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Abstract
Multi-agent multi-team environments are complicated and complex. 
The normal approach is to simplify the structure by using a single 
policy for each agent, such as in swarming or flocking algorithms. 
While this type of simulation environment may provide multiple 
agents working within the system, their interactions are single-
dimensional and their group behavior minimal. SiMAMT, in 
contrast, is a hierarchical, strategy-based approach that provides 
large-scale, complex strategic initiatives realized by independent 
intelligent single agents. These agents are independent because 
they have their own talents, skills, abilities, and behaviors that are 
influenced by the commands given to them from the layer above 
(e.g., the team). These agents can all have their own behaviors, 
or several could have similar behaviors, or entire teams could 
share one behavior, depending on the scenario. Further, SiMAMT 
utilizes strategy-based behaviors at every level, so the players 
are influenced by the team’s strategy, the teams are influenced 
by the unit’s strategy, the units are influenced    by the battalions’ 
strategy, etc. Whichever hierarchical structure the environment 
needs — sports, military, organizational, etc. It can be supported 
by the SiMAMT system. The simulation environment provides the 
3D visual environment to view the progress of the simulation from 
both an overall perspective and from a first-person perspective from 
each agent. This combination view provides insight into how each 
layer of the structural hierarchy is performing agents, teams, 
overall interaction, etc. Additionally, it provides overall views 
of the strategy that each team is using, each agent’s behavior, 
and the overlaps of both. The simulation also provides statistics 
as the simulation is running to relay observations, transitions, 
most likely strategies in play (the SiMAMT  framework  provides 
strategic inference to determine the most likely strategy being 
employed by the other teams in the environment), and overall 
simulation results. Overall, the goal of the simulation is to allow 
multi-agent teams to perform strategically in interactive time while 
performing strategy-inference to improve their performance. 
The SiMAMT simulation achieves this goal, and this will be 
demonstrated in the experiments.
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Introduction
When multi-agent scenarios move beyond singular, short- term 

goals and into the realm of multi-layered strategies the complexity 
quickly scales out of the practical [1]. Much of the research in multi-
agent systems revolves around single- goal systems where multiple 
agents each work independently to achieve the same goal [2]. This 
does not accurately model the real-world scenarios found in larger 
systems where each Column Break independent agent has their own 
initiatives but still works together to achieve team goals. The SiMAMT 
framework is designed to allow a hierarchical strategy structure that 
works at each level to enforce policies that work at that particular level. 
Each sub-level of the hierarchy then works at its’ particular level order 
while considering the orders filtered down from the higher level. In 
this manner, the entire structure incorporates a multi-level strategy 
without having to use a large, monolithic policy (these large policies 
arise from applying small-scale solutions to much larger problems). 
When policies are allowed to grow in scale with the number of agents 
and the complexity of the system, they become computationally 
too complex to be applied, recognized, and changed in interactive-
time. Strategy- based systems utilize group policies to aggregate the 
policies of individuals into a larger team policy (which we refer to 
as a strategy). Each of these strategies can be grouped together into 
a larger strategy at the next level. The SiMAMT framework creates 
a system to setup, model, control, and analyze multi- level strategies 
such as these.

It has been shown that strategies offer significant performance 
enhancement to artificially intelligent agents, that strategies can be 
recognized in real-time when complexity is limited, and that AI’s 
utilizing strategy inference will outperform their originally superior 
opponents [3]. The entire SiMAMT system can be reviewed in the 
journal article in which it is explained in detail [4], but some relevant 
back- ground is provided here for context. Additional content on the 
development of the strategy inference engine can be reviewed in [5].

SiMAMT creates a realistic and complex environment in which 
the agents and teams of agents will act. The SiMAMT Framework 
is comprised of five distinct phases of processing in Figure 1, with 

Figure 1: SiMAMT Framework Overview.
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the Strategy Simulation Module expanded. The first phase is the 
initialization phase called Strategic Modeling. SiMAMT is contingent 
on the ability to model strategy (i.e., to formulate complex systems 
of behavior into cohesive models). Once the models are in place 
the process commences with the Strategy Simulation module. This 
paper concerns itself with this module of the SiMAMT Framework. 
The simulation module produces data that is fed into the Strategy 
Inference Engine (SIE) for processing. Once this data is consolidated 
and processed it is moved forward to the Evaluation Engine where 
it is analyzed. This evaluation is then forwarded to the Intelligent 
Strategy Selection Engine (ISSE) where a final decision is made as to 
the current  strategy that should be in place given the evaluation. The 
cycle then repeats as the simulation continues until termination.  This 
framework provides high-fidelity modeling of real-world interactions 
at each hierarchical level according to individual policies, behaviors, 
and group strategies.

Related works
In the work of Anchez PS [6], the authors propose a multi-agent 

simulation system for modeling traffic and emission from traffic. 
Their approach is agent-based. This system is based on discrete 
events and models stations where vehicles can arrive, be serviced, and 
depart. This system is much simpler that the system proposed herein, 
and is typical of many well-received simulations extant today. Their 
system is fine for this application, but there are many simplifying 
assumptions made to keep the interaction limited and the number of 
agents low. There is also a reduced complexity to the overall system, 
such as agents of the same type having the same policy, or stations 
having similar policies. To accomplish the goals of increased, strategic 
complexity, our system offers individual agents, each with their own 
policy, comprising teams, which also have their overall group policy, 
Column Break that are part of an organized hierarchy with policies 
at each layer. Further, each of these policies can be changed during 
operation in reaction to real-time data analysis.

Similarly, in the work of Firdausiyah N [7], the authors are 
attempting to analyze traffic flow patterns in an effort to reduce 
emissions. They are also using multi-agent systems, and are having 
to take steps to reduce the overall complexity due to the inherently 
complex nature of multi-agent systems. However, these authors 
chose two additional steps that produce stronger results: first, they 
are using Adaptive Dynamic Programming (ADP) to attempt a more 
reactionary learning and adaption method; second, they are using 
Reinforcement Learning (RL) to learn from experience. These two 
methods move their solution closer to ours, but they are still using 
fixed policies with small adjustable parameters, and they are using the 
same policy generator for the same class of agent in their simulation. 
Our solution adapts in real-time, uses strategic thinking, and reacts 
to both teammates and enemy (again, our simulation is multi- team 
as well).

In a work that is similar to another application of the SiMAMT 
framework [5,8], the authors, Zhou Y [9] propose   the use of a multi-
agent simulation to delve into the world of energy. Their work takes 
on peer-to-peer (P2P) energy sharing mechanisms. Their system 
uses multi-focal evaluations and heuristics to tune the policies of the 
agents to maximize energy sharing and reduce energy waste (or loss). 
Their approach is proof positive of the applications of multi-agent 
simulations within this context. However, their approach models 
the systems as cooperative, but does not model the environment or 
other energy reduction elements as adversarial teams. That is, they 

do not have intelligence modeling the counter effects, a hallmark of 
SiMAMT.

Though the context is different, the article from Treuille A [10] 
elucidates the increasing complexities of simulations that require 
interactive-time interactions amongst many disparate elements. 
Further, in [11] this idea is built upon and grown. The authors present 
several correlated instances where the simulation must simulate, 
detect, and adjust for multitudinous particles inter- acting in a variety 
of patterns, flows, and avoidances.

In the work of Laviers [12], the authors seek to make an 
alternative play based on reading the opponent’s previous formations 
and predicting their current play. If the current play they recognize 
is predicted to outperform their own play, they attempt to make the 
change to a better play in real-time. Their work is not multi-agent in 
that it considers the play itself and not the individual actions of the 
players, nor is its multi-team as they are only considering one team 
(namely, the opponent). Their procedure and overall idea are very 
well done and informative for our work.

This work provides a general background in both Game Theory 
and Decision Theory [13], specifically as it applies to multi-agent 
system [14]. It introduces Game Theory into multi-agent learning. 
These works give several approaches to solving multi- agent learning 
systems and their mathematical foundations. These reference works 
provide the underpinning of the work that will be introduced herein 
in multi-agent systems and large-scale game solutions.

There is much foundational work in both game theory and learning 
in multi-agent systems. Rather than review each of the multitudinous 
examples like [15,16 17] in this proposal, there is a larger work that 
summarizes each of these and compares them. Bowling, M [18] also 
firmly establishes this background while entrenching itself in the 
multi-agent learning scenario, and in particular in how the related 
work from game theory (e.g., the Nash equilibrium) fits into the more 
limiting field of multi-agent learning. This served as a check for the 
formulation of the stochastic game introduced in this research so that 
individual agents can exhibit behaviors that lead to    the inference 
of their own behaviors, and subsequently lead to the inference of the 
team strategy. Without this mathematical foundation and exemplary 
work to stand on, this proposal would be weighed down with many 
more proofs and theorems. Instead, this work utilizes these well-
formed ideas and builds on them.

An excellent treatise on team management, role assignment, and 
in-game communication can be found in [19]. This work gives good 
design principles and framework information on exactly the type of 
scenario envisioned by this proposal - multi-agent team coordinated 
behavior with both cooperative and adversarial elements. This paper 
provides much of the initial material for considering teamwork 
inside of the stochastic game presented in this proposal and in the 
communication sections of the multi-agent and strategy inference 
portions.

Strategy- based system specification (SIMAMT)
It utilizes a model-based approach to agent management, but 

the actual model is flexible. Previous iterations have used finite state 
machines and search tree implement. When the strategies, and their 
associated policies, can be derived (or provided) probabilistically then 
they can   be represented as either Finite-State Automatons (FSAs) or 
Probabilistic Graphical Models (PGMs). These models can then be 
encapsulated in two ways: first, as diverse sets of graphs for each such 
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policy where the relevant walks in the graph represent strategic action 
chains (representing policies); second, as multiple isomorphic graphs 
where the weighting   of the edges encodes the decision process. This 
means that multiple agents interacting within the same environment 
can use strategies (with their related set of policies) to execute their 
actions and, thus, act intelligently. In this scenario, then, it is possible 
to reverse engineer this strategic interaction based on observations of 
the actions taken by a particular agent (this is the work of the SIE). 
By comparing the observed actions with the probable actions of each 
policy a belief network (BN) can be formed that leads the particular 
agent to predict the policy of another agent within the system. 
Combining the agent’s observations of policies inferred from the 
observation of other agent’s actions, the team leader can then infer 
the most likely strategy in play by the other teams in the scenario. In a 
system with increasing complexity, where calculating multiple factors 
may be time-prohibitive, the ability to match these candidate graphs 
(e.g., PGMs) with the currently forming belief network Column 
Break image (another graph) in real time can be challenging. As 
noted in [20], an approximate solution is available and can perform 
this matching in real-time. 

This work utilizes a FSA that allows for a similar action set for 
each agent but with customizable factoring (probabilistic progression 
through the model), shown in Figure 2. The distinct phases can 
be thought of as Markov random fields with multiple variables, 
reflecting real-world agents. The model progresses through the states 
(e.g., a move, a cover, a fire, or an observation phase). The weighting 
(factoring) of each agent action is probabilistically determined by the 
individual agent’s policy. This policy is given to them from the strategy 
the team is following. Thus, the agent considers their action with their 
own probability (based on their player type) which reflects their own 
‘personality’. This probability is then modified by the policy according 
to the overall policy goals. Finally, the team strategy weighs in on the 
probability.  This gives the effect of individualized performance with 
overall short- term goals and team performance with match-wide 
long-term goals. This is critical to the real-world performance of the 
simulation system: it must emphasize individualized activities but 
constrain them (or at least influence them) by the team’s overall goals 
(as realized in the team strategy). 

In particular, the FSA will model the basic behaviors and their 
probabilistic pathing. In the FSA shown in Figure 3, the agent starts 
in the Idle position. They have a probability of making a move, 
seeking cover, and firing on the other team. They have a certainty 
of observation, both active (noting other agents in view) and 
passive (noticing zones from which they are receiving fire). These 
observations of the other agent’s positions, and, most notably, their 
transitions from position to position, are the key elements of the 
strategic inference during the simulation. 

By way of example, let’s examine the inner-workings of a model 
utilized in a peak-shaving algorithm simulation or energy modeling. 
In this scenario, there are two teams. The first team is the campus. It is 
a hierarchical network of rooms, aggregated into sections, aggregated 
into floors, aggregated into buildings, aggregated into a campus. The 
second team    is the population. They are a hierarchical network 
of people, aggregated into groups, aggregated into preferences, 
aggerated into years, aggregated into the population. These two teams 
are adversarial. The population is using energy, the campus is trying to 
save energy. The simulation allows for the preferences of each element, 
at each hierarchical level, to be expressed (i.e., modeled and simulated 
with variability within the set of agents). With this structure in mind, 

we can inspect one or two small elements within this simulation to 
see how they are motivated. A person has a set of preferences. These 
preferences are sliding values that can be assigned pseudo- randomly, 
statistically, or modeled as a distributed population.

Text Box Text Box (e.g., w.r.t. heating and cooling preferences, 
20% prefer 3 degrees, 30% prefer 2 degrees, 40 % prefer 1 degree   and 
10% are neutral.)  This means that during their Move phase they will 
determine if there is better environment nearby and move there or 
they will move to their next scheduled location (according to their 
individual customized policy). In their Offense (action) phase they 
will adjust the thermostat    to suit their needs. During their Defense 
(adjust) phase, they will remove a jacket or pick up a blanket, for 
example. In their Observe phase they will take measurements of 
their surroundings and the time of day. Within each of these phases, 
there is a system that chooses the next or best action from   the set 
of actions. This is accomplished using a probability analysis of the 
preferences matched to the simulated environment. The policies 
are modeled as FSA’s, as mentioned, and so the simulation moves 
them through their progression of states according the probabilistic 
pathing through the policy space as laid out in the FSA. Further, these 
policies are evaluated    at each stage and can be swapped out with 
the next best policy according to the strategy being employed by the 
group. Next, viewed from the opposite side, the rooms are modeled 
similarly. Each room has it own characteristics, such as heat loss, 
exposure to sun, etc. Each room is simulated in response to the day 
as it progresses, the heat outside, the weather, etc. The simulation 
moves each room through its own progression, just as it does for 
every other agent. The room will use its Move phase to determine if 
it can move (it likely cannot). It will use the Offense (action) phase to 
manipulate any settings it controls, like lowering shades or opening a set 
of baffles.  The Defense phase will be its reaction to the agent’s actions, 
like mitigating against the actions of the person in the room by column 
break limiting the adjustments or restricting controls (per its policy). 
Finally, the Observe mode is used to gather new information from the 
environment. This is a small example, but it should be emphasized that 
each policy is customized for every single agent and, while the steps are 
similar, the simulation will take customized actions for each of them.

Strategy simulation
Creating simulations for multi-agent multi-team interactions 

is a daunting task. It is non-trivial to compose a situation where 
each individual agent maintains their own ‘personality’ while still 

Figure 2: SiMAMT Framework: Strategy Simulation.
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following the assigned policy dictated by a team’s central command. 
Further, the complexity is inflated by ensuring that each of these 
agent policies is coordinated into a cohesive team strategy. Finally, 
peaking the complexity, is evaluating the performance of the team’s 
strategy against other teams’ strategies in interactive time. This is the 
work of this research, proposing SiMAMT, the simulation space for 
multi-agent multi-team engagements, and testing it. We will first 
cover the system and how well it models the virtual environment   for 
strategic interaction. Second, we will deliver results from a practical 
test of strategy inference within such an environment using the SIE 
(Strategy Inference Engine).

In multi-agent multi-team scenarios, teams of agents are often 
trying to use the observed actions of the other team’s agents to 
predict the behavior of the other team. Strategy inference in such 
environments assumes that there is some underlying strategy 
that these teams are following, that such strategies can be inferred 
through observed actions, and that they can counter such strategies 
in interactive time by selecting a superior strategy. These strategies 
may be modeled using various graph structures such as trees, finite 
state machines (FSMs), or probabilistic graphical models (PGMs). 
To best determine which strategy a team is following it is necessary 
to match prospective models representing observed behaviors or 
policies with known models (each of which represents previously 
learned strategies and their related policies). Matching these models 
is difficult when their progression is probabilistic, the models can be 
homeomorphic (one is a subgraph of the other) or isomorphic (the 
bijection is true (i.e., homeomorphic in both directions)), and there 
are a variety of factors weighting each branch of the tree [21]. Such 
intensive matching is taxing even on HPC systems, especially when 
interactive time decision making is key to the scenario. Further, the 
complexity of the multiple teams, each of which is running their own 
strategy, and multiple players, each of which is following a distinct 
policy customized for them by their strategy, make interactive time 
computation challenging. The results will show that the environment, 
which shall be of a satisfactorily complex nature, is successfully 
modeled as a multi-agent system (i.e., each agent following their 
own policy, each of these policies coordinated by a strategy at the 
team level) with multiple teams; further, the environment is able 

to be analyzed by the SIE, and that experiments verify both the 
execution     of strategies and their recognition (inference). Finally, 
the experiments will show that this inference leads to interactive time 
decision making within the match.

It will be shown that strategies offer significant performance 
enhancement to artificially intelligent agents, that strategies can be 
recognized in interactive time when complexity is limited, and that 
AI’s utilizing strategy inference will outperform their originally 
superior opponents. In contrast, classical ma- chine learning 
requires repetitive trials and numerous iterations to begin to form 
a hypothesis as to the intended actions of a given agent. There are 
numerous methodologies employed in an attempt to reduce the 
number of examples needed to form a meaningful hypothesis. The 
challenge arises from the difficulty created by the diversity of possible 
scenarios in which the machine learning algorithm is placed. Given 
enough time and stability a machine learning algorithm can learn 
reasonably well in a fixed environment, but this does not replicate the 
real world very accurately. As a result, strategies offer an opportunity 
to encapsulate much of this policy-space in a compact representation. 
Strategies have to be learned as well, but the AI is learning smaller, 
individualized models rather than one large, monolithic policy. 
These models are also transmutable to another instance of a similar 
problem. Additionally, they can be pre-built and then modified to 
suit the exact situation. If these strategies are represented as graphs 
then they can be classified, categorized, identified, and matched. In 
particular, they can be represented as a variety of highly expressive 
graphs such as PGMs, FSMs with probabilistic progression, or other 
graph structures composed of complex elements. The SIE uses 
Column Break FSAs to build a belief network of candidate strategies 
from which it selects the most likely strategy an opposing agent is 
using. Once created, this research scales this to work at even larger 
scales and with higher complexity.

The main view of the Strategy Simulation module’s output, the 
simulation itself, can be seen in Figure 4. This view shows the POV 
cameras for each team, the control panel for the simulation, the team’s 
data panels, the simulation’s data panel, and the field view (Figure 5 
shows the layout of these modules).

Figure 3: Expanded Agent Finite State Automaton Model.
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Through the Strategy Simulation module, SiMAMT is 
coordinating the individual agents, each of which has their own unique 
features (e.g., speed, armament, etc.). It then groups these agents into 
any number of teams, as requested by the simulation configuration. 
These teams, then, have a leader (e.g., coach, captain, etc.). This leader 
first selects which agents on its roster to make active, then assigns 
a role and       a policy to each agent according to the strategy for 
the team. This means that the list of roles (i.e., types of behaviors in   
the simulation) is distinct from the agents. Since the team leader is 
assigning roles to the individual agents on their team then matching 
the right agent to the right role is imperative for success. This may 
be a good matching or a poor matching (this variability allows for 
unique combinations of teams, roles, and agents, and thus adds 
‘role assignment’ to the list of elements the simulation is modeling). 
Further, the individual agent’s policy contains many variables about 
how the agent will act in the various game phases. This accomplishes 
the goal of maintaining individuality while imprinting each agent with 
their portion of the team plan. This could lead to individual agents 
breaking away from their orders and rebelling (where the agent’s 
personal desires overwhelm their policy-assigned behavior), or it 
could lead to an agent’s compliance (where the policy settings take 
precedence). This is an example of the many factors available for each 
agent, and reflective of the expressivity of the simulation (that claims 
to model complex strategic interaction between team members and 
between other teams). Additionally, the team leader has more policies 
available than players, so they can reassign, switch, or drop policies 
during the match. The leader is also responsible for evaluating the 
overall performance of the team and, ultimately, deciding if the team 
should switch to another strategy. This process is addressed in the SIE 
portion of the research.

The Strategy Simulation follows the model loaded for execution. 
This model is hierarchical in that it incorporates a model built of 
models. Each layer of the hierarchy corresponds to a layer of the 
execution model in the simulation - strategy models, policy models, 
etc. For example, consider Figure 2 that shows an expansion of the 
Strategy Simulation with a sample model. This model shows the 
procedure for simulating the action of a single agent in a particular 
scenario. The agent is initialized by assigning all of their characteristics 
to an agent created inside the simulation (this agent will have 
distinctive qualities from other similarly created agents because of 
the variety of the characteristics and control variables even though 
the model may be the same). Once initialized, the simulation starts 
the agent control loop. Depending on the desired functionality, these 

various steps, shown here in a cycle, can be done serially or in parallel. 
The robustness of the simulation is that it follows the models, so it can 
work either way. Regardless of the mode of execution, the various steps 
are examined as indicated by the model. In this example, the agent 
makes a determination about whether or not it should move, take an 
offensive action, make observations, and take any defensive actions. 
There are a variety of factors that go into each of these decisions, but 
the overall view is that the strategy has initiatives, realized through 
the policies’ behaviors, that direct the individual agent. The agent, 
however, has innate characteristics that determine how likely it is to 
obey the orders directly without question or to act as an autonomous 
agent.  The simulation progresses each agent through this cycle and 
relays commands to the agents and receives observations from the 
agents to pass along to the SIE. 

Additionally, SiMAMT can also enforce additional constraints in 
the simulation, such as not being able to shoot or observe when under 
cover. It can set maximums or minimums, control overall conditions 
(e.g., weather, duration, etc.), and observe the overall performance 
of each team, each agent, and the simulation itself. The simulation 
engine can handle any number of players, active players, field 
positions, policies, and strategies as long as the data files provided 
detail each of them. 

The simulation environment is constructed from data files. The 
files contain all of the configurable data that describes each aspect of 
the simulation in detail. The simulation engine is designed so that the 
inner workings of the engine are held within the system specifically 
so that it can be easily adapted to new simulations. As illustrated 
previously in the model- based diagram for SiMAMT, Figure 2, 
the data files that configure the simulation are held in the Strategic 
Modeling portion of the framework. This section is separate from the 
execution-cycle elements of SiMAMT because it is the portion of the 
framework where the users can configure the models, parameters, and 
any other necessary configuration elements of the simulation. With 
the files configured and the scenario confirmed in the models, the 
framework then proceeds to the execution-cycle. Again, this portion 
of the framework utilizes those models that were input, so the inner 
workings of the framework do not have to be altered for simulation 
execution. Once all of the data is loaded that configures the frame- 
work, the agents are then recruited onto teams. Once fully configured, 
the simulation assigns strategies to each team. These strategies then 
match agents with agent types (e.g., commander, sniper, etc.) and 
assigns an initial policy to each. Each player’s policy then assigns 
them a particular behavior, complete with their movement diagram. 

Figure 4: SiMAMT Simulation:  Beginning.
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Each player is then moved to their initial state (the home position on 
them movement diagram) and then the simulation begins. 

One critical element to understanding and deploying strategy 
within a simulated environment is the Movement Dependency 
Diagram (MDD). The MDD is a diagram that is the result of a search 
through the entire state space (in each sys) Column Break teem, states 
are defined by that system as locations, positions, or situations where 
an agent is located and from which they can take actions to shift their 
state). Generically, the state space of an environment is the list of 
connected states that are reachable through every possible action.  In 
strategic simulations this is the entire list of movements - that is, any 
and every action that moves an agent from one position to another. 
This creates a diagram that shows all possible movements and all 
possible subsequent movements from those, thus creating a Total 
Movement Dependency Diagram. The Total Movement Dependency 
Diagram can be made into sub-graphs where each sub-graph contains 
a particular set of connected moves within the larger set of moves. 
These sub-graphs can then be tied to certain strategic behavior (e.g., 
playing a particular position in soccer).

Figure 6 shows the aggregate MDD’s for the green team, the 
yellow team, and both teams. Each color represents the MDD for each 
team member. The sum total of these MDDs shows the team’s MDD, 
and, thus, their overall strategy being. This team MDD is a subset of 
the Total MDD. Correspondingly, as the simulation progresses and 
observations are being made the teams begin to formulate their best 
estimate of the other team’s MDD. This can be seen in the simulation 
progress images shown in Figure 7. This forms the basis of the Strategy 
Inference Engine’s Belief Network (matching these sub-graphs to the 
known set of strategy graphs). Each of these images are close-ups of 
the central screen of the simulation engine, the overhead view, shown 
previously in Figures 4 and 5.

The simulation is a discrete-time simulation where each agent 
(and each element of the environment) can both exe- cute and 
receive actions at each interval. This is an agent- based simulation 
(or, agent-model-based, to be more precise). Algorithm 1 is utilized 
in the execution of the simulation. As previously mentioned, the 
FSA for each agent makes decisions at each interval. Based on the 
FSA shown earlier Figure 8, the various sub-models are executed in 
the order needed (some steps can be skipped, done more than once, 
etc., depending on the model selected or the strategy in force). Using 
this sample FSA, each action can be considered in turn.  First, the 
agent examines its behavior to determine the next move. This is done 

probabilistically based on the behavior (that lists each next move 
and its accompanying probability). Next, the probability of a move 
is based on the Movement feature of the strategy. If a move is issued, 
the agent proceeds to the next state at the speed dictated by the policy. 
It should be noted that the speed with which they move determines their 
vulnerability during the move and the ability to aim during the transition. 
This provides an added realism to the simulation that is sensible (e.g., 
if an agent sprints, they are less likely    to be hit, but less likely to aim 
correctly). The next action    for consideration is defense. The probability 
is based on the Aggression and Posture factors. Again, defense may 
choose cover, and under cover the agent is unlikely to be hit but is unable 
to fire or make active observations. The next probable action to consider 
is offense. This probability is based on the strategy factor of Aggression 
and Posture and metered by the agent type and policy. The next action 
to consider is observe. This involves the same basic flow as the firing 
phase, but   they are only noting which agents are visible and noting any 
transitions. If they are being fired upon then these positions are inferred 
to contain other agents and are so noted (this uses an inverse kinematic 
to determine reverse trajectories based on those positions observable 
from this current position). This completes the action selection FSA for 
this agent and the simulation moves on to the next stage. 

To better understand the strategy factors involves examining 
them in context. For example, in the 5-vs-5 speedball paintball 
scenario, the Aggression speaks to how the strategy might overwhelm 
the policy to force a player to move where they might not have 
otherwise. It may also overwhelm their choice to take cover. Likewise, 
the Movement factor controls how likely they are to move and also 
in which direction. For example, the players may start to retreat 
(move backwards through their move list) as the number of active 
players remaining on their team diminishes. The Distribution often 
overrides move probabilities to move players closer to each other or 
farther apart depending on this setting. The Posture factor controls 
fire aggression, movement aggression, and the agent’s likelihood to 
stand and fire vs. retreat. Finally, there   is a Persistence factor that 
keeps the players on their current policy or freeze them to move 
to another policy. These factors, as well as the subset of policies, 
differentiate the strategies one from another. It is important to note 
that the complexity of this environment is possible even with each 
agent in the simulation following the same model (though with 
different probabilities). If the models varied, the SIE would be even 
more effective because the engine would have more diversity in the 
observations provided for inference. The simulation is comprised of a 
series of engines that drive in Figure 9.

Figure 5: SiMAMT Simulation: Areas of Interest.
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Figure 6: SiMAMT Simulation: MDDs.

Figure 7: SiMAMT Simulation: Observations.

Figure 8: SiMAMT Simulation: Observations.

Algorithm 1 Simulation Engine for Strategic Multi-Agent 
the action of the simulation forward. As the simulation runs it is 
gathering data and passing the data on to both the Evaluation Engine 
(EE) and the Strategy Inference Engine (SIE). The Evaluation Engine 
(EE) analyzes the policies in place for the team based on their strategy 
and decides if any players need to be assigned new policies for better 
performance. The SIE gathers data on what is being observed by 
the agents in the field and decides on the most likely policies and 
strategies being followed by the other teams in the system. Both of 
these engines produce output, and this output (i.e., their evaluation) 
is fed into the Intelligent Strategy Selection Engine (ISSE). The ISSE 
takes this evaluation data and analyzes it   in comparison to the most 
likely strategies in play by other teams. It then decides if a change in 
strategy is warranted. The ISSE makes the final decisions on strategies 
in play, strategy comparisons, and strategy decisions.

Results
The experiments pit the same 16 players, placed on the same 

two teams (Red and Blue), against one another while varying the 
strategies that each team is using. A match is configured as two 
teams, 8 player max per team, 5 active players per team, and 1 - 3 
hits to eliminate a player from the contest. As a result, even though 
the players do not change, they are assigned differing roles, differing 
overlying strategic factorizations, differing policies to follow, and 
each match is still probabilistically projected. There are nine available 
strategies comprised of a combination of the 26 policies used in 
this experiment.) For example, the Strong Defense strategy has two 
Heavies, two Riflemen, and one Commander. One heavy takes the 
back right defensive position and, as a heavy, will concentrate fire on 
the enemy while protecting its own team members. The heavies are 
not very mobile, so they make up for that fact with heavier fire rates. 
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Figure 9: Algorithm.

The two riflemen move rapidly to the front right and left position to 
set up the forward attacking position and spotting the flag. Finally, 
the commander oversees the battlefield and provides support to both 
of these pairs of players while keeping the team together. As a result, 
the commander stays more centrally located in the field but keeps 
under cover. Each of the strategies is formulated for such an effect 
(e.g., offense, defense, balanced, etc.).

Each team has their own side with a number of obstacles   of 
varying size, protection, and position. While both sides are similar, 
they are mirrors of each other, so there is a right- and left-hand 
portion to each side of the course. Figure 10 shows an official field 
diagram from the PSP Event held in Phoenix, AZ [22]. Additionally, 
it shows a television still frame of the actual field, and provides a 3D 
model of the same field. This field was then rendered in Unity as a 3D 
model with each obstacle created as a distinct object. The agents were 
then placed in this 3D environment at their default state (here, home 
base). The simulation then uses the underlying strategic models with 
their policies and behaviors to move the players through the field. In 
so doing, the agents form strategic formations and have a coordinated 
plan of attack. Additionally, they begin to gather observations and 
transitions about the agents on the other team and that is used in 
the strategy inference. The agents can also begin to eliminate agents 
from the other team as they observe them and fire paintballs at them. 
The simulation uses ray casting to determine which agents can be 
observed and which can be fired upon. As noted previously, the firing 
process is probabilistic and governed by the simulation variables, to 
their varying degrees of accuracy.

As an important note, even though the simulation engine is a 
multi-agent multi-team simulator with the particular application 
of 5-vs-5 speedball paintball, it could easily be converted to run 
any similar system with any number of teams, players, policies, or 
strategies.

Some additional settings in this particular simulation: no blind-
firing (a player must see another player before it is allowed to fire), 
no stacking (no double-occupancy of any one side of a particular 
obstacle), and all match stats are tracked (e.g., the number of hits 
before elimination, size of each team, etc.).

There are a number of variables that affect the decisions made by 
the simulation engine as it progresses players through the simulation. 
First, the rate of fire is determined by the player and the player type. 
The fire probability is measured once per round fired. Second, the 
strategy factors of Distribution (how close the agents on a team stay 
to each other), Aggression (how likely the agents are to move or fire), 
and Posture (offensive, defensive, etc.) weigh in. Additionally, the 
policy itself speaks to the firing positions and lanes where the player 
can fire. Finally, there are a number of global simulation variables that 
determine if shots fired actually hit or affect the target (e.g., general 
accuracy of paintball guns, probability of breakage of the paintball, 
etc.). These provide a stronger level of realism for the simulation and 
demonstrate the flexibility and expressibility of the framework.

As the simulation is running the control panel controls the view 
of the main field (overhead view). It can be toggled, as indicated, to 
show the simulation field with all agents visible, the MDDs for each 
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Figure 10: SiMAMT Simulation: Mid-Simulation (3v5).

team or the aggregate of both   of them, the inference models observed 
thus far, and the aiming and progress of the agents. The data panel 
for each team is showing the current inference data for each known 
strategy, highlighting the current most likely strategy in force for the 
other team(s). The simulation data panel shows the observations and 
transitions noted so far. When combined with POV cameras for each 
agent, the simulation output shows the progress of the simulations 
while provided analysis and insight into the step-wise progress of 
each agent, each team, and the overall simulation. This panel proved 
an invaluable tool in understanding the interactions of strategy-based 
teams and agents as the progress through their assigned tasks. The 
simulations can also be easily recorded to be walked back through in 
even greater detail.

The simulation was run effectively and efficiently, the strategies 
were realized accurately, and the matches run with high-fidelity. The 
results have been published previously with the standard simulation, 
but this new simulation produced the same results strategic 
interactions can be implemented, inferred, and adjusted while the 
simulation is running.

Conclusion
The goal of this work was to create an interactive-time strategy-

based simulation that provided constant feedback to the user. This 
goal was fully realized, with high-fidelity to real- world versions of the 
game simulated. This work proves that the strategy-based SiMAMT 
framework can be used in highly- interactive 3D environments that 
mimic strongly their real- world counterparts. Additionally, the 
insight provided by the simulations output proved to be an invaluable 
tool in assessing strategy (both at the individual agent and team level). 
This success has shown that this highly-complex type of interaction 
can be modeled, simulated, analyzed, and understood; further, 
the tool itself can be used to learn more about this type of strategic 
interaction and to share such data with others.

Future work
This work will next be applied to higher-degree hierarchical structures, 

like military simulations. This will further prove the applicability of this 
framework and the usefulness of this simulation environment.
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