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Abstract

A subtractive imaging method is described that uses Gaussian fits
and image moments in the CCD confocal microscopy configuration.
Subtraction of the 0™ order image moment of a digital pinhole filtered
signal from the Gaussian fitted intensity signal reveals missing
details of a high resolution test target. By choosing an appropriate
weighting coefficient, the associated halo effect can be removed
while retaining the fine details.
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Introduction

Subtractive imaging has been shown to provide resolution
enhancement to confocal microscopy [1]. Earlier studies mostly
involve the use of subtraction between confocal signals taken at
different pinhole settings in a point detection configuration [2-5].
The two confocal signals can either be acquired simultaneously by
using two different pinholes and detectors [2,3,5] or successively by a
single detector at different pinhole settings [4]. For the simultaneous
acquisition case, accurate alignment of the two pinholes in both axial
and transverse directions is crucial to the degree of performance [2].
For the successive acquisition case, a precise image registration was
necessary for correcting any misalignment caused by time drifts of
experimental conditions [4]. Recently, the development of optical
super-resolution has revived the interest in subtractive imaging.
Sanchez-Ortiga et al. showed a scheme of subtractive-imaging
confocal microscopy using a CCD camera as a detector [6]. Hao et
al. showed that finer details in a fixed cell sample can be revealed by
subtracting a suitably weighted short lifetime intensity-image from
a long life one in time-gated stimulated emission depletion (STED)
microscopy [7].

Despite the differences in experimental realizations, most of the
subtractive-imaging confocal microscopy studies can be described by
a common mathematical expression.

Iub = Iclosed _}/1 (1)
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where I | . refers to closed-pinhole (size smaller than the Airy
disk diameter) intensity and I refers to open-pinhole intensity. y is
a weighting coefficient. The final performance of subtraction depends
heavily on the choice of y, which is usually obtained through trial
and error. The performance enhancement brought up by subtractive
imaging can be explained using the unsharp mask filtering technique
originally developed for astrophotography [2,8]. The closed-pinhole
image contains more high frequency spatial components, which
correspond to sharp features in an image. The open-pinhole image is
blurred by the enclosure of more low frequency spatial components
which corresponds to the fuzziness of an image. Subtraction of the
open-pinhole image from the closed-pinhole image removes or
reduces low frequency spatial information, leading to an enhancement
of high frequency spatial information and sharpening of the image.
However, this subtraction can cause over-shoots and under-shoots in
areas of sharp edges, leading to halo effects around these areas [9].

In a previous study, we showed that image moment analysis of
properly cropped wide field CCD images of signal light profile in
the CCD confocal microscopy configuration can yield an equivalent
performance as fiber-optic confocal microscopy [10]. In this work, we
introduce a subtractive imaging scheme which uses two-dimensional
Gaussian fits and image moment analysis to enhance resolution and
reduce halo effects.

Experiment

Figure 1 shows the optical setup of the experiment. A collimated
laser beam of 4.5 mW at 532 nm wavelength was expanded by a 2x
Keplerian type beam expander to slightly overfill the back aperture
of the microscope objective O1 (Zeiss LD Plan-Neofluor 20x/0.4
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Figure 1: Experimental setup (not drawn to scale).

BE: Beam Expander; BS: Beam Splitter; L1: Telephoto Tube Lens; L2: Singlet
Tube Lens; LF: Laser Line Filter; MMF: Multimode Fiber; NF: Notch Filter; O1,
02: Microscope Objective; PD: Photodiode; PH: Pinhole; PL: Polarizer; PZT:
Piezo Stage; M2: Half Waveplate
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Corr). A 50 um diameter pinhole spatial filter was inserted at the
confocal point of the beam expander. A Glan-Taylor polarizer and
a half waveplate were used for beam attenuation. The reflected light
was collected by a 1000 mm effective focal length telephoto tube
lens which is formed by a 200 mm positive achromatic doublet
(Thorlabs, AC254-200-A) and a 25 mm negative achromatic
doublet (Thorlabs, ACN127-025-A), and then focused onto
a monochrome camera CCD1 (The Imaging Source, DMK
23U618) for primary signal detection. A laser line filter at 532 nm
(Thorlabs, FL532-10) keeps ambient light from entering CCD1,
only allowing reflected laser light to pass through. A portion of
the reflected light signal was directed by a cubic beam splitter and
coupled into a 10 um core multimode fiber (Thorlabs, M65L02) by
a 4x microscope objective O2 (Thorlabs, RMS4X) for secondary
signal detection. This fiber-optic arm acts as a reference confocal
microscope for comparison. A color camera CCD2 (The Imaging
Source, DMK 23U274) behind a 200 mm focal length tube lens
(Thorlabs, LBF254-200-A) was used for alignment and inspection.
A notch filter at 532 nm (Thorlabs, NF533-17) keeps laser light
from entering CCD2. A white light LED was used for illumination
(not shown). Scanning was achieved by using a piezoelectric
objective scanner (Physik Instrumente, PIFOC" P-725.4CD) for
axial scan (Z) and a piezoelectric nanopositioning stage (Physik
Instrumente, P-611.2S) for lateral scan (XY).

In such an optical setup, the Airy disk diameter (1 AU) in the
focal plane of the 20x/0.4 Zeiss microscope objective is 1.62 pm at 532
nm, which corresponds to an area of 35x35 pixel on the monochrome
CCD, and a circular area of 8.9 um diameter on the fiber facet. Thus,
the 10 um diameter fiber core is compared to a 40x40 pixel collection
area on the CCD, and we choose this digital pinhole setting for all our
following experiments.

A general form of (i+j)"" order image moment in image processing
is given by [11]:
My =33y 1(xp)i,j=0,1,2, ... @)
x oy
where the 0" order image moment M, is equivalent to the
irradiance. The equation describing the Gaussian is:

g(x,y)zA.[—%—%] (3)

where A is the fitted peak intensity at beam center. The initial
estimates for the five Gaussian parameters were derived from image
moment analysis.

The subtraction operation is then given by

2
L, =[(4),-C(M,), ] @)
1/2
where normalization is given by (aw);v =a,, /[Zaf)}} and C
X,y

is a weighting coefficient. The extra square operation is used to keep
result positive.

Results and Discussion

To demonstrate the performance of our proposed method, we
started with a two-dimensional scan of a USAF resolution target
(Ready Optics, California, up to Group 11, Element 6). Figure 2
shows a scan of a 10 um x 10 um area in Group 10 at a 0.02 um step
size along both X and Y. Figure 2a is the direct intensity map from

fiber-optic confocal arm. Figure 2b is the reconstructed image using
0" order image moment M, of a 40 x 40 pixel area which encloses
the whole beam profile. Figure 2c is the peak intensity map derived
from Gaussian fitting the same 40 x 40 pixel region of interest (ROI).
A slight improvement of contrast can be seen from Figures 2a-2c.
By subtracting Figure 2b from Figure 2¢ using Equation 4 with C=1,
an immediate resolution enhancement is obtained, shown in Figure
2d. The missing number profiles of “2” and “3” in Figures 2a-2c are
brought up by this subtraction operation. However, this resolution
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Figure 2(a): Images of a high resolution test target (Group 10, Elements 2
and 3). (a) Fiber-optic confocal. (b) 0" order image moment. (c) Gaussian

fitted intensity. (d) Subtraction of (b) from (c). (e) Weighted subtraction of (b)
from (c).
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Figure 2(b): Images of a high resolution test target (Group 10, Elements 2
and 3). (a) Fiber-optic confocal. (b) Oth order image moment. (c) Gaussian
fitted intensity. (d) Subtraction of (b) from (c). (e) Weighted subtraction of (b)
from (c).
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Figure 2(c): Images of a high resolution test target (Group 10, Elements 2
and 3). (a) Fiber-optic confocal. (b) Oth order image moment. (c) Gaussian
fitted intensity. (d) Subtraction of (b) from (c). (e) Weighted subtraction of (b)
from (c).
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and the diameter of the pillar is about 500 nm. Figures 4a-4c shows
the confocal images. The confocal scan area is 5 um x 5 pm and the
step size is 0.01 um in both X and Y. Figure 4e shows the weighted
subtraction resultant image with the median value of the scaling
matrix equal to 1. The donut shape of the confocal images is the
result of difference in optical properties between HSQ photoresist
and GaP substrate. The refractive index value of GaP is about
3.5 at 532 nm wavelength [12] and that of HSQ is constant at
1.4 from 400 nm to 800 nm [13]. Thus, GaP is 10 times more
- - reflective than HSQ, which creates a hollow center in the optical

2 4 6 8 10 images. Despite the asymmetric distortion caused by the increased
X (um) influence of system drift and environmental fluctuations in this

" scan resolution, a vertical line profile of the center column gives a

Figure 2(d): .Images. of a high resolution test tlarget (Group 10, EIement§ 2 lower bound pillar width estimate of 336 + 18 nm (full-width-half-
and 3). (a) Fiber-optic confocal. (b) Oth order image moment. (c) Gaussian maximum or FWHM) or 448 + 8 nm (1/e), which is on the same

fitted intensity. (d) Subtraction of (b) from (c). (e) Weighted subtraction of (b)
from (c). length scale of the SEM.
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To evaluate the optical sectioning capability of our method, we
did an axial scan on a high quality mirror surface. Figure 5 shows

10 the axial response over a 10 um scan range at 0.1 um scan step. A
8 median weighted subtraction gives a FWHM value of 1.9 um, a 1.7
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Figure 2(e): Images of a high resolution test target (Group 10, Elements 2 % 0.4
and 3). (a) Fiber-optic confocal. (b) Oth order image moment. (c) Gaussian £
fitted intensity. (d) Subtraction of (b) from (c). (e) Weighted subtraction of (b) o
from (c). =
0.2
enhancement is also accompanied by a halo effect around those
enhanced sharp edges (in other texts, this is referred to as negative 0.0
intensity values [4,6]). Figure 3 shows line profiles at x=6 um and 10
x=8.12 um. The brought-up number profiles are shown in Figure 3b Y (um)

as two three-peak groups inside each number. The direct subtraction
(green line, color online) causes spurious spikes at each transition
location. To eliminate this halo effect, we tweak the weighting
coefficient C and we found that the optimal value of C is given by
the median value of the scaling matrix (A),/(M,),. Figure 2e shows 1.0
the final image with C=0.81. As shown in Figure 3 (blue line, color
online), this halo effect is almost completely removed while the
desired resolution enhancement remains.

Figure 3(a): Line profiles of intensity. (a) x=6 ym (b) x=8.12 pm.
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In Figure 3, we determined the line width for Group 10, Element
2 is 0.445 + 0.019 pum (the designed value is 0.435 pm) and that for
Element 3 is 0.370 + 0.035 pm (the designed value is 0.388 um). These
numbers translate into adjacent line spacing of 0.89 pm and 0.74 ym
which are right around the diffraction limit of our 20x/0.4 microscope
objective, 0.81 um.
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In another extreme test, we scanned a piece of GaP sample
which consists of equally spaced micro-pillar structure fabricated
on GaP substrate. The GaP micro-pillar is covered with a layer of 0.0
HSQ photoresist. The presence of HSQ photoresist requires the 0
use of low voltage and low vacuum operating condition in SEM Y (um)
measurement to avoid charging effect. The SEM image (Figure 4d)
shows that the spacing between adjacent GaP pillars is about 1.5 pym
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Figure 3(b): Line profiles of intensity. (a) x=6 pm (b) x=8.12 ym.
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Figure 4(a): Images of a GaP micro-pillar sample. (a) Fiber-optic confocal.
(b) 0~{th} order image moment M_{00}. (c) Gaussian fitted intensity. (d) SEM
image, scale bar=1 pm. (e) Weighted subtraction of (b) from (c), C = 1.
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Figure 4(d): Images of a GaP micro-pillar sample. (a) Fiber-optic confocal. (b)
0" order image moment. (c) Gaussian fitted intensity. (d) SEM image, scale
bar=1 uym. (e) Weighted subtraction of (b) from (c).

Figure 4(b): Images of a GaP micro-pillar sample. (a) Fiber-optic confocal. (b)
0™ order image moment. (c) Gaussian fitted intensity. (d) SEM image, scale
bar=1 pm. (e) Weighted subtraction of (b) from (c).
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Figure 4(e): Images of a GaP micro-pillar sample. (a) Fiber-optic confocal. (b)
0™ order image moment. (c) Gaussian fitted intensity. (d) SEM image, scale
bar=1 ym. (e) Weighted subtraction of (b) from (c).
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Figure 4(c): Images of a GaP micro-pillar sample. (a) Fiber-optic confocal. (b)
0™ order image moment. (c) Gaussian fitted intensity. (d) SEM image, scale
bar=1 pm. (e) Weighted subtraction of (b) from (c).
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Figure 5: Axial response.

fold improvement over Gaussian fits and a 2.8 fold improvement over
the fiber-optic confocal case.

Conclusion

In conclusion, we have demonstrated a subtractive imaging
scheme in the CCD confocal microscopy configuration using
Gaussian fits and image moment analysis. 0" order image moment
(M,,) integrates intensity over a 40 x 40 pixel ROI, representing a
median-sized pinhole signal. Gaussian fit gives the peak intensity at
the center of this ROI, representing an infinitesimally closed pinhole

signal. Subtraction of a median weighted M, image from the
Gaussian fitted intensity image enhances the resolution in both
lateral and axial direction, and minimizes the halo effect. In our
dual detector configuration, the subtraction between fiber-optic
and CCD confocal signals can also provide enhancement to the
final image. However, this enhancement requires high accuracy
in optical alignment. Compared to other subtractive confocal
imaging approaches, our method only uses a single signal source,
and a fully determinable weighting coefficient which can remove/
minimize the halo effect.
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