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Abstract
In soil survey there is no pedotransfer function available to estimate 
sum-of-bases (SBs) for the range of soils that occur in the United 
States. The objectives of this study were to develop a SBs model 
using the k-nearest neighbor (k-NN) approach and validate this 
model against an independent dataset. The nearest-neighbor 
approach passively stores the development (or reference) dataset 
until the time of application, and then the dataset is searched for the 
10 (k) most similar soils to that of the target soil, based on selected 
attributes (i.e., OC, cation exchange, pH, extractable acidity). The 
reference dataset was developed from the National Cooperative Soil 
Survey characterization database in Lincoln, Nebraska. Taxonomic 
order is used as strata within the reference dataset. The overall 
model prediction error (or RMSEp) was 2.104 cmol (+) kg-1 with a ME 
of -0.15 cmol (+) kg-1. Among the soil order groups, the RMSEp ranged 
from 1.169 to 5.943 cmol (+) kg-1, with the Histosols order having the 
largest RMSEp. Because of the underrepresentation of organic layers 
(compared to mineral layers) in the reference database, prediction 
errors tend to be higher. The overall low prediction errors suggest that 
the four properties (i.e., cation-exchange, pH, extractable acidity, and 
organic carbon) were effective in finding the nearest soils (to the target 
soil) in the reference dataset. In soil survey, the k-NN SBs model 
provides an efficient and reasonably accurate tool for estimating sum 
of bases (up to 100% base saturation) when measured data are not 
available for soils of the US.
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Introduction
Sum of bases (SBs) as defined here are the sum of extractable bases 

(i.e., Ca2+, Mg2+, K+, and Na+) determined with ammonium acetate (1N 
NH4OAc) buffered at pH 7, reported on <2 mm base with units of 
cmol(+) kg-1. Sum-of-bases is used in the calculation of base saturation, 
which is the percentage of the soil exchange complex occupied by base 
cations [1]. It is a measure of inherent fertility. Generally, soils with 
a high percent base saturation have higher soil fertility. Soils in the 
pH range 5.5 to 7.0 or 8.2 generally have a measured base saturation 
of less than 100 percent. Base saturation values are particularly low 
for weathered soils dominated by minerals such as kaolinite, which 
has a high proportion of pH-dependent charge [2]. Below pH 5.5, 
exchangeable Al saturation increases, and the exchangeable base 

saturation decreases with decreasing pH [1]. Base saturation is used as 
a criterion in Soil Taxonomy, separating Mollic (high base saturation) 
from Umbric (low base saturation) epipedons [3]. Base saturation is 
used as a criterion for Ultisols, Ultic subgroups of Alfisols, Andisols, 
and Mollisols, Alfic and Dystric subgroups of Inceptisols, and Alfic 
subgroups of Spodosols [4]. Sum of extractable bases is used directly as 
a criterion to classify soils in most of the Eutric subgroups of Andisols.

Sum of bases (SBs), from which base saturation is derived, is a 
soil property that is captured in the National Soil Information System 
(NASIS) database of the USDA-NRCS for soil map unit components 
(i.e., soils/series that make up the map unit). There are no field 
estimation methods available [4]. Measuring SBs is not practical 
everywhere and at every depth within all map unit components in 
a survey area or for an update. Predictive models become useful 
in these cases, which are based on soil descriptions and other more 
easily obtained data existing in the soil survey database. However, 
given the need, there are no national soil survey guidelines or models 
for estimating SBs [4]. There is no national model for estimating SBs. 
There are still areas where initial soil mapping is occurring and there 
are many areas going through updates, especially on an MLRA basis. 
To improve estimates of SBs, a model that is national in scope and uses 
available properties within the soil survey database is needed.

Soil pH has been commonly used to estimate base saturation when 
laboratory data are not available [5,6]. However, it was pointed out by 
Thomas and Hargrove [7] that the relationship between pH and base 
saturation can differ greatly from soil to soil. Ranney et al. [8] developed 
SBs prediction equations for northeastern Pennsylvania from 555 soil 
profiles using pH, moisture surplus and drainage class as independent 
variables. They found percent moisture content to be higher at a 
given pH in areas of low total moisture surplus and in areas of poorer 
drainage. Gray et al. [9] using the ISRIC WISE Global database, 
developed broad relationships between SBs and the soil forming factors 
using three different modeling approaches. In their regression model 
approach, variables significant in their prediction of SBs were parent 
material, climate, and slope. Aitkenhead et al. [10] developed a Neural 
Network model using the National Soil Inventory of Scotland (NSIS) 
to predict several parameters, one of them being sum of exchangeable 
bases. Their input parameters corresponded closely to the soil forming 
factors and human influence, and SBs was categorized as being well 
predicted with an r2 = 0.56. Genu and Dematte [11] found it possible to 
estimate SBs for a specific region in Brazil using infrared spectral data, 
which were comparable to multiple regression estimates. Nettleton 
et al. [12] developed a multiple regression model for predicting base 
saturation for Andisols with predictor variables of pH in water, clay 
content, and pH in NaF (r = 0.92; SE = 11.2). In summary, there are 
only a few models that have been developed, and they are specific 
to a region or country or to a specific type of soil and would not be 
applicable to the wide range of soils that occur within the U.S.

A nonparametric approach, called k-nearest neighbor (k-NN), 
was used by Nemes et al. [13] in the prediction of water contents at 
33 kPa and 1500 kPa matric potentials and by Seybold et al. [14] in 
the prediction of bulk density. The k-NN approach belongs to a group 
of “lazy learning algorithms” in which the model passively stores the 
development data set until the time of application. All calculations are 
then performed when an estimation of the property is generated. This 
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involves identifying and retrieving the nearest stored values (k) relative 
to the unknown or target soil. The k-NN approach could be well suited 
to the prediction of SBs because a large soil survey characterization 
database containing thousands of measured values from all across the 
U.S. is available along with pedological information. 

The objectives of this study were to develop a model to predict 
SBs using the k-NN approach and validate the model against an 
independent dataset. The model would be limited to the basic soil 
properties captured in soil survey that are related to SBs such as pH 
and taxonomic classifications. A prediction model, that is national in 
scope, will provide consistent and improved accuracy of SBs estimates, 
which will benefit all users of soil survey data and their interpretations 
as soil survey data is being updated or through initial mapping.

Materials and Methods
Soil data

Measured data were selected from the Kellogg Soil Survey 
Laboratory (KSSL) database in Lincoln, NE. This database contains over 
37,000 pedons with measured chemical and physical data, representing 
geographically diverse soils from across the conterminous U.S., Hawaii, 
and Alaska. The following measured data were used from the database: 
total sand (2-0.05 mm), total silt (0.05-0.002 mm), and total clay (< 
0.002 mm) (pipette method), organic C content (acid-dichromate 
digestion method, discontinued in 2000), total C (dry combustion), 
CaCO3 equivalent (electronic manometer method), gypsum content 
(<2 mm), electrical conductivity (saturated paste method), cation-
exchange capacity (CEC) (1.0 N NH4OAc at pH 7), effective cation-
exchange capacity (ECEC) (1.0 N NH4OAc at pH 7), pH (in water and 
in CaCl2), sum of extractable bases (NH4OAc, pH 7.0), and extractable 
acidity (barium chloride-triethanolamine, pH 8.2). All methods are 
described in Soil Survey Staff [15]. Most determinations were from air-
dried (30-35°C), crushed, and sieved (<2 mm) soil samples. Data are 
reported on an oven-dry basis. Other data used were the soil taxonomic 
classifications from the soil’s profile description. Base saturation 
was calculated from SBs by dividing SBs by the CEC or ECEC and 
multiplying by 100. Sum of base values were corrected to 100% base 
saturation in cases when the extractable bases were greater than 100% 
base saturation. This occurs when there are soluble salts, gypsum and 
carbonates present in the soil, which contribute bases in the extract 
[15]. Where total C was measured, the organic carbon was determined 
by difference between the total C and CaCO3-C [1]. 

The measured data was split into a development dataset and a 
validation dataset. Because of the nature of this model, most of the data 
was used for model development (88%). A reference dataset that is to be 
used by the k-NN model was developed using the development dataset. 
Figure 1 shows the locations of the pedons used in the reference (or 
development) dataset (conterminous US only). Selection of attributes 
(or input parameters) to include in the reference dataset was based 
on what others have used in predicting SBs or base saturation, and 
evaluating relationships between base saturation and soil properties. 
Pearson correlations were computed to evaluate these relationships. 
To evaluate categorical variables as input variables (such as taxonomic 
order, mineralogy class and master horizon designation), effects coding 
in general linear models was used to produce parameter estimates that 
are differences from group means [16].

K-Nearest neighbor (k-NN) approach

The k-NN approach was first described by Nemes et al. [13] in 
the prediction of water contents at 33 and 1500 kPa matric potentials, 

and was later applied by Seybold et al. [14] in the prediction of bulk 
density using their approach. For the convenience of the reader, the 
k-NN approach as summarized in Seybold et al. [14] is presented here. 
There are no predefined mathematical functions that estimate SBs. A 
“reference dataset” is searched for soils that are most similar to the 
target soil, based on selected attributes (e.g., pH, CEC, and OC). The 
“distance” (a measure of similarity) of each soil to the target soil (in the 
reference dataset) is calculated:
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Where di is the distance of the ith soil from the target soil, and ∆aij is 
the difference of the ith soil from the target soil in the jth soil attributes 
[13]. In the present study, there are more than two input attributes 
(e.g., CEC, OC, and pH), so the attribute values are normalized before 
they are used to calculate “distance”, which avoids bias towards one 
or more attributes [13]. As a result, temporary variables are generated 
with a distribution having a zero mean and a standard deviation of one 
using the following transformation from [13]:
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Where aij represents the value of the jth attribute of the ith soil, 
and āj and σ(aj) represent the mean and standard deviation of the 
observed values of the jth attribute in the reference data set. Then, the 
minimum-maximum range of those temporary variables, are scaled to 
obtain zero mean and the same minimum-maximum range in the data 
of all attributes:
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Where aj(temp) represents the data of the jth soil attributes normalized 
using Eq. 2; and aij(trans) represents the final transformed value of the jth 
attribute of the ith soil that are to be used as input [13]. It should be 
noted that taxonomic order is a strata within the reference dataset and 
was not normalized. Within soil order the continuous attributes were 
normalized.

The closest 10 soils (k) in the reference dataset (within the soil 
order strata) were then used to formulate the estimate of the output 
SBs. It was shown by Nemes et al. [13] that k was not very sensitive to 
reference data set size as long as k was above 8 or 9 (in their particular 
case). A k of 10 was successfully used in a k-NN model for predicting 

Figure 1: Sample location of pedons (continental US only) that make up the 
reference dataset used in the prediction of sum-of-bases.
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soil bulk density [14]. We felt there was no reason to alter k; therefore a 
k of 10 was used here in the present study.

Nemes et al. [13] presented the argument that a soil closer to the 
target should have more weight in calculating the estimated value. 
Therefore, their distance-dependent weighting system was employed 
here to account for the distribution of the distances of the selected 10 
nearest soils to the target: 
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Where k is the number of neighbors considered, and wi is the 
assigned weight, and di(rel) is the relative distance of the ith selected 
neighbor, calculated as:
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Where k is the number of neighbors considered, and di is the 
distance of the ith selected neighbor calculated using Eq. 1, and p is a 
power term that was set to one for the estimation of SBs in the present 
study. Nemes et al. [13] has shown that p values remained around one 
and were generally insensitive to sample size (in their particular case), 
suggesting that “one” is a safe first approximation. Attribute weights 
were applied equally across the entire data space. The final result was 
average weighted SBs of the 10 nearest soils within taxonomic order 
strata in the reference dataset.

Model development

The k-NN model for predicting SBs was programmed as a 
“Calculation” in the National Soil Information System (NASIS) 
(version 6.4). The scripting language in NASIS for Calculations, 
Validations, Interpretations and Reports (CVIR) uses a variant of the 
Structured Query Language (SQL) [17]. The result of the calculation 
can be set in the database. The reference dataset is called into the model 
as an “input” file. The model is available as a choice and can be used 
by the soil scientist when no measured data are available and when an 
estimate is needed, when populating or updating the NASIS database 
for a mapunit component.

Validation

The SBs k-NN model was validated with an independent dataset 
of measured properties from the KSSL database, consisting of 4,347 
horizons. The soil horizons represented pedons from all across the 
United States, including Alaska and Hawaii. Measured versus predicted 
SBs was evaluated using the general linear model procedure in SYSTAT 
[16]. Confidence intervals (95%) were calculated for the slope and 
intercept of the least square estimate line. Performance measures were 
the root mean square error (RMSE) and mean error (ME) as calculated 
in McBratney et al. [18]. The RMSE gives the accuracy of the estimations 
in terms of standard deviation.

Results and Discussion
Application of the k-NN technique requires identification of input 

parameters that will be used to find soils nearest to the target soil [13]. 
Correlation of soil properties with base saturation were evaluated for 
this purpose. Soil pH in water had the highest correlation to the base 
saturation (r=0.77). Base saturation generally decreases with lower 
pH values. Beery and Wilding [5] have also shown a relationship of 
pH to base saturation for Ohio soils. They found pH to be a more 
reliable predictor in surface soils than that in subsoils at predicting base 

saturation. In the present study, extractable acidity had a moderately 
negative correlation with base saturation (r=-0.45). This would be 
expected, as exchangeable Al3+ and H+ increase, the exchangeable bases 
would decrease on the exchange complex. Effective cation exchange 
capacity and CEC had weaker correlations with base saturation (r = 0.36 
and r = 0.10, respectively). Pierre and Scarseth [19] in soils of like pH 
values also found imperfect correlations of CEC with base saturation. 
Organic carbon does have cation-exchange properties, which also had 
a weak negative correlation with base saturation (r=-0.19). In a study 
by Blosser and Jenny [20], correlations of base saturation with soil 
properties were improved when soils were grouped into classes based 
on OC and CEC. By grouping in this manner, they were able to control 
the soil forming factor of climate. They postulated that control of soil 
forming factors should improve correlations among soil properties 
with base saturation. Based on their conclusion and correlations in 
the present study, OC and CEC where selected as input parameters 
for inclusion in the reference dataset. There was no other soil property 
that showed any significant relationship to base saturation. Because the 
above four properties (i.e., cation-exchange, pH, extractable acidity, and 
OC) have some relationship to base saturation (directly or indirectly), 
they were selected as input variables that will be used to find the 10 
closest soils (to the target soil) in the reference dataset. Additionally, 
both CEC and ECEC were included because in our soil survey database 
(NASIS) CEC is only available for soils with pHs>5.5 and ECEC is 
available for soils with pHs ≤ 5.5. Similarly, in NASIS, pH in water is 
available for mineral soils and pH in CaCl2 is available for organic soils. 
To build a model for all soils, both pH data and cation exchange data 
(CEC and ECEC) must be included as input variables in the reference 
dataset. Different input parameters will be used depending on the target 
soil’s available properties.

Taxonomic order is the broadest category in soil taxonomy and is 
based largely on soil-forming processes as indicated by the absence or 
presence of major diagnostic horizons, which are defined and separated 
based, in part, on base saturation [3]. Thus, a given order includes soils 
whose properties (including base saturation) suggest that they are 
somewhat similar in their genesis. We tested soil order to determine 
if it would be useful as an input variable. Soil taxonomic order alone 
was able to explained 48% of the variation in base saturation (r2 = 
0.48). Therefore, soil order was included as an input parameter in the 
reference dataset. The soil properties of the target soil would be matched 
to the properties within the same soil order in the reference dataset. 
Soil taxonomic mineralogy class and master horizon designation were 
also considered, but were only able to explain an additional 2% of the 
variation in base saturation when included with soil taxonomic order 
(r2=0.50). Within the soil orders in the reference dataset, organic 
layers are underrepresented. Therefore, organic layers were separated 
from the soil orders and combined into their own group. Combining 
the organic layers into their own group increased a searchable group 
to 170 layers if CEC is an input variable and 91 layers if ECEC is an 
input variable (Table 1). The reference dataset will be searched for the 
k most similar soils (the closest soils) to the target soil within the same 
taxonomic order or the organic soil group (Table 1). Also, because 
some soil orders (i.e., Histosols, Gelisols, Aridisols, and Vertisols), 
mostly for layers with pHs<5.5, are underrepresented (n<70) in the 
reference dataset, they were grouped with other soil orders. Histosols, 
Gelisols, and low pH Aridisols were combined with Inceptisols, and 
low pH Vertisols were grouped with the Alfisols (Table 1). Also, soil 
horizons that have hydrous, medial, or ashy texture modifiers in soil 
orders other than Andisols were grouped with the Andisols (Table 1). 
Andisols and layers with andic soil properties (typically formed during 
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weathering of volcanic materials) will have properties that vary greatly 
from other soils [21].

A SBs model was developed that determines SB values (up to 100% 
base saturation) for a wide range of soils that occur in the US. The 
model searches a reference dataset, and get the 10 (k) closest soils (to 
the target soil) within the same taxonomic order or organic group. The 
corresponding measured SBs are then weighted based on distance (or 
similarity) to the target soil and averaged (Figure 2). Within the model, 
the pH and OC content of the target soil will dictate whether CEC or 
ECEC is used and whether pH in water or pH in CaCl2 is used with OC 

and extractable acidity as input variables for a particular horizon. 

Input parameters of the target soil needed by the model are 
taxonomic order [3], OC content, pH (in H2O or CaCl2), CEC or ECEC, 
and extractable acidity and whether gypsum and/or calcium carbonate 
are present. The model runs through a series of decisions regarding 
the target soil when finding the 10 nearest neighbors in the reference 
dataset. If the target soil contains gypsum or calcium carbonate, or the 
pH (in water) ≥7.5 then 100% base saturation is assumed [1,22], and 
the CEC value of the target soil is assigned as the SBs value. Next, if the 
organic C content of the target soil is > 14.5%, then OC, pH (in CaCl2), 
extractable acidity, and CEC or ECEC of the target soil are used to get 
10 of the closest soils in the organics group in the reference dataset. 
Next, if the texture modifier is ashy, medial, or hydrous; then OC, pH 
(in water), extractable acidity, and CEC or ECEC of the target soil are 
used to get 10 of the closest soils in the Andisols order in the reference 
dataset. And for everything else the OC, pH (in water), extractable 
acidity, CEC or ECEC, and soil order of the target soil are used to get 
10 of the closest soils within the same soil order in the reference dataset.

The reference dataset contains 36,910 layers of measured data that 
consist of CEC and ECEC, pH in water and CaCl2, organic carbon, 
extractable acidity, SBs and taxonomic order. For the reference dataset, 
basic statistics and ranges of the properties are presented in Table 2. 
Organic carbon ranges from 0 to 59%, which covers the whole range 
possible. Measured SBs ranges from <0.1 to 398 cmol(+) kg-1, which was 
corrected to the 100% base saturation (if greater). All 12 taxonomic soil 
orders are represented in the reference dataset.

Validation
Performance of the k-NN model depends largely on the goodness 

of selection of the most similar (nearest) soils to the target soils [13]. 
The model was validated against an independent dataset consisting of 
4,347 soil horizons. The validation data set consisted of a wide variety 
of layers from all 12 taxonomic orders. Measured SB values (corrected 
to 100% base saturation) ranged from 0.1 to 140 cmol (+) kg-1 and OC 
values ranged from 0.0 to 57 %. Statistical properties of the validation 
dataset are presented in Table 3.

Measured versus predicted SB values (predicted up to 100% base 
saturation) are presented in Figure 3. There is general agreement 
between the measured and predicted SBs as indicated by the high r2 
value of 0.97. The accuracy of the predictions produced an RMSEp of 
2.104 cmol (+) kg-1 and an overall ME of -0.15 cmol (+) kg-1. Comparing our 
results with others who have predicted SBs have shown higher RMSEs 
and lower r2 (lower prediction accuracies). Gray et al. [9] using the 
ISRIC WISE Global database in the development of broad relationships 
between SBs and soil forming factors, obtained RMSEs ranging from 
2.6 to 3.4 cmol(+) kg-1 using three different modeling approaches, which 
they considered to be broadly moderate in accuracy. Their MEs ranged 
from 0.54 to 0.96. Variables significant in their regression model were 

Figure 2: Schematic overview of the k-nearest neighbor approach for predicting 
sum-of-bases. 

Table 1: Within the reference dataset, the target soil is matched to the closest soils 
within the same taxonomic order or organic group.

Taxonomic Order 
or Organic Group Description N

Organics OC contents > 14.5%
CEC 170

ECEC 91

Andisols
Includes layers of other orders with 
ashy, medial or hydrous in-lieu-of 

textures

CEC 916

ECEC 653

Ultisols Ultisols with ≤ 14.5% OC
CEC 783

ECEC 3,065

Oxisols Oxisols with ≤ 14.5% OC
CEC 314

ECEC 710

Inceptisols, Gelisols 
(65), Histosols (135)

Inceptisols, Gelisols, and Histosols with 
≤ 14.5% OC, includes low pH layers of 

Aridisols (26)†

CEC 2,429

ECEC 2,435

Spodosols Spodosols with ≤ 14.5% OC
CEC 574

ECEC 1,647

Alfisols Alfisols with ≤ 14.5% OC, includes low 
pH layers of Vertisols (68)†

CEC 7,110
ECEC 4,704

Entisols Entisols with ≤ 14.5% OC
CEC 1,221

ECEC 578

Mollisols Mollisols with ≤ 14.5% OC
CEC 7,450

ECEC 621
Vertisols Vertisols with ≤ 14.5% OC CEC 494
Aridisols Aridisols with ≤ 14.5% OC CEC 651

Not included in the total N.
† Number in parenthesis is the number of layers with the taxa (includes both high 
and low pH layers).

Table 2: Ranges in soil properties of the reference dataset used to predict sum-
of-bases.

Property N Min Max Median Mean Std. Dev.
pH (H2O) 36,910 2.1 10.1 5.7 5.8 0.9

pH (CaCl2) 33.838 2.2 9.4 5.2 5.2 0.9
CEC (cmol(+) kg) 36,910 0.1 196 13.8 16.5 13.2

ECEC (cmol(+) kg) 14,810 <0.1 152 6.0 8.7 8.0
Ext. Acidity (cmol(+) kg) 36,910 < 0.1 249 6.0 9.1 11.3

Organic Carbon (%) 36,910 < 0.1 59 0.5 1.3 2.9
Sum bases (cmol(+) kg) 36,910 < 0.1 186 8.2 11.4 11.3
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parent material, climate and slope. The Neural Network SBs model 
developed by Aitkenhead et al. [10], using input parameters related to 
the soil forming factors and human influence, was categorized as being 
well predicted with a R2 of 0.56 (p = 0.000).

Breakdown of the validation results for the different soil orders and 
predictor variables (i.e., CEC and ECEC) are presented in Table 4. The 
accuracy of the predictions using CEC as an input variable is slightly 

higher than that for low pH soils (pH < 5.5) that use ECEC as an input 
variable (RMSEp = 2.135 and 1.808, respectively). Soils with higher pHs 
(that have CEC) generally have larger cation exchange values (Table 3), 
and thus would have a larger error value. Among the soil order groups, 
the RMSEp ranged from 1.169 to 5.943 cmol (+) kg-1, with the Histosols 
order having the largest RMSEp. The Aridisols order had the lowest 
RMSEp. The organic soils also had the second largest RMSEp of 5.360 
cmol (+) kg-1. Large distances would be experienced for soils that are 
underrepresented in the database [13] and could lead to larger errors. 
The organic layers tend to be underrepresented in the reference dataset 
compared to the mineral layers. 

The 95% confidence intervals about the slope (0.954, 0.965) and 
intercept (0.212, 0.383) of the least squares line in Figure 3 does not 
include a slope of one and an intercept of zero, respectively. This 
means that more than 95% of time, similarly constructed intervals 
will not contain unit one slope and zero intercept. This suggests 
that the model slightly overestimates SBs starting at the intercept 
(zero SBs), then crosses over the 1:1 line at some point and begins 
to underestimate SBs as SBs increases. The crossover point is 6.99. 
However, the overall bias is small at -0.15, which indicates an 
overall underestimation. The MEs or bias ranged from -2.11 to 0.20 
among the different soil groups (Table 4). The Aridisols order had 
the largest positive ME of 0.20 which indicates an overestimation, 
while the organics group had the largest negative ME of -2.11, which 
indicates an underestimation of SBs. Nine out of the 12 soil orders 
had a small negative ME (Table 4). In general, the MEs were small, 
indicating this model can predict SBs reasonable well for the wide 
variety of soils of the U.S. The larger ME of the organics group 
could be due to the low numbers or underrepresentation of organic 
layers in the reference database. Over time, as more data becomes 
available, organic layers can easily be added to the reference dataset 
without any redevelopment of the model. This should improve the 
prediction of SBs for organic layers. The same goes for other more 
underrepresented soil orders, soils in these orders can also be easily 
added to the reference database.

Conclusions
A k-NN model was developed within the NASIS soil survey 

database to estimate SBs (up to 100% base saturation) for the wide 
range of soils that are encountered within the United States. The model 
searches a reference database to find the 10 most similar soils to the 
target soil using five input parameters: OM, pH, cation-exchange, 
extractable acidity, and taxonomic soil order. The presence of gypsum 
or CaCO3 in the soil also needs to be known. Validation of the model 
produced a prediction accuracy (RMSEp) of 2.104 cmol (+) kg-1 and an 
overall ME of -0.15 cmol(+) kg-1. The prediction error (or RMSE) of the 
least squares line between measured and predicted SBs is small and was 
deemed adequate for soil survey purposes. The literature indicates this 
prediction error is lower than that reported for other SBs models, which 
are more limited in their range of properties. The low predictions errors 
suggest that the four properties (i.e., cation-exchange, pH, extractable 
acidity, and organic carbon) when searched within the same taxonomic 
order were effective in finding the nearest soils (to the target soil) in 
the reference dataset. The k-NN SBs model provides an efficient and 
reasonably accurate tool for estimating SBs values (up to 100% base 
saturation) when measured data are not available for soils of the US. 
Initial soil mapping is still being conducted in the U.S. and many areas 
are undergoing updates. Improvements in SBs estimates will improve 
interpretations generated from soil survey data, which benefits all users 
of soil survey information. 

Table 3: Ranges in soil properties of the validation dataset used to predict sum-
of-bases.

Property N Min Max Median Mean Std. Dev.
pH (H2O) 4,347 3.0 10.0 5.8 5.9 1.10

pH (CaCl2) 4,347 2.7 9.8 5.2 5.4 1.14
CEC (cmol(+) kg-1) 2,612 0.1 143 15.3 18.1 14.1

ECEC (cmol(+) kg-1) 1,736 0.2 66.9 6.3 8.5 7.6
Ext. Acidity (cmol(+) 

kg-1) 4,101 < 0.1 236 8.3 12.4 14.7

Organic Carbon (%) 4,347 < 0.1 52.3 0.6 1.9 4.4
Sum bases (cmol(+) 

kg-1) 4,347 < 0.1 140 7.7 11.2 11.9

Gypsum (%) 179 < 0.1 51 < 0.1 1.9 6.9
CaCO3 (%) 545 < 0.1 98 1.0 9.8 17.8

Figure 3: Scatter plot of measure versus predicted sum of bases. The solid 
line is the 1:1 relationship and dashed line is the least squares line between 
measure and predicted sum of bases.

Table 4: Validation results for the prediction of sum of bases for different input 
variables (CEC vs ECEC), soil orders and the organics group.

Soil Group N R2 RMSEp ME
CEC 2,611 0.970 2.135 -0.19

ECEC 1,736 0.902 1.808 -0.09
Entisols 237 0.975 1.883 -0.15
Mollisols 1,105 0.979 1.713 0.01
Alfisols 648 0.934 1.759 -0.05

Inceptisols 765 0.947 2.092 -0.11
Ultisols 771 0.774 1.823 -0.18

Vertisols 69 0.934 2.643 0.09
Aridisols 209 0.981 1.169 0.20
Andisols 284 0.902 2.787 -0.86
Oxisols 67 0.537 2.562 -0.004

Spodosols 62 0.723 1.275 -0.19
Histosols 11 0.707 5.943 -0.39
Gelisols 41 0.839 2.555 -0.80

Organics (OC > 14.5%) 78 0.973 5.360 -2.11

CEC = cation exchange capacity; ECEC = effective cation exchange capacity; OC 
= organic carbon.
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