings in k3,3-free graphs and related problems,” Information and
Computation, vol. 80:152 -164.

22.	Warpig.com. (2016, December) PSP Field Layout Pheonix 2009.

https://doi.org/10.1007/s10458-007-0020-8
https://doi.org/10.1007/s10458-007-0020-8
http://www.sciencedirect.com/science/article/pii/0890540189900175
http://www.sciencedirect.com/science/article/pii/0890540189900175
http://www.sciencedirect.com/science/article/pii/0890540189900175
http://www.warpig.com/paintball/tournament/psp/ 2009/phoenix/fields/

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related works
	Strategy- based system specification (SIMAMT)
	Strategy simulation
	Results
	Conclusion
	Future work
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Reference

